
Zen v15

Btrieve API Guide
Developing Applications Using the Btrieve API

Copyright © 2021 Actian Corporation. All Rights Reserved.

This Documentation is for the end user’s informational purposes only and may be subject to change or withdrawal by Actian
Corporation (“Actian”) at any time. This Documentation is the proprietary information of Actian and is protected by the
copyright laws of the United States and international treaties. The software is furnished under a license agreement and may be
used or copied only in accordance with the terms of that agreement. No part of this Documentation may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or for any purpose
without the express written permission of Actian. To the extent permitted by applicable law, ACTIAN PROVIDES THIS
DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, AND ACTIAN DISCLAIMS ALL WARRANTIES
AND CONDITIONS, WHETHER EXPRESS OR IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION,
ANY IMPLIED WARRANTY OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OR OF NON-
INFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT WILL ACTIAN BE LIABLE TO THE END USER OR ANY
THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,
INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA,
EVEN IF ACTIAN IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Actian Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48
C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor provisions.

Actian, Actian DataCloud, Actian DataConnect, Actian X, Avalanche, Versant, PSQL, Actian Zen, Actian Director, Actian
Vector, DataFlow, Ingres, OpenROAD, and Vectorwise are trademarks or registered trademarks of Actian Corporation and its
subsidiaries. All other trademarks, trade names, service marks, and logos referenced herein belong to their respective
companies.

This product includes software developed by Powerdog Industries. Copyright 1994 Powerdog Industries. All rights reserved.
This product includes software developed by KeyWorks Software. Copyright 2002 KeyWorks Software. All rights reserved.
This product includes software developed by DUNDAS SOFTWARE. Copyright 1997-2000 DUNDAS SOFTWARE LTD.,
all rights reserved. This product includes software developed by the Apache Software Foundation (www.apache.org).

This product uses the free unixODBC Driver Manager as written by Peter Harvey (pharvey@codebydesign.com), modified and
extended by Nick Gorham (nick@easysoft.com), with local modifications from Actian Corporation. Actian Corporation will
donate their code changes to the current maintainer of the unixODBC Driver Manager project, in accordance with the LGPL
license agreement of this project. The unixODBC Driver Manager home page is located at www.unixodbc.org. For further
information on this project, contact its current maintainer: Nick Gorham (nick@easysoft.com).

A copy of the GNU Lesser General Public License (LGPL) is included on the distribution media for this product. You may also
view the LGPL at www.fsf.org/licensing/licenses/lgpl.html.

Btrieve API Guide
July 2021

v

Contents
About This Document . xiii

Who Should Read This Document . xiv
Typographical Conventions . xv

1 Introduction to Btrieve APIs . 1
Btrieve API Functions . 2

BTRV . 2
BTRVID. . 2
BTRCALL. . 2
BTRCALLID . 2
BTRVEX . 3
BTRVEXID . 3
Obsolete Functions . 3

Btrieve API Function Parameters . 5
Operation Code . 5
Status Code . 5
Position Block . 6
Data Buffer . 7
Data Buffer Length. . 7
Key Buffer. . 8
Key Number . 8
Client ID . 9
Key Length . 9

Summary of Btrieve API Operations . 10
Session-Specific Operations. . 10
File-Specific Operations . 10
Unsupported Operations . 13

Sequence of Events in Performing a Btrieve API Operation . 14

2 Btrieve API Operations. 15
Abort Transaction (21) . 17

Parameters . 17
Prerequisites . 17
Procedure . 17
Result . 17
Positioning . 17

Begin Transaction (19 or 1019) . 18
Parameters . 18
Prerequisites . 18
Procedure . 18
Result . 19
Positioning . 19

Clear Owner (30) . 20
Parameters . 20
Prerequisites . 20
Procedure . 20
Result . 20
Positioning . 20

Close (1) . 21

vi

Parameters . 21
Prerequisites . 21
Procedure . 21
Result . 21
Positioning . 21

Continuous Operation (42) . 22
Parameters . 22
Procedure . 22
Details . 23
Result . 24
Positioning . 24

Create (14) . 25
Parameters . 25
Prerequisites . 25
Procedure . 25
Details . 25
Result . 38
Positioning . 39

Create Index (31) . 40
Parameters . 40
Prerequisites . 40
Procedure . 41
Details . 42
Result . 42
Positioning . 43

Delete (4). . 44
Parameters . 44
Prerequisites . 44
Procedure . 44
Details . 44
Result . 44
Positioning . 45

Drop Index (32) . 46
Parameters . 46
Prerequisites . 46
Procedure . 46
Details . 46
Result . 47
Positioning . 47

End Transaction (20) . 48
Parameters . 48
Prerequisites . 48
Procedure . 48
Result . 48
Positioning . 48

Find Percentage (45) . 49
Parameters . 49
Prerequisites . 49
Procedure . 49
Details . 50
Result . 51
Positioning . 51

Get By Percentage (44) . 52
Parameters . 52

vii

Prerequisites . 52
Procedure . 52
Details . 53
Result . 54
Positioning . 54

Get Direct/Chunk (23) . 55
Parameters . 55
Prerequisites . 55
Procedure . 55
Details . 56
Result . 60
Positioning . 61

Get Direct/Record (23) . 62
Parameters . 62
Prerequisites . 62
Procedure . 62
Result . 63
Positioning . 63

Get Directory (18). . 64
Parameters . 64
Prerequisites . 64
Procedure . 64
Result . 64
Positioning . 64

Get Equal (5). . 65
Parameters . 65
Prerequisites . 65
Procedure . 65
Result . 65
Positioning . 66

Get First (12). . 67
Parameters . 67
Prerequisites . 67
Procedure . 67
Result . 67
Positioning . 68

Get Greater Than (8) . 69
Parameters . 69
Prerequisites . 69
Procedure . 69
Result . 70
Positioning . 70

Get Greater Than or Equal (9) . 71
Parameters . 71
Prerequisites . 71
Procedure . 71
Result . 72
Positioning . 72

Get Key (+50) . 73
Parameters . 73
Prerequisites . 73
Procedure . 73
Result . 73
Positioning . 74

viii

Get Last (13) . 75
Parameters . 75
Prerequisites . 75
Procedure . 75
Result . 75
Positioning . 76

Get Less Than (10) . 77
Parameters . 77
Prerequisites . 77
Procedure . 77
Result . 78
Positioning . 78

Get Less Than or Equal (11) . 79
Parameters . 79
Prerequisites . 79
Procedure . 79
Result . 80
Positioning . 80

Get Next (6) . 81
Parameters . 81
Prerequisites . 81
Procedure . 81
Result . 81
Positioning . 82

Get Next Delete Extended (85) . 83
Parameters . 83
Prerequisites . 83
Procedure . 83
Details . 83
Result . 84
Positioning . 85

Get Next Extended (36) . 86
Parameters . 86
Prerequisites . 86
Procedure . 86
Details . 87
Result . 92
Positioning . 93

Get Position (22) . 94
Parameter . 94
Prerequisites . 94
Procedure . 94
Result . 94
Positioning . 94

Get Previous (7) . 95
Parameters . 95
Prerequisites . 95
Procedure . 95
Result . 95
Positioning . 96

Get Previous Delete Extended (86) . 97
Parameters . 97
Prerequisites . 97
Procedure . 97

ix

Details . 97
Result . 98
Positioning . 98

Get Previous Extended (37) . 99
Parameters . 99
Prerequisites . 99
Procedure . 99
Details . 100
Result . 100
Positioning . 100

Insert (2) . 101
Parameters . 101
Prerequisites . 101
Procedure . 101
Result . 101
Positioning . 102

Insert Extended (40) . 103
Parameters . 103
Prerequisites . 103
Procedure . 103
Details . 104
Result . 104
Positioning . 105

Login/Logout (78). . 106
Parameters . 106
Prerequisites . 106
Login Procedure . 106
Logout Procedure . 106
Result . 106
Notes . 107
Positioning . 107

Open (0) . 108
Parameters . 108
Prerequisites . 108
Procedure . 108
Details . 109
Result . 110
Positioning . 111

Reset (28). . 112
Parameters . 112
Prerequisites . 112
Procedure . 112
Result . 112
Positioning . 112

Set Directory (17) . 113
Parameters . 113
Prerequisites . 113
Procedure . 113
Result . 113
Positioning . 113

Set Owner (29) . 114
Parameters . 114
Prerequisites . 114
Procedure . 114

x

Details . 115
Result . 115
Positioning . 115

Stat (15) . 116
Parameters . 116
Prerequisites . 116
Procedure . 116
Details . 116
Result . 117
Positioning . 117

Stat Extended (65). . 118
Parameters . 118
Prerequisites . 118
Procedure . 118
Subfunction 1: Extended File Information . 119
Subfunction 2: System Data Information . 119
Subfunction 3: Duplicate Record Conflict Information . 120
Subfunction 4: File Information . 121
Subfunction 5: Gateway Information . 123
Subfunction 6: Lock Owner Identification . 124
Subfunction 7: Security Information. . 125
Subfunction 8: Listing of Table or File Name Causing a Status Code 71. 128
Result . 129

Step First (33) . 130
Parameters . 130
Prerequisites . 130
Procedure . 130
Result . 130
Positioning . 130

Step Last (34) . 131
Parameters . 131
Prerequisites . 131
Procedure . 131
Result . 131
Positioning . 131

Step Next (24) . 132
Parameters . 132
Prerequisites . 132
Procedure . 132
Result . 132
Positioning . 133

Step Next Extended (38) . 134
Parameters . 134
Prerequisites . 134
Procedure . 134
Details . 135
Result . 135
Positioning . 136

Step Next Delete Extended (87) . 137
Parameters . 137
Prerequisites . 137
Procedure . 137
Details . 137
Result . 138

xi

Positioning . 138
Step Previous (35) . 140

Parameters . 140
Prerequisites . 140
Procedure . 140
Result . 140
Positioning . 141

Step Previous Delete Extended (88) . 142
Parameters . 142
Prerequisites . 142
Procedure . 142
Details . 142
Result . 142
Positioning . 143

Step Previous Extended (39) . 144
Parameters . 144
Prerequisites . 144
Procedure . 144
Details . 144
Result . 145
Positioning . 145

Stop (25) . 146
Parameters . 146
Procedure . 146
Result . 146
Positioning . 146

Unlock (27) . 147
Parameters . 147
Prerequisites . 147
Procedure . 147
Result . 148
Positioning . 148

Update (3) . 149
Parameters . 149
Prerequisites . 149
Procedure . 149
Result . 149
Positioning . 150

Update Chunk (53) . 151
Parameters . 151
Prerequisites . 151
Procedure . 151
Details . 151
Result . 156
Positioning . 156

Version (26) . 158
Parameters . 158
Prerequisites . 158
Procedure . 158
Result . 158
Positioning . 159

xii

A Quick Reference of Btrieve Operations. 161
Table of Btrieve API Operations . 161

xiii

About This Document

This documentation is a guide to the Btrieve application programming interface (API).

xiv

Who Should Read This Document

This document is designed for any user who is familiar with Zen and wants to develop applications that
use the Btrieve API.

Actian Corporation would appreciate your comments and suggestions about this manual. As a user of
our documentation, you are in a unique position to provide ideas that can have a direct impact on future
releases of this and other manuals. If you have comments or suggestions for the product documentation,
post your request at the Community Forum on the Zen website.

xv

Typographical Conventions

The documentation uses the following typographical conventions.

Convention Explanation

bold Bold typeface usually indicates elements of a graphical user interface, such as menu names,
dialog box names, commands, options, buttons, and so forth. Bold typeface is also applied
occasionally in a standard typographical use for emphasis.

italics Italics indicate a variable that must be replaced with an appropriate value. For example,
user_name would be replaced with an actual user name. Italics is also applied occasionally
in a standard typographical use for emphasis, such as for a book title.

cAsE Uppercase text is used typically to improve readability of code syntax, such as SQL syntax,
or examples of code. Case is significant for some operating systems. For such instances, the
subject content mentions whether literal text must be uppercase or lowercase.

monospace Monospace text is used typically to improve readability of syntax examples and code
examples, to indicate results returned from code execution, or for text displayed on a
command line. The text may appear uppercase or lowercase, depending on context.

', ", and “ ” Straight quotes, both single and double, are used in code and syntax examples to indicate
when a single or double quote is required. Curly double quotes are applied in the standard
typographical use for quotation marks.

| The vertical rule indicates an OR separator to delineate items for which you must choose one
item or another. See explanation for angle brackets below.

[] Square brackets indicate optional items. Code syntax not enclosed by brackets is required
syntax.

< > Angle brackets indicate that you must select one item within the brackets. For example, <yes
| no> means you must specify either “yes” or “no.”

. . . Ellipsis indicates that the preceding item can be repeated any number of times in succession.
For example, [parameter . . .] indicates that parameter can be repeated. Ellipsis following
brackets indicate the entire bracketed content can be repeated.

::= The symbol ::= means one item is defined in terms of another. For example, a::=b means that
item “a” is defined in terms of “b.”

%string% A variable defined by the Windows operating system. String represents the variable text. The
percent signs are literal text.

$string An environment variable defined by the Linux operating system. String represents the variable
text. The dollar sign is literal text.

xvi

1

c h a p t e r

1Introduction to Btrieve APIs

The Zen MicroKernel Engine is designed for high-performance data handling and improved
programming productivity. The MicroKernel Engine operations allow your application to retrieve,
insert, update, or delete records either by key value, or by sequential or random access methods.

The Btrieve API provides compatibility with the following programming languages and development
environments:

 Embarcadero C/C++
 Embarcadero Delphi
 GNU C/C++
 Micro Focus COBOL
 Microsoft Visual Basic
 Microsoft Visual C++
 Watcom C/C++

The following topics cover the API functionality:

 Btrieve API Functions
 Btrieve API Function Parameters
 Summary of Btrieve API Operations
 Sequence of Events in Performing a Btrieve API Operation

You can also go directly to a list of Btrieve API Operations or the Quick Reference of Btrieve Operations.

2

Btrieve API Functions

The Btrieve API is single-function in that most program actions are determined by an operation code
parameter rather than a function name. You should choose the API for your application based on
whether you are most interested in cross-platform portability of code or the best possible performance
on a particular platform.

Your Btrieve application should never perform any standard I/O against a data file. Your application
should perform all file I/O using a Btrieve API function.

The following table lists Btrieve API functions provided for use with the operation codes.

To find the language-specific syntax for calling Btrieve API functions, see Btrieve API Programming in
Zen Programmer’s Guide.

BTRV

BTRV allows an application to make calls to the MicroKernel Engine. All the language interface modules
provided with the Programming Interfaces installation option support the BTRV function. In some
cases, the BTRV function actually calls the BTRCALL function. However, BTRV is the preferred
function because of the platform independence it provides.

BTRVID

BTRVID allows an application to make a single MicroKernel Engine call that contains a clientID
parameter, which the application can control. An application can use BTRVID to assign itself more than
one client identity to the MicroKernel Engine and to execute operations for one client without affecting
the state of the other clients. For more information, see Client ID.

BTRCALL

For Windows, Linux, and macOS, BTRCALL is equivalent to the BTRV function. You should use the
BTRV function instead of BTRCALL unless you cannot afford the slight performance decrease that
occurs with BTRV.

BTRCALLID

Use the BTRCALLID function if you need client-level control and your application operates in
Windows, Linux, macOS, or Raspbian.

Table 1 Btrieve API Functions

Function Operating Systems Description

BTRV
BTRVID

All Use for complete code portability between operating systems. For most developers,
this advantage offsets a very slight performance decrease. Uses older data buffer
layout.

BTRCALL
BTRCALLID

All Use when you want to specify the key length argument. Uses older data buffer
layout.

BTRVEX
BTRVEXID

All Use when you need longer data buffers, or when you want the new data buffer
layout. May be intermixed with BTRV type entry points so long as you interpret the
data buffers correctly.

3

This function is similar to the BTRVID function, except that it does not call an intermediate function.

Note The legacy BTRCALLID32 function is aliased to the BTRCALLID function.

BTRVEX

The potentially large size of 13.0 format files and the use of larger data buffers requires run-time values
larger than what older Btrieve interfaces have provided. The newer entry points BTRVEX and
BTRVEXID meet these requirements. They are similar to BTRCALL and BTRCALLID, except that some
of the function arguments use wider types, and some of the data buffers are laid out differently. The
declarations are in btrvexid.h and the implementations are in the same files as BTRCALL.

For a Btrieve operation that uses a BTRVEX entry point, some values passed in data buffers are wider,
such as 8-byte record addresses and record counts. Please note that the 8-byte behavior is due to the
BTRVEX entry points and does not depend on the format version of the file being accessed. To use
BTRVEX, the following operations require changed data buffer layouts:

 Create (14), Create Index (31)
 Stat (15)
 Get Position (22)
 Get Direct (23)
 Get Next Extended (36), Get Previous Extended (37)
 Step Next Extended (38), Step Previous Extended (39)
 Insert Extended (40)
 Find Percentage (45)
 Stat Extended (65) subfunctions 3 and 8
 Unlock (27)

The choice of entry point does not affect record data.

As noted above, the data buffer size argument for BTRVEX is a pointer to a 32-bit integer, where
BTRCALL uses a 16-bit integer. Thus, data buffers can be larger than 64 KB.

If you are migrating to the new file format, keep in mind that the position block and client ID values can
be used with both BTRCALL and BTRVEX, so it is not necessary to convert all code to BTRVEX at once.

The key number argument for BTRVEX is a 32-bit integer, where BTRCALL uses an 8-bit signed integer.
To make it easier to convert existing code to BTRVEX, the BTRVEX entry point remaps key values 128
through 255 to –128 through –1. This accommodates constants that were specified as unsigned bytes
(e.g., 0xFE) instead of as signed bytes (e.g., –2).

BTRVEXID

Like BTRVID and BTRCALLID, BTRVEXID allows client ID control in addition to the benefits of
BTRVEX.

Obsolete Functions

The following historical functions are supported to maintain compatibility with applications written for
previous Btrieve API releases:

4

 BTRCALLBACK
 BTRVINIT
 BTRVSTOP
 RQSHELLINIT
 WBRQSHELLINIT
 WBTRVINIT
 WBTRVSTOP
 BRQSHELLINIT

While these functions are now obsolete, older applications that call these functions will still run with
6.15 and later MicroKernel versions.

5

Btrieve API Function Parameters

Every function call must provide all parameters. This holds true even though the MicroKernel Engine
does not use every parameter on every operation and in some cases may ignore a parameter value. In
general, different parameters can be sent and returned for each operation. See Btrieve API Operations
for details of the parameters for each Btrieve API operation.

Note C developers: See the file btitypes.h for information about the platform-independent data types
and pointers used in the C language interface.

Btrieve API functions use the following parameters:

 Operation Code
 Status Code (BASIC and COBOL only)
 Position Block
 Data Buffer
 Data Buffer Length
 Key Buffer
 Key Number
 Client ID (BTRVID, BTRCALLID, and BTRVEXID functions only)
 Key Length (BTRCALL, BTRCALLID, BTRVEX, and BTRVEXID functions only)

Operation Code

The operation code parameter determines the action of the Btrieve API function. For example, the
operation may read, write, delete, or update one or more records. Your application must specify an
operation code in every Btrieve API call. The MicroKernel Engine never changes the code. Operation
codes are described under Btrieve API Operations.

Note C developers: The variable you specify must be of one of the following data types:
• BTI_WORD, an unsigned short integer
• BTI_INT, a signed 32-bit integer, used only with BTRVEX and BTRVEXID

In both cases, the variable is passed by value.

Status Code

In BASIC and COBOL applications, the MicroKernel Engine returns status codes, which are signed
integers. In most programming environments, the status code is the return value of the Btrieve API
function call. However, some BASIC and COBOL language interfaces require a Status Code parameter,
which contains a coded value to indicate whether errors occurred during the operation. After a Btrieve
API call, the application must always check the value of the status variable to determine success.

Zen components return status codes from calls to their APIs. When you write to these APIs, you should
provide handling for three conditions:

6

 API success
 Anticipated API failure
 Unanticipated API failure

Here is a C code example that handles all three conditions:

status = BTRVID(B_VERSION, posBlock1, &versionBuffer, &dataLen, keyBuf1, keyNum,
(BTI_BUFFER_PTR) &clientID);
if (status == B_NO_ERROR)
{
 /* continue normal operation */
 status = BTRVID(...);
}
else if (status == B_RECORD_MANAGER_INACTIVE)
{
 /* handle known error */
 printf("Btrieve Get Version() returned B_RECORD_MANAGER_INACTIVE\n");
}
else
{
 /* unanticipated error */
 printf("Btrieve Get Version() returned %d\n", status);
} /* end if-else */

By following this method of status code handling, you can help ensure your application’s future stability.

Note In the older BTRV functions, status codes are 2-byte integers, while the newer BTRVEX and
BTRVEXID return 4-byte integers.

Position Block

The position block parameter is the address of a 128-byte array that the MicroKernel Engine uses to store
file I/O structures and the positioning information associated with an Open (0) operation. Each time
your application opens a file, it must allocate a unique position block. The MicroKernel Engine
initializes the position block when your application performs the Open operation, then references and
updates it during file operations. Therefore, your application must specify the same position block on all
subsequent Btrieve API operations for the file.

Note Do not write to the position block. Doing so could result in a lost position error, other errors,
or damage to the file.

When you open more than one file at a time, the MicroKernel Engine uses the position block to
determine which file a particular call is for. Similarly, when you open the same file more than once, the
engine uses a different position block for each Open operation. Likewise, the engine uses a different
position block for each separate client that opens the same file. Clients cannot share position blocks.

Note The position block is not bound to an entry point. It is possible to open a data file using BTRV,
read data using BTRVEX, and close the file using BTRCALL.

7

Data Buffer

Your application transfers data to and from a file using the data buffer. The information passed to or
from the MicroKernel Engine in the data buffer depends on which Btrieve API operation is being
performed. Frequently, the data buffer contains one or more records that your application is transferring
to or from a file. However, depending on the Btrieve API operation, the data buffer can contain other
information, such as file or key specifications, MicroKernel Engine version information, and so on.

Be sure to allocate a large enough data buffer to accommodate the longest record in your file. If your data
buffer length parameter specifies a value larger than the allocated size of your data buffer, MicroKernel
Engine modification operations may destroy data following the data buffer.

Note The same operations use different layouts depending on the entry point. BTRV, BTRVID,
BTRCALL, and BTRCALLID use the legacy layout. BTRVEX and BTRVEXID use a newer, slightly
different layout. The different layouts do not affect user data records.

Data Buffer Length

For any operation that requires a data buffer, your application must pass a variable that indicates the size
(in bytes) of the data buffer, which should be large enough to contain data that the operation returns.

Note BASIC developers: Applications must pass the data buffer length parameter ByRef as a Long
integer.

C, COBOL, and Pascal developers: Applications must pass the data buffer length parameter as a
pointer to a 2-byte integer for older BTRV functions, while the newer BTRVEX and BTRVEXID
functions use a 4-byte integer.

When you are inserting records into or updating a file with variable-length records, the data buffer
length should equal the record length specified when you first created the file, plus the number of
characters included beyond the fixed-length portion. When you are retrieving variable-length records,
the data buffer length should be large enough to accommodate the longest record in the file. If a record
is longer than the maximum data buffer size, you must use a chunk operation to operate on a portion of
the record.

The MicroKernel Engine uses the data buffer length parameter to determine how much space is available
in the data buffer. If you pass a data buffer length that is longer than the data buffer you have allocated,
you may cause the MicroKernel Engine to overwrite memory. The data buffer length should always
represent the size of the allocated data buffer.

Note The data buffer length is 2 bytes for the older BTRV functions and 4 bytes for the newer
BTRVEX and BTRVEXID. For the older functions, the maximum data buffer size is 64 KB, while for
the two newer ones it is 252 KB.

8

Key Buffer

Your application must pass the key buffer parameter on every Btrieve API operation, even if that
operation does not use a key buffer. Depending on the operation, your application may set the data in
the key buffer, or the Btrieve API function may return it.

Note BASIC developers: Your application must pass the key buffer as a string. If the key value is an
integer, your application should convert it to a string using the MKI$ statement before calling the
Btrieve API function. If a key consists of two or more segments, you must concatenate them into a
single string variable and pass the variable as the key buffer.

The MicroKernel Engine returns an error if the string variable passed as the key buffer is shorter
than the defined key length. If your first application call does not require initialization of the key
buffer, then assign the string variable the value SPACE$(x), where x represents the defined length of
the key. Until your application assigns a value in BASIC to the string variable, it has a length of 0.

C developers: Your application must pass the key buffer as the address of a variable containing the
key value. The file btitypes.h defines the key buffer as a VOID pointer (BTI_VOID_PTR). Your
application can then define the key buffer type as needed.

COBOL developers: Your application must pass the key buffer as a record variable. If the key consists
of two or more segments, list them in the correct order as individual fields under an 01 level record.
Then you can pass the entire record as the key buffer.

Pascal developers: Your application must pass the key buffer as a variable containing a key value. If a
key consists of two or more segments, use a record structure to define the individual fields in the key.

In most environments, the MicroKernel Engine cannot determine the key buffer length when an
application makes a Btrieve API call. You must ensure that the buffer is at least as long as the key length
you chose when you created the key. Otherwise, Btrieve operations may destroy data stored in memory
following the key buffer. It is best to have a 255-byte key buffer, because 255 is the maximum key length.

Key Number

The information passed in the key number parameter depends on which operation is being performed.
Most often, the key number contains a value that indicates which of up to 119 key (access) paths to follow
for a particular operation. In all functions, the key number has a value range of 0 through 118.

The key number size varies:

 For BTRV and BTRVID, this parameter is a 2-byte integer.
 For BTRCALL, BTRCALLID, BTRCALL32, and BTRCALLID32, it is a 1-byte signed character

(BTI_CHAR).
 For BTRVEX and BTRVEXID, it is a 4-byte integer. As a convenience for code migrating to

BTRVEX, the key values 128–255 are mapped to key values –128 to –1. This simulates the
conversion of a large unsigned byte value (e.g., 0xFF) to the signed byte argument of BTRCALL.

Btrieve API functions never alter the key number parameter.

Other information can be sent or returned in the key number parameter, such as a value indicating the
mode for opening the file.

9

Client ID

The Client ID parameter is used only in the BTRVID, BTRCALLID, and BTRVEXID functions. The
Client ID parameter is the address of a 16-byte structure that allows the MicroKernel Engine to
differentiate among the clients on a computer. Use the following structure for the Client ID.

Key Length

The Key Length parameter is used only for BTRCALL, BTRCALLID, BTRVEX, and BTRVEXID.

The key length value is used as follows:

 For BTRCALL and BTRCALLID, pass the key length as an unsigned char of type BTI_BYTE, with
a value of the allocated length of your key buffer. The maximum length you can specify is 255, the
maximum length of any key.

 For BTRVEX and BTRVEXID, pass the key length as an unsigned char of type BTI_INT, with the
same maximum length of 255.

Consider the following when you access the key buffer:

 For all four functions, the bytes of the key buffer up to the specified key length must be readable or
writable, depending on the operation code.

 BTRV and BTRVID assume a key length of 255, so you should supply a key buffer at least that large.
 For BTRCALL and BTRCALLID, Zen client components may attempt to determine the actual key

length and in some instances may read or write a smaller portion of the key buffer.
 BTRVEX and BTRVEXID take the specified key length at face value.

Table 2 Client ID Structure

Element Length
(bytes)

Description

Filler 12 Initialize to 0.

Service Agent
ID

2 Identifies each instance of your application to the MicroKernel Engine. This is a 2-character
ASCII value. The value of this identifier must be greater than or equal to the ASCII value AA
(0x41 0x41). The MicroKernel Engine assumes special meaning for the following values:

0x4140 (@A) Used internally.

0xFFFF Used internally.

0x4952 (RI) Used internally.

0x5244 (DR) Used internally.

0x4553 (SE)
0x4353 (SC)
0x4344 (DC)
0x4544 (DE)
0x5544 (DU)

Used to identify clients originated by Scalable
SQL.

0x5257 (WR) Used by Btrieve Requesters.

Client Identifier 2 Establishes a client’s identity within the current instance of your application. The MicroKernel
Engine uses this unique identifier for concurrency and transaction-processing purposes.

10

Summary of Btrieve API Operations

The Btrieve API provides over 40 operations that you can call from your application program. The
following tables summarize these operations. See Btrieve API Operations for complete descriptions. See
Quick Reference of Btrieve Operations for brief summaries ordered by operation code.

Session-Specific Operations

The following operations allow you to set or retrieve the current directory, shut down a workstation
MicroKernel Engine, retrieve the MicroKernel Engine version number, terminate a client connection
with the server MicroKernel Engine, and begin, end, or abort a transaction. In applications that handle
multiple clients, these operations are specific to the calling client.

File-Specific Operations

The following operations deal with a specific file, and therefore use the position block parameter to
identify the file on which to operate. The file-specific operations are of three types:

 File access and information. These operations allow you to create a file, open and close a file,
retrieve file statistics, set and clear the file owner name, start or stop continuous operation mode on
a file, unlock a file, and create and drop indexes on a file.

 Data retrieval. These operations allow you to retrieve a single record or a set of records given
specified criteria. The Btrieve API supports data retrieval either by logical location in an index path
or by physical location. For more information, read about accessing records in Zen Programmer’s
Guide.

In addition, you can apply biases to the operation codes to control file and record locking in multi-
client situations. For more information, read about supporting multiple clients in Zen Programmer’s
Guide.

 Data manipulation. These operations allow you to insert, update, or delete data.

Table 3 Session-Specific Operations

Operation Code Description

Stop 25 Terminates the workstation MicroKernel Engine (not available for server-based
MicroKernel Engine).

Version 26 Returns the version number of the MicroKernel Engine.

Reset 28 Releases all resources held by a client.

Set Directory 17 Sets the current directory to a specified path name.

Get Directory 18 Returns the current directory for a specified logical disk drive.

Begin Transaction 19
1019

Marks the beginning of a set of logically related operations. Operation 19 begins an
exclusive transaction. Operation 1019 begins a concurrent transaction.

End Transaction 20 Marks the end of a set of logically related operations.

Abort Transaction 21 Removes operations performed during an incomplete transaction.

Continuous
Operation

42 Allows you to perform system backups without closing active MicroKernel Engine files.

11

Table 4 File Access and Information Operations

Operation Code Description

Open 0 Makes a file available for access.

Close 1 Releases a file from availability.

Create 14 Creates a file with the specified characteristics.

Stat 15 Returns file and index characteristics, and number of records.

Continuous
Operation

42 Allows you to perform system backups without closing active MicroKernel Engine files.

Stat Extended 65 Returns file names and paths of an extended file’s components and reports whether a file
is using a system-defined log key.

Set Owner 29 Assigns an owner name to a file.

Clear Owner 30 Removes an owner name from a file.

Unlock 27 Unlocks a record or records.

Create Index 31 Creates an index.

Drop Index 32 Removes an index.

Table 5 Data Retrieval Operations

Operation Code Description

Index-Based (Logical) Data Retrieval

Get Equal 5 Returns the first record in the specified index path whose key value matches the specified key
value.

Get Next 6 Returns the record following the current record in the index path.

Get Previous 7 Returns the record preceding the current record in the index path.

Get Greater Than 8 Returns the first record in the specified index path whose key value is greater than the specified
key value.

Get Greater Than
or Equal

9 Returns the first record in the specified index path whose key value is equal to or greater than
the specified key value.

Get Less Than 10 Returns the first record in the specified index path whose key value is less than the specified key
value.

Get Less Than or
Equal

11 Returns the first record in the specified index path whose key value is equal to or less than the
specified key value.

Get First 12 Returns the first record in the specified index path.

Get Last 13 Returns the last record in the specified index path.

Get Next
Extended

36 Returns one or more records that follow the current record in the index path. Filtering conditions
can be applied.

12

Get Previous
Extended

37 Returns one or more records that precede the current record in the index path. Filtering
conditions can be applied.

Get Key +50 Detects the presence of a key value in a file, without returning an actual record.

Get By
Percentage

44 Returns the record located approximately at a position derived from the specified percentage
value.

Find Percentage 45 Returns a percentage figure based on the current record’s position in the file.

Non-Index-Based (Physical) Retrieval

Get Position 22 Returns the position of the current record.

Get Direct/Chunk 23 Returns data from the specified portions (chunks) of a record at a specified position.

Get Direct/
Record

23 Returns the record at a specified position.

Step Next 24 Returns the record from the physical location following the current record.

Step First 33 Returns the record in the first physical location in the file.

Step Last 34 Returns the record in the last physical location in the file.

Step Previous 35 Returns the record in the physical location preceding the current record.

Step Next
Extended

38 Returns one or more successive records from the location physically following the current record.
Filtering conditions can be applied.

Step Previous
Extended

39 Returns one or more preceding records from the location physically preceding the current record.
Filtering conditions can be applied.

Get By
Percentage

44 Returns the record located approximately at a position derived from the specified percentage
value.

Find Percentage 45 Returns a percentage figure based on the current record’s position in the file.

Concurrency Control Biases (Add to the Appropriate Operation Code)

Single-record
wait read lock

+100 Locks only one record at a time. If the record is already locked, the client retries the operation.

Single-record
no-wait read lock

+200 Locks only one record at a time. If the record is already locked, the MicroKernel Engine returns
an error status code.

Multiple-record
wait read lock

+300 Locks several records concurrently in the same file. If the record is already locked, the client
retries the operation.

Multiple-record
no-wait read lock

+400 Locks several records concurrently in the same file. If the record is already locked, the
MicroKernel Engine returns an error status code.

No-wait page
write lock

+500 In a concurrent transaction, tells the MicroKernel Engine not to wait if the page to be changed
has already been changed by another active concurrent transaction. This bias can be combined
with any of the record locking read biases (+100, +200, +300, or +400).

Table 5 Data Retrieval Operations (Continued)

Operation Code Description

13

Unsupported Operations

When looking at MicroKernel Engine traces or SDK header files, you may see operations that are not
listed in the reference for Btrieve API operations. These are for the internal use of Zen and you should
not use them in your applications. The following operations are not supported.

Table 6 Data Manipulation Operations

Operation Code Description

Insert 2 Inserts a new record into a file.

Update 3 Updates the current record.

Delete 4 Removes the current record from the file.

Insert Extended 40 Inserts one or more records into a file.

Update Chunk 53 Updates specified portions (chunks) of the current record. This operation can also append data
to a record or truncate a record.

Table 7 Unsupported Operations

Operation Code Description

B_MISC_DATA 41 Reserved for use by MicroKernel Engine

B_EXTEND 16 Reserved for use by SQL engine

Begin Transaction (nested) via Btrieve 2019 Reserved for use by MicroKernel Engine

14

Sequence of Events in Performing a Btrieve API Operation

 To perform a Btrieve API operation, your application must complete the following
tasks

1 Satisfy any prerequisites the operation requires. For example, before your application can perform
any file I/O operations, it must make the file available by performing an Open (0) operation on that
file.

2 Initialize the parameters that the Btrieve API operation requires. The parameters are program
variables or data structures that correspond in type and size to the particular values that the
MicroKernel Engine expects for an operation.

For future compatibility, initialize all parameters, whether or not they are used. For parameters of
type INTEGER, set the value to binary 0. For character arrays, pass a pointer to a buffer. Initialize
the first byte of the buffer to binary 0.

3 Call the appropriate Btrieve API function. (Refer to Btrieve API Functions.)

4 Evaluate the results of the function call. Every Btrieve API operation returns a status code. Your
application must check the status code and take the appropriate action. The operation also returns
data or other information to the individual parameters based on the purpose of the operation.

15

c h a p t e r

2Btrieve API Operations

The operations documented here are the ones your application can perform using the Btrieve API. For
each operation you will find the following information:

 Name, code, and description of the operation.
 Parameters – A table indicating which of the six parameter values the operation expects from and

returns to your application. A “sent” parameter is sent from the application to the operation. A
“returned” parameter is returned from the operation to the application when the operation is
complete.

 Prerequisites – The conditions your application must satisfy for the operation to be successful.
 Procedure – The steps for initializing the parameters that the operation requires.
 Details – Additional information about the operation.
 Result – The results of both a successful and an unsuccessful operation. Each operation returns a

status code, informing your application of the outcome of the operation. status code 0 indicates the
operation was successful. A nonzero status code usually indicates a failure. However, some nonzero
status codes are informative and appear even when the associated operation succeeds – for example,
status code 60 means the specified reject count has been reached.

 Positioning – The effect the operation has on the logical or physical currency of the records in a file.

The Btrieve API operations are listed alphabetically.

 Abort Transaction (21)
 Begin Transaction (19 or 1019)
 Clear Owner (30)
 Close (1)
 Continuous Operation (42)
 Create (14)
 Create Index (31)
 Delete (4)
 Drop Index (32)
 End Transaction (20)
 Find Percentage (45)
 Get By Percentage (44)
 Get Direct/Chunk (23)
 Get Direct/Record (23)
 Get Directory (18)
 Get Equal (5)
 Get First (12)
 Get Greater Than (8)
 Get Greater Than or Equal (9)

16

 Get Key (+50)
 Get Last (13)
 Get Less Than (10)
 Get Less Than or Equal (11)
 Get Next (6)
 Get Next Delete Extended (85)
 Get Next Extended (36)
 Get Position (22)
 Get Previous (7)
 Get Previous Delete Extended (86)
 Get Previous Extended (37)
 Insert (2)
 Insert Extended (40)
 Login/Logout (78)
 Open (0)
 Reset (28)
 Set Directory (17)
 Set Owner (29)
 Stat (15)
 Stat Extended (65)
 Step First (33)
 Step Last (34)
 Step Next (24)
 Step Next Delete Extended (87)
 Step Next Extended (38)
 Step Previous (35)
 Step Previous Delete Extended (88)
 Step Previous Extended (39)
 Stop (25)
 Unlock (27)
 Update (3)
 Update Chunk (53)
 Version (26)

17

Abort Transaction (21)

The Abort Transaction operation (B_ABORT_TRAN) terminates the current transaction and removes
the results of all operations performed since the beginning of the transaction. It also unlocks all files and
records locked by the transaction.

Parameters

Prerequisites

You must issue a successful Begin Transaction (19 or 1019) before you issue an Abort Transaction
operation.

Procedure

Set the operation code to 21. The MicroKernel Engine ignores all other parameters on an Abort
Transaction call.

Result

If the Abort Transaction operation succeeds, the MicroKernel Engine returns status code 0. The results
of all Insert, Update, and Delete operations issued since the beginning of the transaction are removed
from the files.

If the Abort Transaction operation fails, the MicroKernel Engine returns one of the following status
codes:

Positioning

The Abort Transaction operation has no effect on any file currency information.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returne
d

36 The application encountered a transaction error.

39 A Begin Transaction operation must precede an End/Abort Transaction operation.

18

Begin Transaction (19 or 1019)

The Begin Transaction operation (B_BEGIN_TRAN) defines the start of a transaction. Transactions are
useful when you need to perform multiple Btrieve API operations as a single event. For example, use a
transaction if your database would become logically inconsistent if some operations were successful, but
at least one operation failed to complete successfully.

By enclosing a set of operations between Begin and End Transaction operations, you can ensure that the
MicroKernel Engine does not permanently complete any operations in the set unless you request the
completion with an explicit End Transaction (20). Changes made within a transaction are not visible to
other users until the End Transaction operation succeedsly performed.

The MicroKernel Engine prohibits certain operations during transactions because they have too great
an effect on the file or on performance. These operations include Set Owner (29), Clear Owner (30),
Create Index (31), and Drop Index (32).

Parameters

Prerequisites

Your application must end or abort any previous transaction before issuing a Begin Transaction
operation.

Procedure

Set the operation code to 19 to begin an exclusive transaction, or 1019 to begin a concurrent transaction.
The MicroKernel Engine ignores all parameters except the operation code on any Begin Transaction call.

On any Begin Transaction operation, you can specify default lock biases:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

On a Begin Concurrent Transaction operation, you can add +500 to the operation code (1519), which
forces the MicroKernel Engine not to retry the Insert, Update, and Delete operations within a
transaction.

In addition, you can combine the +500 bias with a default lock bias. For example, using 1019 + 500 + 200
(1719) begins a concurrent transaction, suppresses retries for Insert, Update, and Delete operations, and
specifies single no-wait read locks at the same time.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

19

Result

If the Begin Transaction operation succeeds, the MicroKernel Engine returns status code 0.

If the Begin Transaction operation fails, the MicroKernel Engine returns one of the following status
codes:

Positioning

The Begin Transaction operation has no effect on any file currency information.

36 The application encountered a transaction error.

37 Another transaction is active.

20

Clear Owner (30)

The Clear Owner operation (B_CLEAR_OWNER) removes an owner name that you have previously
assigned to a file with the Set Owner operation. If the file was previously encrypted, the MicroKernel
Engine decrypts the file during a Clear Owner operation. For more information, see Owner Names in
Advanced Operations Guide.

Parameters

Prerequisites

 The file must be open, and an owner name must have been specified.
 No transactions can be active.

Procedure

1 Set the operation code to 30.

2 Pass the position block that identifies the file to clear.

Result

After a Clear Owner operation, the MicroKernel Engine no longer requires the owner name to open or
modify a file. If you encrypted the data in the file when you assigned the owner, the MicroKernel Engine
decrypts the data during a Clear Owner operation. The more data that was encrypted, the longer the
Clear Owner operation takes.

If the Clear Owner operation fails, the MicroKernel Engine returns one of the following status codes:

 3: The file is not open.
 41: The MicroKernel Engine does not allow the attempted operation.

Positioning

The Clear Owner operation has no effect on any file currency information.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

21

Close (1)

The Close operation (B_CLOSE) closes the file associated with a specified position block and releases
any locks your application has executed for the file. Your application should always perform a Close
operation when it has finished accessing a file. After a Close operation, your application cannot access
the file again until it issues another Open (0) for that file.

You can close a file even while inside a transaction. However, the Close operation does not end the
transaction. You must explicitly end or abort the transaction. If you abort the transaction, changes made
inside the transaction are aborted. If you end the transaction, changes are committed.

Note When you close a file inside a transaction, the MicroKernel Engine continues to keep an open
handle on the file until the transaction is either aborted or ended so that updates to that file can be
handled properly. The position block for the file is no longer available to your application, however.

Parameters

Prerequisites

 The file must be open.

Procedure

1 Set the operation code to 1.

2 Pass a valid position block for the file to close.

Result

If the Close operation succeeds, the position block for the closed file is no longer valid.

If the Close operation fails, the file remains open and the MicroKernel Engine returns the following
status code:

Positioning

The Close operation destroys both the physical and the logical currency information of the file.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

3 The file is not open.

22

Continuous Operation (42)

The Continuous Operation operation (B_CONTINUOUS) allows you to perform system backups
without closing active MicroKernel Engine files. Any changes you make while a file is being backed up
are stored in a temporary file called a delta file. Except for changes written to the delta file, the system
backup includes the contents of all files placed in continuous operation mode. The MicroKernel Engine
automatically rolls the delta file changes into the backed up files when those files are taken out of
continuous operation mode.

Note This operation is available only to applications running on a local engine. A client application
cannot use this operation for files that are located on a remote machine.

This operation also allows you to safely copy a file while that file is still active. In a client/server set up,
the client that begins Continuous Operation on a file must be the client that stops Continuous Operation
on that file.

Parameters

Note Values for the data buffer parameter and the data buffer length parameter are required only if
the value of the key number parameter is 0 (which starts continuous operation mode) or 2 (which
ends continuous operation mode). The following sections discuss these key number values. A data
buffer length of 0 is required for a key number parameter of 1.

Procedure

 To start continuous operation mode, perform the following steps

1 Define a file or a set of files for backup, or add a file to the set of files currently defined for backup.

a. Set the operation code to 42.
b. Place the names of the files you want to place in continuous operation mode into the data buffer

parameter. Include the full path name, excluding only the server name. Separate the names with
commas and terminate the list with a binary 0.

The following example is for Windows servers:

f:\acct\march.mkd,f:\acct\april.mkd

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

23

c. Place the length of the name (or names) in the data buffer length parameter. This value must be
equal to or greater than the actual length of the names (including binary zeros) in the data
buffer itself. For example, the preceding names require a data buffer length of 40 or greater.

d. Set the key number parameter to 0.

2 Perform the backup.

3 End continuous operation mode.

a. Set the operation code to 42.
b. Set the key number parameter to 1.

To end continuous operation on one or more specific files, set the key number parameter to 2,
and then place the file names in the data buffer parameter as described in step 1b. Also, place
the length of the name (or names) in the data buffer length parameter as described in step 1c.

Details

When defining the set of files to be backed up, keep in mind the following information:

 The MicroKernel Engine does not consider the absence of file names in the data buffer to be an error.
If it finds no file names, the MicroKernel Engine takes no action on the Continuous Operation
operation.

 The presence of duplicate file names in the data buffer does not affect how the Continuous
Operation operation works. The MicroKernel Engine places the specified file in continuous
operation mode only once.

 In the same directory, no two files should share the same file name and differ only in their file name
extension. For example, a data file named Invoice.btr and another one named Invoice.mkd must not
exist in the same directory. This restriction applies because the database engine uses the file name
for various areas of functionality while ignoring the file name extension. With continuous
operations, the name of the delta file uses the corresponding file’s name with “.^^^” for the file name
extension. The MicroKernel Engine would attempt to write to the same delta file for both files,
possibly causing data corruption or status 85. Also, no files are placed into continuous operations
when this condition occurs, even if the files are part of a larger list to be placed into continuous
operations.

 An application can iteratively call the Continuous Operation operation to add more names to the list
of files to be placed in continuous operation mode. However, this action can corrupt a backup when
referential integrity (RI) constraints are placed on any of the files by the Relational Engine. Files
related by referential integrity constraints should be passed in on a single continuous operations call.

The MicroKernel Engine returns status code 88 if a file is specified that is already in continuous
operation mode.

When writing a server-based application that calls the Continuous Operation operation, make sure you
call btrvID, and use a valid client ID so you can begin and end continuous operation under the same
client.

The Btrieve API allows you to define multiple backup sets by specifying a different client ID for each
backup set through the btrvID function. However, two sets cannot contain the same files.

While the MicroKernel Engine rolls changes from the delta file into the data file, users can continue to
update, insert, and read the MicroKernel Engine file just as they normally would. The MicroKernel

24

Engine appends new pages to the delta file while rolling in changes, if an insert requires such an action.
No changes are lost.

Note Never delete a delta file manually.

If your application uses the btrv function, do not unload the application while any file is in continuous
operation mode. If you do, you may be unable to remove the affected files from continuous operation
mode. This is because the default client ID that the MicroKernel Engine originally assigned as the owner
of the affected files may have been reassigned to another application. Because the MicroKernel Engine
no longer knows the proper owner of the affected files, it is unable to remove those files from continuous
operation mode.

If the system crashes while in continuous operation mode or while the MicroKernel Engine is rolling the
changes from a delta file into the file, then the MicroKernel Engine rolls all changes into the file when it
is first opened after the system is rebooted.

Result

If the Continuous Operation operation succeeds, the MicroKernel Engine returns status code 0, but it
returns no values either in the data buffer or in the data buffer length parameter.

If the operation fails, the MicroKernel Engine returns one of the following status codes:

In addition to the preceding codes, your application can return standard
I/O error codes such as status code 18.

If the MicroKernel Engine returns a nonzero status code, the Continuous Operation operation returns
in the data buffer the portion of the input string that generated the error. If no input string was used, the
data buffer contains the file names that caused the error. The data buffer length reflects the length of the
output string in the data buffer. At this point, the data buffer length contains the length of that file name.

Positioning

The Continuous Operation operation does not establish any currency on the file.

11 The specified file name is invalid.

12 The MicroKernel Engine cannot find the specified file.

41 The MicroKernel Engine does not allow the attempted operation.

51 The owner name is invalid.

88 The application encountered an incompatible mode error.

91 The application encountered a server error.

25

Create (14)

The Create operation (B_CREATE) lets you generate a new data file from within your application. The
Create operation also has subfunctions that allow you to delete or rename a file (see Delete and Rename
Subfunctions for the Create Operation).

Note In the same directory, no two files should share the same file name and differ only in their file
name extension. For example, do not name a data file Invoice.btr and another one Invoice.mkd in
the same directory. This restriction applies because in some cases the database engine uses only the
file name while ignoring the file name extension. In these instances, files that differ only in their file
name extension appear identical to the database engine.

Parameters

Prerequisites

If you are creating an empty file over an existing file, ensure that the existing file is closed before
executing the Create operation.

Procedure

1 Set the operation code to 14.

2 Set the file specifications, key specifications, and any alternate collating sequences in the data buffer
as described in Details. All the values for the file specifications and key specifications that you store
in the data buffer must be in binary format.

3 Set the data buffer length. This is the length of the buffer that contains the Create specifications, not
the length of the records in the file.

4 Set the path name for the file in the key buffer. Be sure to terminate the path name with a blank or a
binary zero. The path name can be up to 255 characters long, including the volume name and the
terminator.

For details about path names supported by Zen clients, see Network Path Formats Supported by Zen
Requesters in Getting Started with Zen. See also Database URIs in Zen Programmer’s Guide.

5 Set a value for the key number parameter, using one of the choices in Table 19.

Details

The data buffer contains specifications for the file and keys to be created. Both Create (14) and Stat (15)
use the same data buffer structure, so they are documented together here with the slight differences

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

26

noted. The following tables show the structure of the information for the BTRV type of entry points and
also for the BTRVEX type, both of which are described under Btrieve API Functions.

Note that the order of elements in the specification differs between the two types of entry points. Details
for these elements are found under the following topics:

 File Specification Block
 Key Specification Block

The data buffer contains a file specification, followed by zero or more key specification blocks, followed
by zero or more ACS blocks.

Table 8 File Specification for BTRV Type Entry Points Used by Create and Stat Operations

Description Data Type1 Byte #

Logical fixed record length, combined size of all record fields3 Short Int3 0–1

Page size. See Page Size Values. Short Int3 2–3

Number of keys (indexes) Byte 4

File version.4 See File Version Values. Byte 5

Record count. For Create (14) operations, initialize to 0 to maintain backward compatibility. Int3 6–9

File flags. Set file attributes. See File Flag Values. Short Int3 10–11

Number of extra pointers. For Create (14), the number of duplicate pointers to reserve for future
keys. For Stat (15), the number of remaining pointers. Used with Reserve Duplicate Pointers flag.

Byte 12

Physical page size. Used when compression flag is set. Value is the number of 512-byte blocks. Byte 13

Preallocated pages. Number of pages to preallocate. Used with page preallocation. For Stat (15),
returns number of unused empty pages.

Short Int3 14–15

1Unless specified otherwise, all data types are unsigned.

2For files with variable-length records, the logical record length refers only to the fixed-length portion of the record.

3Integers must be stored in little-endian byte order, which is the low-to-high ordering of Intel-class computers.

4Returned as 0 from Stat(15) when key number is 0.

27

File Specification Block

Store the file specification in the first 16 or 32 bytes of the data buffer. The bytes are numbered beginning
with 0. Store the information for the record length, page size, and number of indexes as integers.

Logical Fixed Record Length. The logical record length is the number of bytes of fixed-length data in the
file. Do not include variable-length data in the logical record length.

Table 9 File Specification for BTRVEX Type Entry Points Used by Create and Stat Operations

Description Data Type1 Byte #

Logical fixed record length, combined size of all record fields. Short Int3 0–1

Page size. See Page Size Values. Short Int3 2–3

File flags. Set file attributes. See File Flag Values. Short Int3 4–5

Reserved. Initialize to 0 to maintain backward compatibility. Short Int3 6–7

Record count. For Create (14) operations, initialize to 0 to maintain backward compatibility. Long Long Int3 8–15

Number of keys (indexes) Short Int3 16–17

File version.4 See File Version Values. Short Int3 18–19

Number of extra pointers. For Create (14), the number of duplicate pointers to reserve for future
keys. For Stat (15), the number of remaining pointers. Used with Reserve Duplicate Pointers flag.

Byte 20

Physical page size. Used when compression flag is set. Value is the number of 512-byte blocks. Byte 21

Preallocated pages. Number of pages to preallocate. Used with page preallocation. For Stat(15),
returns number of unused empty pages.

Short Int3 22–23

Reserved. Initialize to 0 to maintain backward compatibility. Long Long Int3 24–31

1Unless specified otherwise, all data types are unsigned.

2For files with variable-length records, the logical record length refers only to the fixed-length portion of the record.

3Integers must be stored in little-endian byte order, which is the low-to-high ordering of Intel-class computers.

4Returned as 0 from Stat(15) when key number is 0.

28

Page Size. Page size is determined by your file format version. See Choosing a Page Size in Zen
Programmer’s Guide. The following table gives page size examples for different file format versions.

Record Count. The number of records in the file. This value is returned by Stat (15). For Create (14), set
this field to 0.

Number of Keys. The number of indexes is the number of keys (not key segments) you are defining for
the file. To create a data-only file, set the number of indexes to 0.

File Version. The MicroKernel Engine file version to be created. In earlier releases, the MicroKernel
Engine used a two-byte integer to receive the number of indexes on a create operation. The high-order
byte of this integer was always 0 because the maximum number of indexes is 119. This high-order byte
has historically been used in the Stat (15) operation to return the file version, but it can now be used to
specify the Create file version without causing errors in previous applications. The supported file
versions for Create are 6.0, 7.0, 8.0, 9.0, 9.5, and 13.0, which are represented in the specified byte with
hex values 0x50, 0x60, 0x70, 0x80, 0x90, 0x95, and 0xD0, respectively. The following table lists file
version flag values for different file format versions.

Table 10 Page Size Values

Description File Format Versions Data Type1 Byte # Example Value2

Page Size 6.x through 9.0 Short Int3 2–3 512

6.x through 9.5 1024

6.x through 9.0 1536

6.x through 9.5 2048

6.x through 9.0 3072

3584

6.x and later 4096

9.0 and later 8192

9.5 and later 16384

A minimum size of 4096 bytes works best for most files. If you want to fine-tune this, see Creating a File
with Page Level Compression in Zen Programmer’s Guide.

When you create a file in 9.5 format or later, if the logical page size specified is not valid for the file format,
the MicroKernel rounds the specified value to the next higher valid value if one exists. For all other values
and file formats, the operation fails with status code 24. No rounding is done for older file formats.

1Unless specified otherwise, all data types are unsigned.

2For simplification, the nonnumeric example values are for C applications.

3Integers must be stored in little-endian byte order, which is the low-to-high ordering of Intel-class computers.

29

Number of extra pointers. For Create (14), the number of duplicate pointers to reserve for future keys. For
Stat (15), the number of remaining pointers. Used with Reserve Duplicate Pointers flag. When this flag
is not used, set this field to 0.

Physical Page Size. Used when the Page Compression file flag is set. If the Page Compression flag is not
specified, set this field to 0. This field was previously marked as unused.

In data files version 6.x and later, logical pages map to physical pages, stored in a Page Allocation Table
(PAT). A physical page is exactly the same size as a logical page. Page compression can be used with file
format 9.5 and later. Database pages are compressed at the page level. Each logical page is compressed
into one or more physical page units. These individual physical pages are smaller in size than a logical
page.

The physical page size field can be used to specify the physical page size to be used for the file. The value
specified in this field is multiplied by 512 to determine the actual physical page size used. If 0 is specified,
the engine uses a default value of 512 bytes for the physical page size.

The value specified for the physical page size cannot be larger than the value specified for the logical page
size. If it is then the engine will round down the value specified for the physical page size so that it is the
same as the logical page size. The logical page size needs to be an exact multiple of the physical page size.
If it is not then the logical page size is rounded down so that it becomes an exact multiple of the physical
page size. If, as a result of these manipulations, the logical and physical values end up to be the same,
then page level compression will not turned on for this file. See also Creating a File with Page Level
Compression in Zen Programmer’s Guide

Table 11 File Version Values

Description Data Type1 Byte # Example Value2

File Version BTRV type: Byte
BTRVEX type: Short Int

5
18–19

Version 6.0 0x60

Version 7.0 0x70

Version 8.0 0x80

Version 9.0 0x90

Version 9.5 0x95

Version 13 0xD0

Use database
engine default

0x00

1Unless specified otherwise, all data types are unsigned.

2For simplification, the nonnumeric example values are for C applications.

30

File Flags. The bit settings in the File Flags word specify file attributes. The following table shows the
binary, hexadecimal, and decimal representations of file flag values.
Table 12 File Flag Values

Attribute Constant Binary Hex Decimal

Variable Length Records VAR_RECS 0000 0000
0000 0001

1 1

Blank Truncation BLANK_TRUNC 0000 0000
0000 0010

2 2

Page Preallocation PRE_ALLOC 0000 0000
0000 0100

04 4

Data Compression DATA_COMP 0000 0000
0000 1000

08 8

Key-Only File KEY_ONLY 0000 0000
0001 0000

10 16

Balanced Index BALANCED_KEYS 0000 0000
0010 0000

20 32

10% Free Space FREE_10 0000 0000
0100 0000

40 64

20% Free Space FREE_20 0000 0000
1000 0000

80 128

30% Free Space FREE_30 0000 0000
1100 0000

C0 192

Reserve Duplicate Pointers DUP_PTRS 0000 0001
0000 0000

100 256

Include System Data1 INCLUDE_SYSTEM_DATA 0000 0010
0000 0000

200 512

Do Not Include System Data NO_INCLUDE_SYSTEM_DATA 0001 0010
0000 0000

1200 4608

Key Number SPECIFY_KEY_NUMS 0000 0100
0000 0000

400 1024

Use VATs VATS_SUPPORT 0000 1000
0000 0000

800 2048

Use Page Compression2 PAGE_COMPRESSED 0010 0000
0000 0000

2000 8192

Include System Data v23 INCLUDE_SYSTEM_DATA2 0100 0000
0000 0000

4000 16384

1If you do not specify whether to include system data in the file, the Btrieve API uses the current System Data setting in the
server compatibility properties.

2Used only with page-level compression. Used in conjunction with the Physical Page Size key specification. See Creating a
File with Page Level Compression in Zen Programmer’s Guide.

3With this flag value, also specify NO_INCLUDE_SYSTEM_DATA for key-only files.

31

Avoid using incompatible flags. Flags are incompatible if they use the same bit positions. Unused bits are
reserved for future use. Set them to 0.

To combine file attributes, add their respective file flag values. For example, to specify a file that allows
variable-length records and uses blank truncation, initialize the file flags word to 3 (2 + 1). The
MicroKernel Engine ignores the blank truncation and free space bits if the variable length records bit is
set to 0.

If you set the page preallocation bit, use the last 2 bytes in the file specification block (allocation) to store
an integer value that specifies the number of pages to preallocate to the file. If you set the Data
Compression bit, the MicroKernel Engine ignores the variable length records bit.

The database engine automatically uses data compression on files that use system data and have a record
length that exceeds the maximum length allowed. See Table 8 in Zen Programmer’s Guide.

Set the duplicate pointers bit if you anticipate adding an index sometime after creating a file, and if that
index has duplicate values and will not be marked as repeating-duplicatable. Setting this bit causes the
MicroKernel Engine to reserve space in each record of the file for pointers that link the duplicate values.
By reserving this space, you can possibly lower retrieval time and save disk space, especially if the keys
are long and you anticipate that many records will have duplicate key values.

Note You can reserve duplicate pointer space only for indexes that are added after file creation.
Therefore, when reserving space for pointers to duplicate values, do not include space for the indexes
created during this Create operation. Also, the MicroKernel Engine does not reserve duplicate
pointer space for any key you specify as a repeating-duplicatable key.

Set the key number bit if you need to assign a specific number to a key, and place the desired key number
in the Manually Assigned key number element (offset 0x0E) of the key specification block. The
MicroKernel Engine does not require consecutive key numbers, and files can have gaps between key
numbers. When a key is created, by default the MicroKernel Engine assigns the lowest available key
number to that index (beginning with 0). However, some applications may require a key number
different from the default assignment.

Set the Use VATs bit if the file uses variable-tail allocation tables. To use VATs, a file must use variable-
length records.

Preallocated Pages. You can specify the number of pages to preallocate. Use this element only if you
specified the page preallocation file flag. For more information about page preallocation, see Page
Preallocation in Zen Programmer’s Guide.

Key Specification Block

Place zero or more key specification blocks immediately after the file specification. Allocate a 16- or 24-
byte key specification block for each key segment in the file. Store the information for the key position
and the key length as integers.

32

As shown in the following table, the maximum number of key segments allowed depends on the file page
size and file format.

See also the status codes 26: The number of keys specified is invalid and 29: The key length is invalid,
both in Status Codes and Messages.

Page Size (bytes) Maximum Key Segments by File Version

8.x and earlier 9.0 9.5 13.0

512 8 8 Rounded up2 Rounded up2

1024 23 23 97 Rounded up2

1536 24 24 Rounded up2 Rounded up2

2048 54 54 97 Rounded up2

2560 54 54 Rounded up2 Rounded up2

3072 54 54 Rounded up2 Rounded up2

3584 54 54 Rounded up2 Rounded up2

4096 119 119 2043 1833

8192 n/a1 119 4203 3783

16384 n/a1 n/a1 4203 3783

1”n/a” stands for “not applicable”

2”Rounded up” means that the page size is rounded up to the next size supported by the file version. For
example, 512 is rounded up to 1024, 2560 is rounded up to 4096, and so forth.

3While a 9.5 format or later file can have more than 119 segments, the number of indexes is limited to 119.

33

The following table shows the data buffer structure of the key specification. Each key specification block
is 16 bytes for BTRV type entry points or 24 bytes for BTRVEX types. Where two data types are given,
but first is used with BTRV and the second with BTRVEX. The offsets repeat for each key block.

Key Position. The key position is the byte offset at which the key or key segment begins. Positions are
relative to 1. A key at the beginning of the record starts at position 1. There is no position 0.

Key Length. The length of the key or key segment. The maximum length of a key, including all key
segments, is 255 bytes.

Key Flags. The bit settings in the key flag word specify key attributes. The following table shows the
binary, hexadecimal, and decimal representations of key flag values.

Table 13 Data Buffer to Specify a Key Segment for Create (14) or Stat (15) Operation

Description Data Type1 Offset for BTRV Offset for BTRVEX

Key Position. Position of the first byte of the key within the record.
The first byte in the record is 1.

Short Int2 0–1 0–1

Key Length. Length of the key in bytes. Short Int2 2–3 2–3

Key Flags. Key attributes. Short Int2 4–5 4–5

Reserved. Not used for Create (14). Initialize to 0 to maintain
backward compatibility.

Short Int2 — 6–7

Unique keys. Not used for Create (14). Initialize to 0 to maintain
backward compatibility.

Int or Long
Long Int2

6–9 8–15

Extended Data Type. Used if the key flags specify use of
extended data types.

Byte or Short
Int2

10 16–17

Null Value (legacy nulls only). Used if the key flags specify Null
Key (All Segments) or Null Key (Any Segment). An exclusion
value for the key. See Null Value for more conceptual information
on legacy nulls and true nulls.

Byte 11 18

Reserved. Not used for Create (14). Initialize to 0 to maintain
backward compatibility.

Short Int2 or
Byte

12–13 19

Manually Assigned Key Number. Key number used if the file
attributes specify one.

Byte or Short
Int2

14 20–21

ACS Number. ACS number. Used if the key flags specify Use
Default ACS, Use Numbered ACS in File, or Use Named ACS.

Byte 15 22

Reserved. Not used for Create (14). Initialize to 0 to maintain
backward compatibility.

Byte — 23

1Unless specified otherwise, all data types are unsigned.

2Integers must be stored in little-endian byte order, which is the low-to-high ordering of Intel-class computers.

34

Avoid using incompatible flags. Flags are incompatible if they use the same bit positions. Unused bits are
reserved for future use. Set them to 0.

To combine key attributes, sum their values. For example, if the key is an extended type, part of a
segmented key, and collated in descending order, then initialize the key flag word to 336 (256 + 16 + 64).

The Segmented Key attribute indicates that the next key specification block in the data buffer refers to
the next segment of the same key. Follow these rules for segmented keys:

 All segments of the same key must have the same Duplicate Key Values, Repeating Duplicates,
Modifiable Key values, and Null Key values. Note: If you specify the legacy Null Key attribute, either
All Segments or Any Segment, then you can assign different null values for individual segments.

 All segments of the same key must use the same alternate collating sequence (ACS).
 Individual segments of the same key can have different Descending Sort Order and Extended Data

Type values.

The ACS applies only to keys of type STRING, LSTRING, ZSTRING, WSTRING, and WZSTRING. You
cannot define a key that is both case-insensitive and uses an ACS. In a file in which a key has an ACS
designated for some segments but not for others, the segments that designate an ACS are sorted by the
specified ACS, while the segments with no ACS are sorted according to their respective types.

Table 14 Key Flag Values

Attribute Constant Binary Hex Decimal

Duplicates allowed (linked duplicates is
default, or combine with REPEAT_DUPS_KEY
for repeating duplicates)

DUP 0000 0000 0000 0001 0x1 1

Modifiable Key MOD 0000 0000 0000 0010 0x2 2

Use Old Style BINARY Data Type BIN 0000 0000 0000 0100 0x4 4

Use Old Style STRING Data Type (bits 2 and 8
must be 0)

0000 0000 0000 0000 0x0 0

Null Key (All Segments) NUL 0000 0000 0000 1000 0x8 8

Segmented Key SEG 0000 0000 0001 0000 0x10 16

Use Default ACS ALT 0000 0000 0010 0000 0x20 32

Use Numbered ACS in File NUMBERED_ACS 0000 0100 0010 0000 0x420 1056

Use Named ACS NAMED_ACS 0000 1100 0010 0000 0xC20 3104

Descending Sort Order DESC_KEY 0000 0000 0100 0000 0x40 64

Repeating Duplicates, used with DUP REPEAT_DUPS_KEY 0000 0000 1000 0000 0x80 128

Use Extended Data Type EXTTYPE_KEY 0000 0001 0000 0000 0x100 256

Null Key (Any Segment) MANUAL_KEY 0000 0010 0000 0000 0x200 512

Case Insensitive Key NOCASE_KEY 0000 0100 0000 0000 0x400 1024

35

Extended Data Type. You specify the Extended Data Type byte of the key specification block as a binary
value. Table 15 shows the codes for the extended data types.

Extended data type codes 12, 13, 16, and 22–24 are reserved for future use. Note that the CLOB type is
included for Get Extended operations but cannot be used to create an index.

You can define the STRING and UNSIGNED BINARY data types as either standard or extended types.
This maintains compatibility with applications that were developed with earlier versions of Btrieve API,
while allowing newer applications to use extended data types exclusively.

Regarding the data type you assign to a key, the MicroKernel Engine does not ensure that the records
entered follow the data types defined for the keys. For example, you could define a TIMESTAMP key in
a file, but store a character string there. Your Btrieve API application would succeed, but an ODBC
application that tries to access the same data using the ODBC TIMESTAMP format might fail, since the
byte format could be different and the algorithms used to generate the timestamp value could be
different. For complete descriptions of the data types, see Btrieve Key Data Types in SQL Engine
Reference.

Null Value. Represents an exclusion value for the key. If you have defined a key as a null key, you must
supply a value for the MicroKernel Engine to recognize as the null value for each key segment. This is in
reference to the legacy null and does not reflect true nulls. For a discussion of null support, see Null
Value in Zen Programmer’s Guide.

Manually Assigned Key Number. The MicroKernel Engine allows an application to assign specific key
numbers when creating a file with indexes. To manually assign key numbers to each index for a file,
specify each key’s number as a binary value in the key specification block, and set the key number bit
(0x400) in the File Flags word.

Key numbers must be unique to the file and must be specified in ascending order, beginning with key 0.
They must also be valid (less than the maximum number of keys for the file’s page size).

The ability to manually assign key numbers complements to the ability to delete a key and not have the
MicroKernel Engine renumber all keys that have a key number greater than the deleted key. For example,
if an application drops an index and instructs the MicroKernel Engine not to renumber higher-

Table 15 Extended Data Types

Type Code Type Code Type Code

STRING 0 BFLOAT 9 CLOB 21

INTEGER 1 LSTRING 10 WSTRING 25

FLOAT 2 ZSTRING 11 WZSTRING 26

DATE 3 UNSIGNED BINARY 14 GUID 27

TIME 4 AUTOINCREMENT 15 AUTOTIMESTAMP 32

DECIMAL 5 NUMERICSTS 17 TIMESTAMP2 34

MONEY 6 NUMERICSA 18 NULL INDICATOR SEGMENT 255

LOGICAL 7 CURRENCY 19

NUMERIC 8 TIMESTAMP 20

36

numbered keys, and if a user then clones the affected file without assigning specific key numbers, the
cloned file has different key numbers than the original.

ACS Number. For keys that use a specific ACS, the key specification block provides the ACS number by
which to collate the key. The ACS number is based on its position in the data buffer. The first ACS
following the last key specification block is ACS number 0. Following ACS 0 is ACS 1, which is followed
by ACS 2, and so on.

Alternate Collating Sequence

In the data buffer for a Create operation, collating sequences appear one after another immediately
following the last key specification block. The 265 bytes used to specify an ACS, ISR, or ICU collation
are described in the following tables.

User-Defined ACS Files. To create an ACS that sorts string values differently from the ASCII standard,
your application must place 265 bytes directly into the data buffer.

For examples of user-defined ACS files, see Alternate Collating Sequences in Zen Programmer’s Guide.

International Sort Rules (ISRs). To specify an ISR table name, your application must place 265 bytes
directly into the data buffer.

Table 16 Data Buffer for Creating a User-Defined ACS

Offset Length
(Bytes)

Description

0 1 Signature byte. Specify 0xAC.

1 8 A unique 8-byte name that identifies the ACS to the MicroKernel Engine.

9 256 A 256-byte map. Each 1-byte position in the map corresponds to the code point having the same value as
the position’s offset in the map. The value of the byte at that position is the collating weight assigned to the
code point. For example, to force code point 0x61 ('a') to sort with the same weight as code point 0x41 ('A'),
place the same values at offsets 0x61 and 0x41.

Table 17 Data Buffer for Specifying an ISR Collating Sequence

Offset Length
(Bytes)

Description

0 1 Signature byte. Specify 0xAE.

1 16 A unique 16-byte name that identifies the ISR table to the MicroKernel Engine. See Zen Programmer’s
Guide for a list of ISR table names.

17 248 Filler.

37

Unicode collations. To specify a Unicode collation according to the International Components for
Unicode (ICU) standard, your application must place 265 bytes directly into the data buffer.

Data Buffer Length

The data buffer length must be long enough to include the file specifications, the key specifications, and
any ACS files that have been defined. Do not specify the file record length in this parameter.

For example, to create a file using the BTRV entry point that has two keys of one segment each and an
ACS, the data buffer for the Create operation should be at least 313 bytes long, as follows:

Key Number

The key number for the Create operation determines whether the MicroKernel Engine warns you when
a file of the same name already exists, and also whether the MicroKernel Engine should use a local or
remote engine when creating the file.

Use the following table to choose the value for the key number parameter.

Delete and Rename Subfunctions for the Create Operation

The Create operation has two additional subfunctions that you can use to delete or rename files.

Before Pervasive.SQL v8.5, it was always possible to manipulate MicroKernel Engine files through the
operating system because the engine depended on the rights and privileges given to the Zen user by the
operating system.

After the introduction of Zen database security in v8.5, these operating system access rights might be
removed when a database is secured against unauthorized access. The options for programmatically
deleting or moving a file may change because operating system rights are not always available.

Table 18 Data Buffer for Specifying Unicode Collation

Offset Length
(Bytes)

Description

0 1 Signature byte. Specify 0xAE.

1 16 Name of the supported ICU collation, either u54-msft_enus_0 or root. You must fill with spaces to 16 bytes.

17 248 Filler.

File Spec + Key Spec + Key2 Spec + ACS

16 + 16 + 16+ + 265 = 313

Table 19 Key Number Parameter for Create Operation

CREATE Operation No
preference

Force local engine
to create file

Force remote engine
to create file

Normal create (overwrite file if it already exists) 0 6 99

Return Status 59 if file already exists –1 7 100

38

The rename and delete subfunctions are implemented as Create operations with alternate key numbers.
You do not need to provide a file specification as you do when creating a new data file. The following
table shows how you set up the Create operation to use the rename or delete subfunctions.

These subfunctions have been modified to work with the security model in that they will accept a URI
in place of a file name in the key buffer and data buffer, if needed, to indicate a MicroKernel Engine file
to delete or rename. This allows you to provide security information with the operation. For details
about URI connection strings, see Database URIs in Zen Programmer’s Guide.

The security information is processed just like a normal Create or Open operation. The user must be
authenticated and have DB_RIGHT_CREATE, DB_RIGHT_ALTER and DB_RIGHT_OPEN privileges
for the existing files and for the directory where the new file will be located if applicable.

Notes on Rename and Delete Subfunctions

 The previous functionality of the Create operation is intact. Follow the existing documentation on
the Create operation if you want to create a new MicroKernel Engine data file.

 The RenameFile and DeleteFile subfunctions cannot be used on files that are bound to specific
databases because they do not affect the contents of the miscellaneous page.

 If a file contains an owner name, the owner name check is not performed by the new subfunctions.
The owner name is still needed to view the contents of the files.

Result

If the Create operation succeeds, the MicroKernel Engine either warns you of the existence of a file with
the same name or creates the new file according to your specifications. The new file does not contain any

Table 20 Create Operation Subfunctions

Function Key Number to
Use

Description Place in Data
Buffer

Place in Key
Buffer

Rename File –127 Rename an existing file in the data
buffer to the name in the key buffer

Existing File Name New File Name

Delete File –128 Delete a file N/A Existing File Name

Table 21 Create Subfunctions - Use of URI Parameters in Key Buffer

Function URI parameter
file=

URI parameter
dbfile=

URI parameter
table=

Rename

Delete

Table 22 Create Subfunctions - Use of URI Parameters in Data Buffer

Function file= dbfile= table=

Rename

Delete Not applicable Not applicable Not applicable

39

records. The Create operation does not open the file. Your application must perform an Open operation
before it can access the file.

If the Create operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Create operation establishes no currency on the file.

2 The application encountered an I/O error.

11 The specified file name is invalid.

18 The disk is full.

22 The data buffer length is too short.

24 The page size or data buffer size is invalid.

25 The application cannot create the specified file.

26 The number of keys specified is invalid.

27 The key position is invalid.

28 The record length is invalid.

29 The key length is invalid.

41 The MicroKernel does not allow the attempted operation. (File format is lower
than version 13.00.)

48 The alternate collating sequence definition is invalid.

49 The extended data type is invalid.

59 The specified file already exists.

104 The MicroKernel Engine does not recognize the locale.

105 The file cannot be created with Variable-tail Allocation Tables (VATs).

134 The MicroKernel Engine cannot read the International Sorting Rule.

135 The specified International Sort Rule table is corrupt or otherwise invalid.

40

Create Index (31)

The Create Index operation (B_BUILD_INDEX) adds a key to an existing file.

Parameters

Prerequisites

 The file must be open.
 The number of existing key segments in the file must be less than or equal to maximum number of

key segments allowed minus the number of key segments to be added.
 The maximum number of key segments allowed depends on the file’s page size. The following table

lists these values.

See also the status codes 26: The number of keys specified is invalid and 29: The key length is invalid,
both in Status Codes and Messages.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

Page Size (bytes) Maximum Key Segments by File Version

8.x and earlier 9.0 9.5 13.0

512 8 8 Rounded up2 Rounded up2

1024 23 23 97 Rounded up2

1536 24 24 Rounded up2 Rounded up2

2048 54 54 97 Rounded up2

2560 54 54 Rounded up2 Rounded up2

3072 54 54 Rounded up2 Rounded up2

3584 54 54 Rounded up2 Rounded up2

4096 119 119 2043 1833

8192 n/a1 119 4203 3783

16384 n/a1 n/a1 4203 3783

1”n/a” stands for “not applicable”

2”Rounded up” means that the page size is rounded up to the next size supported by the file version. For
example, 512 is rounded up to 1024, 2560 is rounded up to 4096, and so forth.

3While a 9.5 format or later file can have more than 119 segments, the number of indexes is limited to 119.

41

 Ensure that the key flags, position, and length of the new key are appropriate for the file to which
you are adding the key.

 No transactions can be active.

Procedure

1 Set the operation code to 31.

2 Pass the position block for the file to which to add the key.

3 For each segment in the key, store a key specification block in the data buffer. Use the same structure
documented under Create (14). Store the information for the key position and the key length as
integers. If you are rebuilding the system-defined log key (also called system data), the data buffer
must be at least the size of one key specification block and initialized to zeros.

4 To define an ACS for the new key, perform one of the following steps:

 To use the default ACS, which is the first ACS already defined in the file, specify the Use Default
ACS attribute in the Key Flags word.

 To define a new ACS, specify the Use Numbered ACS attribute in the Key Flags word and set the
ACS Number field to zero. In addition, store the 265-byte ACS after the last key specification
block in the data buffer.

 To specify an existing ACS by name, specify the Use Named ACS attribute in the Key Flags word
and set the ACS Number field to zero. In addition, store the name of the ACS at the beginning
of the 265-byte block after the last key specification block in the data buffer. (The remainder of
the ACS block after the name is ignored.) The name must be in one of the following formats:

5 Set the data buffer length parameter to the number of bytes in the data buffer. For a new key with no
ACS (or one that uses the default ACS), use the following formula to determine the correct data
buffer length:

(16 or 24) * (# of segments)

If the new key specifies an ACS other than the default, use the following formula to determine the
correct data buffer length:

(16 or 24) * (# of segments) + 265

6 To assign a specific key number to the key being created, add the desired key number to 0x80, and
place the sum in the key number parameter. If you are rebuilding a system key (also called system
data or system data v2), specify 0xFD (that is, key number 125 + 128) or 0XFC (key number 124 +
128). Note that for BTRVEX this bias results in a small positive value and should not be sign-
extended.

ACS Type Length
(Bytes)

Description

User-defined ACS 1 Signature 0xAC

" 8 ACS table name

ISR 1 Signature 0xAE

" 16 ISR table name

42

Note Key numbers must be unique to the file. They must also be valid. The value of each key number
must be less than the maximum number of key segments allowed for the specified page size.

Details

The MicroKernel Engine allows you to assign specific key numbers when creating a key. This capability
complements the ability to delete a key and not have the MicroKernel Engine renumber all keys that have
a key number greater than that of the deleted key. If an application drops an index and instructs the
MicroKernel Engine not to renumber higher-numbered keys, and a user then clones the affected file
without assigning specific key numbers, the cloned file has different key numbers than the original.

If you define an ACS in the data buffer, the MicroKernel Engine first checks for an existing ACS (using
the name you specified) before adding it to the file. If the MicroKernel Engine finds an existing ACS with
the name you specified, the MicroKernel Engine does not duplicate the ACS definition in the file, but
does associate the ACS with the new key.

If you specify the Use Named ACS attribute in the Key Flags word, the MicroKernel Engine uses the ACS
name supplied in the data buffer to locate an ACS of the same name within the file, then assigns that ACS
to the new key.

If a file is opened by more than one MicroKernel Engine client and one of the clients starts a Create Index
process, remote clients can perform Get and Step operations on the open file while the MicroKernel
Engine client creates the key.

If the key being created is not an autoincrement key, the Get and Step operations of remote clients can
have lock biases, and when the Create Index process is completed, you can update and delete the locked
records without issuing additional read operations. This is possible because the MicroKernel Engine
does not have to change the images of the records in order to create the key.

However, if the key being created is an autoincrement key, then the MicroKernel Engine has to both
build the index and change every record with a zero value in the appropriate field. Remote clients that
perform Get or Step operations without a lock bias before or during the key creation can receive status
code 80 when they execute an update or delete operation after the successful completion of the key
creation.

Also, the MicroKernel Engine returns status code 84 if a client tries to create an autoincrement key while
another client has locked a record. Similarly, the MicroKernel Engine returns status code 85 if a client
attempts to execute a Get or Step operation with a lock bias during index creation for an autoincrement
key by another client.

Result

The MicroKernel Engine immediately adds the new key to the file. The time required for this operation
depends on the total number of records to be indexed, the size of the file, and the length of the new index.

If the Create Index operation succeeds, the number of the new key is either the number you specified or
one of the following:

 For files that have no gaps between key numbers, the key number is one higher than the previous
highest key number.

 For files that have gaps between key numbers, the key number is the lowest missing key number.

You can use the new key to access your data as soon as the operation completes.

43

If the Create Index operation fails, the MicroKernel Engine drops whatever portion of the new index it
has already built. The file pages allocated to the new index prior to the error are placed on a list of free
space for the file and reused when you insert records or create another key.

If the operation fails during the creation of an autoincrement key, any values that have already been
altered remain altered. The MicroKernel Engine can return the following status codes:

If processing is interrupted during the creation of a key, you can access the data in the file through the
file’s other keys. However, the MicroKernel Engine returns a nonzero status code if you try to access data
by the incomplete index. To correct this problem, drop the incomplete index with a Drop Index (32) and
reissue Create Index.

Positioning

The Create Index operation has no effect on any file currency information.

22 The data buffer length is too short.

27 The key position is invalid.

41 The MicroKernel Engine does not allow the attempted operation.

45 The specified key flags are invalid.

49 The extended data type is invalid.

56 An index is incomplete.

84 The record or page is locked.

85 The file is locked.

104 The MicroKernel Engine does not recognize the locale.

134 The MicroKernel Engine cannot read the International Sorting Rule.

135 The specified International Sort Rule table is corrupt or otherwise invalid.

136 The MicroKernel Engine cannot find the specified alternate collating sequence in the file.

44

Delete (4)

The Delete operation (B_DELETE) removes an existing record from a file. The space that the deleted
record occupied is then available for inserting new records.

Parameters

Prerequisites

 The file must be open.
 You have established physical or logical currency in the file. Operations that satisfy this requirement

are Get (except extended Gets or Get Key), Step (except extended Steps), Insert, and Update.

Procedure

1 Set the operation code to 4.

2 Pass the position block of the file that contains the record to be deleted.

Details

The Delete operation may not be a valid operation if performed immediately after an extended Get or
extended Step operation because the current record is unpredictable.

After you perform a Delete operation, a later Get Next or Get Previous operation must use the same key
number and key buffer as the last operation that established logical position. If you use another value,
the MicroKernel Engine returns status code 7.

The MicroKernel Engine does not allow Delete operations after a Get Key (+50). Before the MicroKernel
Engine performs a Delete operation, it compares the current usage count of the data page it intends to
modify with the usage count of the data page when the record was read. To obtain the usage count, the
MicroKernel Engine must read the data page.

Because the Get Key operation does not read the data page, no usage count is available for comparison
on the Delete. The Delete fails because the MicroKernel Engine cannot perform its passive concurrency
conflict checking without the compare. When the Delete fails, the MicroKernel Engine returns status
code 8.

Result

If the Delete operation succeeds, the MicroKernel Engine removes the record from the file, releases the
record lock (if one existed for the deleted record), and adjusts all key indexes to reflect the deletion.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

45

If the Delete operation fails, the MicroKernel Engine returns one of the following status codes:

Delete operations never reduce file size. Empty Space created by deletion of records is reused when
records are added in the future. Disk space can be recovered only by recreating the file and inserting all
of the records into it. The Rebuild and Defragmenter utilities can help accomplish this recovery.

Positioning

The Delete operation destroys the complete physical location information and the logical current record
position but does not change the physical and logical positions of either the next record or the previous
record.

8 The current positioning is invalid.

80 The MicroKernel Engine encountered a record-level conflict.

84 The record or page is locked.

85 The file is locked.

46

Drop Index (32)

The Drop Index operation (B_DROP_INDEX) deletes a key from an existing file.

Parameters

Prerequisites

 The file must be open.
 The key must exist in the file.
 No transactions can be active.

Procedure

1 Set the operation code to 32.

2 Pass the position block of the file that contains the key to drop.

3 Store the number of the key to drop in the key number parameter. To drop the system-defined log
key (also called system data), specify 125. To drop the second system key for system data v2, specify
124.

Details

If you drop a system key, you can rebuild it using Create Index (31).

When you delete a key, the MicroKernel Engine automatically renumbers all higher-numbered keys,
unless you specify otherwise. The MicroKernel Engine renumbers by decrementing the higher-
numbered keys by 1. For example, suppose you have a file with key numbers 1, 4, and 7. If you drop key
4, the MicroKernel Engine renumbers the keys as 1 and 6.

If you do not want the MicroKernel Engine to automatically renumber keys, add a bias of 128 to the value
you supply for the key number parameter. This bias allows you to leave gaps in the key numbering, and
consequently you can drop a damaged index and then rebuild it without affecting the numbering of
other keys in the file. You rebuild the index using Create Index (31), which allows you to specify a key
number.

However, if you delete a key without renumbering higher-numbered keys and then a user clones the
affected file without assigning specific key numbers, the cloned file has different key numbers from the
original.

Note Users can clone files using the Btrieve Maintenance tool or butil, its command line version.
Cloning creates a new, empty file with the same statistics as an existing file.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

47

Result

If the Drop Index operation succeeds, the MicroKernel Engine places the pages that were allocated to
that index on a list of free space for later use. Unless you specify otherwise, the MicroKernel Engine
renumbers the higher-numbered keys.

If the Drop Index operation fails, the MicroKernel Engine returns one of the following status codes:

If processing is interrupted while the MicroKernel Engine is dropping an index, you can access the data
in the file by the file’s other keys. The MicroKernel Engine returns status code 56 if you try to access the
file by an incomplete index. If processing is interrupted, reissue the Drop Index operation.

Positioning

The Drop Index operation has no effect on physical file currency information. However, dropping the
key used to establish the last logical currency destroys the logical currency.

6 The key number parameter is invalid.

41 The MicroKernel Engine does not allow the attempted operation.

48

End Transaction (20)

The End Transaction operation (B_END_TRAN) completes a transaction and makes the appropriate
changes to the data files. It also unlocks all files and records locked by the transaction.

Parameters

Prerequisites

Before issuing an End Transaction operation, your application must issue a successful Begin Transaction
(19 or 1019).

Procedure

Set the operation code to 20. While the MicroKernel Engine ignores all other parameters on an End
Transaction call, you should initialize them to 0 to ensure compatibility with future releases.

Result

If the End Transaction operation succeeds, all the operations within the transaction are recorded in your
file. Your application cannot abort a transaction after an End Transaction operation.

If the End Transaction operation fails, the MicroKernel Engine returns the following status code:

Positioning

The End Transaction operation has no effect on any file currency information.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

38 The MicroKernel Engine encountered a transaction control file I/O error.

49

Find Percentage (45)

The Find Percentage operation (B_GET_PERCENT) is one of two Btrieve API operations that window-
oriented applications can use to implement scroll bars. The other is Get By Percentage (44). Find
Percentage returns the approximate position of a record either relative to a key path or as the record’s
physical location within the file. The position is expressed as a percentage value. See Result for a
definition of the range of percentage values.

Parameters

Note When seeking the percentage relative to a key path, Find Percentage does not require an input
value for the data buffer parameter. When seeking the percentage as relative to a record’s physical
location within the file, Find Percentage does not require an input value for the key buffer parameter.

Prerequisites

 The file must be open.
 If you are seeking the percentage relative to a key path, the file cannot be a data-only file.
 When you are seeking the percentage by a record’s physical location in the file, you must provide the

physical location of the record in the data buffer parameter. You can retrieve this location with Get
Position (22). Be consistent in the use of BTRV or BTRVEX type entry points.

Procedure

1 Set the operation code to 45.

2 Pass the position block for the file.

3 If you are seeking the percentage relative to the record’s physical location within the file, store the
record’s 4- or 8-byte physical address in the data buffer. If you are seeking the percentage relative to
the record’s key path and wish to specify a granularity for the search, set your data buffer parameter
as specified in Granularity. Otherwise, you do not need to provide a value for the data buffer
parameter.

4 Set the data buffer length to a minimum of 4 or 8 bytes. This 4-byte minimum is a requirement of
the MicroKernel Engine internal implementation. If specifying a granularity for the search, set the
data buffer length to a minimum of 12 or 16 bytes.

5 If you are seeking the percentage relative to a key path, set the key buffer parameter to the key value.
Otherwise, you do not need to provide a value for the key buffer parameter.

6 Set the key number parameter as follows:

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

50

 If you are seeking the percentage by a key path, set the key number parameter to the actual key
number.

 If you are seeking the percentage by the physical record location, set the key number parameter
to –1.

Details

The Find Percentage operation is provided specifically to support scroll bar implementation. Because
many factors affect the accuracy of this operation – that is, whether the returned percentage value
accurately reflects the position of the record or key value – you should not rely on the accuracy of this
operation for other purposes.

To optimize the Find Percentage operation, the MicroKernel Engine assumes that a file has an even
distribution of records among the data pages and keys among the index pages. However, distribution can
be affected by the following situations:

 The file is not index balanced, and a large number of records within the same range of keys has been
deleted.

 A large number of records within the same range of physical addresses has been deleted.
 The file contains numerous duplicate key values, and the key is a linked-duplicatable key.

Granularity

The granularity setting is optional and allows you to choose the factor by which the percentage is
measured. In releases before Zen 9, this value was always 10000.

If you want to specify the granularity, follow these steps:

 To specify a granularity in the Find Percentage operation

1 Place the signature ExPc in the 4 bytes of the data buffer (0x45, 0x78, 0x50, 0x63) after the record
address area.

2 Place the desired granularity in the 4 bytes after the signature as a LoHi Intel integer. The granularity
you choose can be any number from 1 to 0xFFFFFFFF.

3 Ensure that your data buffer length is at least 12 or 16 bytes, depending on the entry point used.

The following table summarizes positions and layouts for these steps.

For example, if you want to get the 100th record from a file that contains 365 records, you can use Find
Percentage (45) with 100 as the percentage and 365 as the granularity.

BTRV, BTRVID, BTRCALL, BTRCALLID BTRVEX, BTRVEXID

Record address 4 bytes, offset 0 8 bytes, offset 0

Signature granularity 4 bytes, offset 4 4 bytes, offset 8

General granularity 4 bytes, offset 8 4 bytes, offset 12

Total size 4 or 12 bytes 8 or 16 bytes

51

Result

If the Find Percentage operation succeeds, the MicroKernel Engine returns the relative position of the
specified key value or record to the data buffer. This position is expressed as a percentage of the offset
into the key path or file and is a value in the range of 0 (0 percent) through 10000 (100.00 percent). Note
this is not the physical or logical position.

The percentage value is returned as a 4-byte integer in low-byte, high-byte order. For example, when
using default granularity:

The MicroKernel Engine also returns a data buffer length of at least 4 if the operation succeeds.

If the Find Percentage operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Find Percentage operation does not change any currency information.

Returned Value Hex Returned Value Dec Percentage in Key Path or File

88h 13h 5000 50%

3 The file is not open.

6 The key number parameter is invalid.

7 The key number has changed.

8 The current positioning is invalid.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

41 The MicroKernel Engine does not allow the attempted operation.

43 The specified record address is invalid.

82 The MicroKernel Engine lost positioning.

52

Get By Percentage (44)

The Get By Percentage operation (B_SEEK_PERCENT) is one of two Btrieve API operations that can be
used by window-oriented applications for implementing scroll bars. The other is the Find Percentage
(45). Get By Percentage retrieves a record by that record’s relative position in the file, where the position
is based on a percentage value you supply when you call the operation. You must also specify whether
the position is relative to a specified key path or represents the record’s actual physical location in the file.

Parameters

Note The Get By Percentage operation, when seeking the record by its physical location in the file,
does not return any information in the key buffer parameter.

Prerequisites

 The file must be open.
 If you are seeking the record relative to a key path, the file cannot be a data-only file.

Procedure

1 Set the operation code to 44. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Store the percentage value as a 4-byte integer in the data buffer. See Details for the acceptable range
of percentage values and related information.

4 Set the data buffer length to a value greater than or equal to the length of the largest possible record
that could be returned. (The MicroKernel Engine’s internal implementation requires that you set the
data buffer length value to a minimum of 4 bytes). If specifying a granularity for the search, set the
data buffer length to a minimum of 12 bytes.

5 Set the key number parameter.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

53

 If you are seeking the record by a key path, set the key number parameter to the actual key
number. To use the system-defined log key (also called system data), specify 125. To use the
second system key for system data v2, specify 124.

 If you are seeking the record by the physical record position in the file, set the key number
parameter to –1.

Details

If you are not specifying a granularity (see Granularity), the range of acceptable percentage values for the
first two bytes of the data buffer parameter is from 0 (indicating the beginning of the key path or file)
through 10000 (the end of the key path or file). The value corresponds to a range of 0% to 100.00%,
assuming two implied decimal places. If you want to find the record approximately 33.33% through the
file, pass the value 3333 in the data buffer. Be sure to store the value as an integer (in low-byte, high-byte
order). For example, to seek to the 50 percent point in the file, use a value of 5000 (0x1388). After byte-
swapping 0x1388, store 0x88 and 0x13 in the first two bytes of the data buffer parameter.

If you wish to specify a granularity for the search, set your data buffer parameter as specified in
Granularity.

The Get By Percentage operation is provided specifically to support scroll bar implementation. Because
many factors affect the accuracy of this operation – that is, whether the returned record is positioned at
the actual percentage point you specify in the file – you should not rely on the accuracy of this operation
for other purposes.

To optimize the Get By Percentage operation, the MicroKernel Engine assumes that a file has an even
distribution of records among the data pages and keys among the index pages. However, distribution can
be affected by the following situations:

 The file is not index balanced, and a large number of records within the same range of keys has been
deleted.

 A large number of records within the same range of physical addresses has been deleted.
 The file contains numerous duplicate key values, and the key is a linked-duplicatable key.

Granularity

The granularity setting is optional and allows you to choose the factor by which the percentage is
measured. In releases before Zen 9, this value was always 10000.

If you want to specify the granularity, follow these steps:

 To specify a granularity in the Get By Percentage operation

1 Place the signature ExPc in the second 4 bytes of the data buffer (0x45, 0x78, 0x50, 0x63) after the
percentage.

2 Place the desired granularity in the 4 bytes after the signature as a LoHi Intel integer. The granularity
you choose can be any number from 1 to 0xFFFFFFFF.

3 Ensure that your data buffer length is at least 12 bytes.

For example if you want to get the 100th record from a file that contains 365 records, you can use Get By
Percentage (44) with 100 as the percentage and 365 as the granularity.

54

Result

If the Get By Percentage operation succeeds, the MicroKernel Engine returns to the data buffer a record
that is either from the designated position relative to the specified key path or from the physical position
in the file. The MicroKernel Engine returns the length of the record in bytes into the data buffer length
parameter. If the operation seeks the record by a key path, the MicroKernel Engine returns the key value
for the specified key path in the key buffer parameter. If the operation seeks the record by physical record
order, the MicroKernel Engine does not return any information in the key buffer parameter.

Note When Get By Percentage is seeking a record relative to a key path, and the key contains
duplicate values, the MicroKernel Engine always returns the first record containing the duplicated
value. This implementation detail can affect the accuracy of the operation.

If the Get By Percentage operation fails, the MicroKernel Engine returns one of the following status
codes:

Positioning

If successful when seeking a record relative to a specified key path, the Get By Percentage operation
establishes the new logical and physical currencies based respectively on the specified key number and
the retrieved record.

If successful when seeking a record based on the record’s physical location within the file, the Get By
Percentage operation establishes the new physical currency based on the retrieved record.

If the Get By Percentage operation fails, the MicroKernel Engine changes no currency.

3 The file is not open.

6 The key number parameter is invalid.

7 The key number has changed.

8 The current positioning is invalid.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

41 The MicroKernel Engine does not allow the attempted operation.

43 The specified record address is invalid.

82 The MicroKernel Engine lost positioning.

55

Get Direct/Chunk (23)

The Get Direct/Chunk operation (B_GET_DIRECT) can retrieve one or more portions, called chunks,
of a record. This operation is especially useful on files containing records longer than the maximum data
buffer size. Such records are too long to be retrieved by the other Get and Step operations due to
restrictions on the length of the data buffer parameter. Your application specifies the record from which
chunks are to be retrieved by supplying its physical address. The location of a chunk in a record is
generally specified by its offset and length.

Parameters

Prerequisites

 The file must be open.
 You must provide the physical location of the record. You can retrieve this location with Get Position

(22). Be consistent in the use of BTRV or BTRVEX type of entry points.
 You must provide a large enough data buffer to contain all values that a Get Direct/Chunk operation

returns. The data buffer must also be able to contain the entire chunk descriptor (all the chunk
definitions) when the Get Direct/Chunk operation is performing an indirect chunk operation.

Procedure

1 Set the operation code to 23. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Specify a data buffer, as described in Details.

4 Specify the data buffer length as either the length of the input structure (Table 23 or Table 24) or the
number of bytes you requested for the MicroKernel Engine to retrieve, whichever is larger.

Some options for the Get Direct/Chunk operation retrieve chunks to locations other than the data
buffer. See the Details section for more information about calculating the data buffer length.

5 Set the key number parameter to –2.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

56

Details

Use one of the following chunk descriptors in the data buffer:

 Random Chunk Descriptor – To retrieve a single chunk per operation, or to retrieve multiple chunks
in a single operation when the chunks are spaced randomly throughout the record.

 Rectangle Chunk Descriptor – To retrieve multiple chunks in an operation, when each chunk is the
same length and chunks are spaced equidistantly in the record.

Random Chunks

The following example shows a record with three randomly spaced chunks (areas containing [*]): chunk
0 (bytes 0x12 through 0x16), chunk 1 (bytes 0x2A through 0x31), and chunk 2 (bytes 0x41 through
0x4E).

To fetch random chunks, you must create a structure in the data buffer, based on the following table.

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 [*] [*] [*] [*] [*] 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 [*] [*] [*] [*] [*] [*]

[*] [*] 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] 4F

Table 23 Data Buffer for Random Chunk Operations

Element Length (Bytes) Description

Record
Address

4 or 81 The physical location of the record. You can retrieve this location with Get Position (22).

Random Chunk Descriptor

Subfunction 4 Type of chunk descriptor. One of the following:

• 0x80000000 (Direct random chunk descriptor) – Retrieves chunks directly into the
data buffer. The first chunk is retrieved and stored at offset 0 in the data buffer, the
second chunk immediately follows the first, and so on.

• 0x80000001 (Indirect random chunk descriptor) – Retrieves chunks into addresses
specified by the Chunk Definitions.

NumChunks 4 Number of chunks to retrieve. The value must be at least 1. Although no explicit maximum
value exists, the chunk descriptor must fit in the data buffer.

57

The following table shows a sample data buffer for a 32-bit application for fetching direct random chunks
using a BTRV entry point.

Chunk
Definition
(Repeat for
each chunk)

12 (for 32-bit
applications)

16 (for 64-bit
applications)

Each Chunk Definition is a 4-byte Chunk Offset, followed by a 4-byte Chunk Length,
followed by a 4-byte User Data for 32-bit applications or an 8-byte User Data for 64-bit
applications, described as follows:

• Chunk Offset – Indicates where the chunk begins as an offset in bytes from the
beginning of the record. The minimum value is 0, and the maximum value is the offset
of the last byte in the record.

• Chunk Length – Indicates how many bytes are in the chunk. The minimum value is 0,
and the maximum value 655352.

• User Data – (Used only for indirect descriptors.) For 32-bit applications, a 32-bit
pointer to the actual chunk data. For 64-bit applications, a 64-bit pointer to the actual
chunk data. The MicroKernel Engine ignores this element for direct chunk descriptor
subfunctions.

1Size depends on whether you use BTRV or BTRVEX type entry points.

2For BTRVEX, chunk size is limited to 65535, but multiple chunks can be returned in a large data buffer.

Element Sample Value Length (Bytes)

Record Address 0x00000628 4

Subfunction 0x80000000 4

NumChunks 3 4

Chunk 0

Chunk Offset 18 4

Chunk Length 5 4

User Data N/A 4

Chunk 1

Chunk Offset 42 4

Chunk Length 8 4

User Data N/A 4

Chunk 2

Chunk Offset 65 4

Chunk Length 14 4

User Data N/A 4

Table 23 Data Buffer for Random Chunk Operations (Continued)

Element Length (Bytes) Description

58

Rectangle Chunk Descriptor Structure

When chunks of the same length are spaced equidistantly throughout a record, you can describe all the
chunks to retrieve with a rectangle chunk descriptor. For example, consider the following diagram,
which represents offset 0x00 through 0x4F in a record:

The record contains three chunks (areas containing [*]): chunk 0 (bytes 0x19 through 0x1C), chunk 1
(bytes 0x29 through 0x2C), and chunk 2 (bytes 0x39 through 0x3C). Each chunk is four bytes long, and
a total of 16 (0x10) bytes, calculated from the beginning of each chunk, separates the chunks from one
another.

You can retrieve all three chunks using a single rectangle descriptor. To fetch rectangle chunks, you must
create a structure in the data buffer based on the following table.

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 [*] [*] [*] [*] 1D 1E 1F

20 21 22 23 24 25 26 27 28 [*] [*] [*] [*] 2D 2E 2F

30 31 32 33 34 35 36 37 38 [*] [*] [*] [*] 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

Table 24 Data Buffer for Rectangle Chunks

Element Length (Bytes) Description

Record
Address

4 or 81 The 4-byte physical location of the record. You can retrieve this location with Get Position
(22).

Rectangle Chunk Descriptor

Subfunction 4 Type of chunk descriptor. One of the following:

• 0x80000002 (Direct rectangle chunk descriptor) – Retrieves chunks directly into the
data buffer. The first chunk is retrieved and stored at offset 0 in the data buffer, the
second chunk immediately follows the first, and so on.

• 0x80000003 (Indirect rectangle chunk descriptor) – Retrieves chunks into addresses
specified by the User Data and Application Distance Between Rows elements.

Number of
Rows

4 Number of chunks on which the rectangle chunk descriptor must operate. The minimum
value is 1. No explicit maximum value exists.

Offset 4 Offset from the beginning of the record of the first byte to retrieve. The minimum value is
0, and the maximum value is the offset of the last byte in the record. If the record is viewed
as a rectangle, this element refers to the offset of the first byte in the first row to be
retrieved.

Bytes Per Row 4 Number of bytes to retrieve in each chunk. The minimum value is 0, and the maximum
value is 655352.

Distance
Between Rows

4 Number of bytes between the beginning of each chunk.

59

When you use an indirect descriptor, be sure that the User Data pointer is initialized so that the chunks
retrieved do not overwrite your chunk descriptor. The MicroKernel Engine uses the descriptor when
copying the returned chunks to the locations that the User Data elements specify. In the event that you
overwrite your chunk descriptor, the MicroKernel Engine returns status code 62.

If the rectangle has the same number of bytes between rows when it is in memory as when it is stored as
a record, set Application Distance Between Rows with the same value as Distance Between Rows.
However, if the rectangle is arranged in your application’s memory with either more or fewer bytes
between rows, Application Distance Between Rows allows you to pass that information to the
MicroKernel Engine.

When you use an indirect rectangle descriptor, the MicroKernel Engine uses both the User Data and the
Application Distance Between Rows elements to determine the locations in which to store the data after
retrieving it. The MicroKernel Engine stores data from the first row in offset 0 of User Data. The
MicroKernel Engine stores the second row’s data to an address specified by User Data + Application
Distance Between Rows. The MicroKernel Engine stores the third row’s data in the address specified by
User Data + (Application Distance Between Rows * 2), and so on.

The following table shows a sample data buffer for a 32-bit application for fetching a direct rectangle
chunk using a BTRV entry point.

User Data 4 (for 32-bit
applications)

8 (for 64-bit
applications)

(Used only with indirect descriptors.) For 32-bit applications, a 32-bit pointer to the
location into which the MicroKernel Engine stores bytes after retrieving them from each
row. For 64-bit applications, a 64-bit pointer to the location into which the MicroKernel
Engine stores bytes after retrieving them from each row.

The MicroKernel Engine ignores this element for direct rectangle descriptors. However,
you must still allocate the element and initialize it to 0.

Application
Distance
Between Rows

4 (Used only with indirect rectangle descriptors.) Number of bytes between the beginning
of each chunk in the rectangle, as the rectangle is stored in your application’s memory, at
the address specified by User Data. The MicroKernel Engine ignores this element for
direct rectangle descriptors. However, you must still allocate the element and initialize it
to 0.

1Size depends on whether you use BTRV or BTRVEX type entry points.

2For BTRVEX, chunk size is limited to 65535, but multiple chunks can be returned in a large data buffer.

Element Name Sample Value Length
(Bytes)

Record Address 0x00000628 4

Subfunction 0x80000002 4

Number of Rows 3 4

Offset 25 4

Bytes Per Row 4 4

Distance Between Rows 16 4

Table 24 Data Buffer for Rectangle Chunks (Continued)

Element Length (Bytes) Description

60

Next-in-Record Subfunction Bias

If you add a bias of 0x40000000 to any of the subfunctions previously listed, the MicroKernel Engine
calculates the subfunction Offset element values based on your physical intrarecord currency (that is,
your current physical location within the record). When you use the Next-in-Record subfunction, the
MicroKernel Engine ignores the Offset element in the chunk descriptor.

Result

If the Get Direct/Chunk operation succeeds and a direct chunk descriptor is used, the MicroKernel
Engine returns the chunks one after another in the data buffer. If you used an indirect random chunk
descriptor, the MicroKernel Engine returns the data to the locations that each chunk’s User Data element
specifies. If you used an indirect rectangle descriptor, the MicroKernel Engine returns the data to
locations it derives from the User Data and Application Distance Between Rows elements.

The MicroKernel Engine also stores the total length of the chunks retrieved in the data buffer length
parameter. (The returned value reflects all bytes retrieved, whether they were retrieved and stored
directly into the data buffer, or the indirect descriptor was used to retrieve and store the bytes elsewhere.)
If the operation was partially successful, your application can use the value returned in the data buffer
length parameter to determine which chunks could not be retrieved and how many bytes of the final
chunk were retrieved.

The Get Direct/Chunk operation is only partially successful if any chunk begins beyond the end of the
record (resulting in the MicroKernel Engine returning status code 103), or if any chunk’s offset and
length combine to exceed the length of the record. In the latter case, the MicroKernel Engine returns
status code 0 but ceases processing subsequent chunks, if any, in the operation.

Note Only the data buffer length parameter shows that not all of the chunks were properly retrieved.
For this reason, be sure that you always check the value returned in the data buffer length parameter
after a Get Direct/Chunk operation.

The following status codes indicate a partially successful Get Direct/Chunk operation. When the
MicroKernel Engine returns one of these status codes, your application should check the data buffer
length parameter’s return value to see how much data the MicroKernel Engine actually returned.

User Data 0 4

Application Distance Between Rows 0 4

22 The data buffer parameter is too short.

54 The variable-length portion of the record is corrupt.

103 The chunk offset is too big.

Element Name Sample Value Length
(Bytes)

61

If the MicroKernel Engine returns any of the following status codes, it has returned no data.

Positioning

The Get Direct/Chunk operation has no effect on logical currency. In terms of physical currency, Get
Direct/Chunk makes the record from which chunks are retrieved the physical current record.

43 The specified record address is invalid.

58 The compression buffer length is too short.

62 The descriptor is incorrect.

97 The data buffer is too small.

106 The MicroKernel Engine cannot perform a Get Next Chunk operation.

62

Get Direct/Record (23)

The Get Direct/Record operation (B_GET_DIRECT) retrieves a record using its physical location in the
file instead of using one of the defined key paths.

Use Get Direct/Record to accomplish the following:

 Retrieve a record faster using its physical location instead of its key value.
 Use Get Position (22) to retrieve the location of a record, save the location, and use Get Direct/

Record to return directly to that location after performing other operations that affect currency.
 Use the location to retrieve a record in a chain of duplicates without rereading all the records from

the beginning of the chain.
 Change the current key path. A Get Position operation, followed by a Get Direct/Record operation

with a different key number, establishes positioning for the current record in a different index path.
A subsequent Get Next returns the next record in the file based on the new key path.

Parameters

Note The key number parameter is not needed when you are performing a Get Direct/Record
operation on a data-only file.

Prerequisites

 The file must be open.
 You must provide the 4- or 8-byte physical location of the record. You can retrieve this location with

Get Position (22), which returns the physical address of the current record. Be consistent in the use
of BTRV or BTRVEX type of entry points.

Procedure

1 Set the operation code to 23. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

63

3 Store the 4- or 8-byte position of the requested record in beginning of the data buffer. Size depends
on whether you are using BTRV or BTRVEX type entry points.

4 Set the data buffer length to a value greater than or equal to the length of the record to retrieve.

5 Set the key number to the key number of the path for which you want the MicroKernel Engine to
establish logical currency. Specify –1 if you do not want the MicroKernel Engine to establish logical
currency. To use the system-defined log key (also called system data), specify 125. To use the second
system key for system data v2, specify 124.

Result

If the Get Direct/Record operation succeeds, the MicroKernel Engine returns the requested record in
the data buffer, the length of the record in the data buffer length parameter, and the key value for the
specified key path in the key buffer.

If the Get Direct/Record operation fails and the MicroKernel Engine cannot return the requested record,
the MicroKernel Engine returns one of the following status codes:

Positioning

The Get Direct/Record operation erases any existing logical currency information and establishes the
new logical currency according to the key number specified. It has no effect on the physical currency
information.

22 The data buffer parameter is too short. (Logical currency is still established.)

43 The specified record address is invalid. (Logical currency is not established.)

44 The specified key path is invalid. (Logical currency is not established.)

82 The MicroKernel Engine lost positioning. (Logical currency is not established.)

64

Get Directory (18)

The Get Directory operation (B_GET_DIR) returns the current directory for a specified logical disk
drive.

Parameters

Prerequisites

Your application can issue a Get Directory operation at any time. The key buffer should be at least 65
characters long.

Procedure

1 Set the operation code to 18.

2 Store the logical disk drive number in the key number parameter. Specify the drive as 1 for A, 2 for
B, and so on. To use the default drive, specify 0.

Result

The MicroKernel Engine returns the current directory, terminated by a binary 0, in the key buffer.

Positioning

The Get Directory operation has no effect on any file currency information.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

65

Get Equal (5)

The Get Equal operation (B_GET_EQUAL) retrieves a record that has a key value equal to that specified
in the key buffer. If the key allows duplicates, this operation retrieves the first record (chronologically)
of a group with the same key values. You can use the Get Key (+50) bias to detect the presence of a value
in a file. A Get Key operation is generally faster.

Parameters

Prerequisites

 The file must be open.
 The file cannot be a data-only file.

Procedure

1 Set the operation code to 5. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Set the data buffer length to a value greater than or equal to the length of the record to retrieve.

4 Specify the desired key value in the key buffer. If the key consists of multiple segments, make sure
you define the key buffer to represent all segments and fill in values for all segments. If you don’t
have search criteria for all segments, use the GetGreaterOrEqual operation instead.

5 Set the key number to the correct key path. To use the system-defined log key (also called system
data), specify 125. To use the second system key for system data v2, specify 124.

Result

If the Get Equal operation succeeds, the MicroKernel Engine returns the requested record in the data
buffer and the length of the record in the data buffer length parameter.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

66

If the Get Equal operation fails, the MicroKernel Engine returns one of the following status codes:

This operation returns status code 4 if the key contains a nonzero value in a null indicator segment. You
cannot use GetEqual to find records that are NULL, because by definition NULL is indeterminate, or not
equal to anything. If you need to find NULL values, use GetFirst followed by GetNext.

Positioning

The Get Equal operation establishes the complete logical and physical currencies and makes the
retrieved record the current one.

3 The file is not open.

4 The application cannot find the key value.

6 The key number parameter is invalid.

22 The data buffer parameter is too short.

67

Get First (12)

The Get First operation (B_GET_FIRST) retrieves the logical first record based on the specified key. You
can use the Get Key (+50) bias to detect the presence of a value in a file. A Get Key operation is generally
faster.

Parameters

Prerequisites

 The file must be open.
 The file cannot be a data-only file.

Procedure

1 Set the operation code to 12. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Set the data buffer length to a value greater than or equal to the length of the record to retrieve.

4 Indicate the key number for the key path. To use the system-defined log key (also called system
data), specify 125. To use the second system key for system data v2, specify 124.

Result

If the Get First operation succeeds, the MicroKernel Engine returns the requested record in the data
buffer, stores the corresponding key value in the key buffer, and returns the length of the record in the
data buffer length parameter.

If the Get First operation fails, the MicroKernel Engine returns one of the following status codes:

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

3 The file is not open.

6 The key number parameter is invalid.

68

Positioning

The Get First operation establishes the complete logical and physical currencies and makes the retrieved
record the current one. The logical previous position points beyond the beginning of the file.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

69

Get Greater Than (8)

The Get Greater Than operation (B_GET_GT) retrieves a record in which the field specified by the key
number has the next greater value than the one in the key buffer. If the key allows duplicates, this
operation retrieves the first record (chronologically) of the group with the same key values. You can use
the Get Key (+50) bias to detect the presence of a value in a file. A Get Key operation is generally faster.

Note If you are using the Get Greater Than operation on descending keys, the next greater value
refers to a value lower than the one specified in the key buffer.

Parameters

Prerequisites

 The file must be open.
 The file cannot be a data-only file.

Procedure

1 Set the operation code to 8. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Set the data buffer length to a value greater than or equal to the length of the record you want to
retrieve.

4 Specify the desired key value in the key buffer parameter.

5 Set the key number parameter to correspond to the correct key path. To use the system-defined log
key (also called system data), specify 125. To use the second system key for system data v2, specify
124.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

70

Result

If the Get Greater Than operation succeeds, the MicroKernel Engine stores the record in the data buffer,
the key value in the key buffer, and the length of the record in the data buffer length parameter.

If the Get Greater Than operation fails, the MicroKernel Engine returns one of the following status
codes:

Positioning

The Get Greater Than operation establishes the complete logical and physical currencies and makes the
retrieved record the current one.

3 The file is not open.

6 The key number parameter is invalid.

22 The data buffer parameter is too short.

71

Get Greater Than or Equal (9)

The Get Greater Than or Equal operation (B_GET_GE) retrieves a record in which the value for the key
specified by the key number is equal to or greater than the value you supply in the key buffer. The
MicroKernel Engine first tries to satisfy the equal requirement. If the key allows duplicates, this
operation retrieves the first record (chronologically) of the group with the same key values. You can use
the Get Key (+50) bias to detect the presence of a value in a file. A Get Key operation is generally faster.

Note If you are using the Get Greater Than or Equal operation on descending keys, the next greater
value refers to a value lower than the one specified in the key buffer.

Parameters

Prerequisites

 The file must be open.
 The file cannot be a data-only file.

Procedure

1 Set the operation code to 9. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Set the data buffer length to a value greater than or equal to the length of the record you want to
retrieve.

4 Specify the key value in the key buffer parameter.

5 Set the key number parameter to correspond to the correct key path. To use the system-defined log
key (also called system data), specify 125. To use the second system key for system data v2, specify
124.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

72

Result

If the Get Greater Than or Equal operation succeeds, the MicroKernel Engine stores the record in the
data buffer, the key value in the key buffer, and the length of the record in the data buffer length
parameter.

If the Get Greater Than or Equal operation fails, the MicroKernel Engine returns one of the following
status codes:

Positioning

The Get Greater Than or Equal operation establishes the complete logical and physical currencies and
makes the retrieved record the current one.

3 The file is not open.

6 The key number parameter is invalid.

22 The data buffer parameter is too short.

73

Get Key (+50)

The Get Key bias allows you to perform a Get operation without actually retrieving a data record. You
can use Get Key to detect the presence of a value in a file. A Get Key operation is generally faster than its
corresponding Get operation. You can use the Get Key operation with any of the following Get
operations:

 Get Equal (5)
 Get Next (6)
 Get Previous (7)
 Get Greater Than (8)
 Get Greater Than or Equal (9)
 Get Less Than (10)
 Get Less Than or Equal (11)
 Get First (12)
 Get Last (13)
 Get By Percentage (44)

Parameters

The parameters are the same as those for the corresponding Get operation, except that the MicroKernel
Engine ignores the data buffer length and does not return a record in the data buffer.

Prerequisites

The prerequisites for a Get Key operation are the same as those for the corresponding Get operation.

Procedure

1 Set the parameters as you would for the corresponding Get operation. You do not need to initialize
the data buffer length.

2 Set the operation code to the Get operation you want to perform, plus 50. For example, to perform
a Get Key (+50) with Get Equal (5), set the operation code to 55.

The MicroKernel Engine does not allow Delete or Update operations after a Get Key (+50). Before the
MicroKernel Engine performs Update or Delete operations, it compares the current usage count of the
data page it intends to modify with the usage count of the data page when the record was read. To obtain
the usage count, the MicroKernel Engine must read the data page.

Because the Get Key operation does not read the data page, no usage count is available for comparison
on the Update or Delete. The Update or Delete fails because the MicroKernel Engine cannot perform its
passive concurrency conflict checking without the compare. When the Update or Delete fails, the
MicroKernel Engine returns status code 8.

Result

If the MicroKernel Engine finds the requested key, it returns the key value in the key buffer and status
code 0. Otherwise, the MicroKernel Engine returns a status code indicating why it cannot find the key
value.

74

Positioning

The Get Key operation establishes the current positioning in a similar manner to the corresponding Get
operation. However, when a Get Key operation involves a key that allows duplicates, the MicroKernel
Engine ignores the duplicate instances of the current retrieved key value. After a Get Key operation, the
logical previous position points to the record containing the previous lesser key value. The logical next
position points to the record with the next greater key value.

For example, assume you perform a Get Key/Get Equal operation (55) on a last name key that contains
eight occurrences of Smith and a single Smythe. The logical next position does not point to the next
Smith, but to Smythe.

Because a Get Key operation does not positively identify any one record, the MicroKernel Engine does
not allow an Update or Delete operation to follow a Get Key operation.

75

Get Last (13)

The Get Last operation (B_GET_LAST) retrieves the logical last record based on the specified key. If
duplicates exist for the last key value, the record returned is the last duplicate. You can use the Get Key
(+50) bias to detect the presence of a value in a file. A Get Key operation is generally faster.

Parameters

Prerequisites

 The file must be open.
 The file cannot be a data-only file.

Procedure

1 Set the operation code to 13. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Set the data buffer length to a value greater than or equal to the length of the record you want to
retrieve.

4 Specify the key number for the key path. To use the system-defined log key (also called system data),
specify 125. To use the second system key for system data v2, specify 124.

Result

If the Get Last operation succeeds, the MicroKernel Engine returns the requested record in the data
buffer, stores the corresponding key value in the key buffer, and returns the length of the record in the
data buffer length parameter.

If the Get Last operation fails, the MicroKernel Engine returns one of the following status codes:

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

3 The file is not open.

6 The key number parameter is invalid.

76

Positioning

The Get Last operation establishes the complete logical and physical currencies and makes the retrieved
record the current one. The logical next position points beyond the end of the file.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

77

Get Less Than (10)

The Get Less Than operation (B_GET_LT) retrieves a record in which the value for the key specified by
the key number has the previous lesser value than the value you supply in the key buffer. If the key allows
duplicate values, this operation retrieves the last record (chronologically) of the group with the same key
values. You can use the Get Key (+50) bias to detect the presence of a value in a file. A Get Key operation
is generally faster.

Note If you are using the Get Less Than operation on descending keys, the next lesser value refers
to a value higher than the one specified in the key buffer.

Parameters

Prerequisites

 The file must be open.
 The file cannot be a data-only file.

Procedure

1 Set the operation code to 10. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Set the data buffer length to a value greater than or equal to the length of the record you want to
retrieve.

4 Specify the desired key value in the key buffer parameter.

5 Set the key number parameter to the key path. To use the system-defined log key (also called system
data), specify 125. To use the second system key for system data v2, specify 124.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

78

Result

If the Get Less Than operation succeeds, the MicroKernel Engine returns the record in the data buffer,
the key value for the record in the key buffer, and the length of the record in the data buffer length
parameter.

If the Get Less Than operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Get Less Than operation establishes the complete logical and physical currencies and makes the
retrieved record the current one.

3 The file is not open.

6 The key number parameter is invalid.

22 The data buffer parameter is too short.

79

Get Less Than or Equal (11)

The Get Less Than or Equal operation (B_GET_LE) retrieves a record in which the value for the key
specified by the key number has an equal or a previous lesser value than the value you supply in the key
buffer. The MicroKernel Engine first tries to satisfy the equal requirement. If the key allows duplicate
values, this operation retrieves the last record (chronologically) of the group with the same key values.
You can use the Get Key (+50) bias to detect the presence of a value in a file. A Get Key operation is
generally faster.

Note If you are using the Get Less Than or Equal operation on descending keys, the next lesser value
refers to a value higher than the one specified in the key buffer.

Parameters

Prerequisites

 The file must be open.
 The file cannot be a data-only file.

Procedure

1 Set the operation code to 11. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Set the data buffer length to a value greater than or equal to the length of the record you want to
retrieve.

4 Specify the key value in the key buffer parameter.

5 Set the key number parameter to the key path. To use the system-defined log key (also called system
data), specify 125. To use the second system key for system data v2, specify 124.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

80

Result

If the Get Less Than or Equal operation succeeds, the MicroKernel Engine returns the record in the data
buffer, the key value for the record in the key buffer, and the length of the record in the data buffer length
parameter.

If the Get Less Than or Equal operation fails, the MicroKernel Engine returns one of the following status
codes:

Positioning

The Get Less Than or Equal operation establishes the complete logical and physical currencies and
makes the retrieved record the current one.

3 The file is not open.

6 The key number parameter is invalid.

22 The data buffer parameter is too short.

81

Get Next (6)

The Get Next operation (B_GET_NEXT) retrieves the record in the logical next position (based on the
specified key). You can use the Get Next operation to retrieve records within a group of records that have
duplicate key values. You can use the Get Key (+50) bias to detect the presence of a value in a file. A Get
Key operation is generally faster.

Parameters

Prerequisites

 The file must be open.
 The file cannot be a data-only file.
 Your application must have an established logical next position based on the specified key.

Procedure

1 Set the operation code to 6. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Set the data buffer length to a value greater than or equal to the length of the record you want to
retrieve.

4 Specify the key value from the previous operation in the key buffer that established logical position.

Pass the key buffer exactly as the MicroKernel Engine returned it on the previous call, since the
information stored there may be needed to determine the current position in the file.

5 Set the key number parameter to the key path used on the previous call that established logical
position. You cannot change key paths using a Get Next operation.

Result

If the Get Next operation succeeds, the MicroKernel Engine returns the record in the data buffer, the key
value for the record in the key buffer, and the length of the record in the data buffer length parameter.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

82

If the Get Next operation fails, the MicroKernel Engine returns one of the following status codes:

The operation returns status code 9 if the logical next position points beyond the end of the file.

Positioning

The Get Next operation establishes the complete logical and physical currencies and makes the retrieved
record the current one.

3 The file is not open.

6 The key number parameter is invalid.

7 The key number has changed.

8 The current positioning is invalid.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

82 The MicroKernel Engine lost positioning.

83

Get Next Delete Extended (85)

The Get Next Delete Extended operation (B_GET_NEXT_EXT_DELETE) examines one or more
records, starting at the logical next position and proceeding toward the end of the file, based on the
specified key. It compares the examined record or records to a filter condition and deletes those that
match. The filter condition is a logic expression and is not limited to key fields.

As noted under this topic, this operation uses the same input and output buffer structures and returns
the result described under Get Next Extended (36). See that operation for more information.

Parameters

Prerequisites

 The file must be open.
 The file cannot be a data-only file.
 You must have an established logical next position based on the specified key. You can establish

logical positioning by issuing any unextended Get operation, such as a Get Equal.

Procedure

1 Set the operation code to 85.

By default, the lock bias is no-wait, and any lock bias setting is ignored. Behavior is identical to +500:
If the engine cannot delete a locked record, it returns immediately without retrying the operation.

2 Pass the position block for the file.

3 Specify a data buffer to accommodate either the input structure or the returned output, whichever
is larger. Initialize the data buffer according to the instructions in Table 25.

4 Specify the buffer size as either the length of the input structure in Table 25 or the length of the
returned output in Table 26, whichever is larger.

5 Specify the key value from the previous operation in the key buffer that established logical position.

Pass the key buffer exactly as the MicroKernel Engine returned it on the previous call, since the
information stored there may be needed to determine the current position in the file.

6 Set the key number parameter to the key path used on the previous call that established logical
position. You cannot change key paths using a Get Next Delete Extended operation.

Details

The following topics under Get Next Extended (36) cover the structure of the extended operation input
buffer and use of its filter segment, as well as the structure of the output buffer that returns the result:

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

84

 Input Buffer for Extended Operations
 Output Buffer for Extended Operations

Result

If the Get Next Delete Extended operation succeeds, the MicroKernel Engine returns the following:

 In the output buffer, one or more record addresses from one or more records. For details, see Output
Buffer for Extended Operations.

 In the output buffer length, the total number of bytes received.
 In the key buffer, the key value for the last data record examined.

A Get Next Delete Extended operation may fail for the same reasons as other Step and Get Extended
operations, returning one of the following status codes:

If the output buffer length is zero, then no records were deleted. However, the operation may have
succeeded in deleting some records before failing. The following list gives some examples of these partial
successes:

 The output buffer no longer has room to write out the record address for the current record that
matches the filter conditions. That record is not deleted, and the operation fails with status code 22.

 Another client has locked the current record, and the operation fails with status code 84.

In these cases, the output buffer length is greater than zero, and the first two bytes of the buffer give a
count of the number of deleted records.

3 The file is not open.

6 The key number parameter is invalid.

7 The key number has changed.

8 The current positioning is invalid.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

60 The specified reject count has been reached.

61 The work space is too small.

62 The descriptor is incorrect.

64 The filter limit has been reached.

65 The field offset is incorrect.

82 The MicroKernel Engine lost positioning.

134 The MicroKernel Engine cannot read the International Sorting Rule.

135 The specified International Sort Rule table is corrupt or otherwise invalid.

136 The MicroKernel Engine cannot find the specified alternate collating sequence in the file.

85

Depending on the fields and operators used in the filter condition, the MicroKernel Engine may be able
to optimize your request. After reaching a certain rejected record, it returns status code 64, indicating
that no records in the rest of the file can satisfy the filter conditions.

Positioning

The Get Next Delete Extended operation does not establish currency. However, you can do a Get Next
or Get Previous operation, and the next or previous logical position is valid. A valid current position also
becomes available by using Get Position (22) and Get Direct/Record (23).

The following list shows the relationships of selected status codes to filter conditions:

 Status 60 (reject count reached): The current position is a record that does not match the filter
condition.

 Status 64 (filter limit reached): The current position is a record that may not match the filter
condition. Any attempt to step to the next record will not match the filter condition.

 Status 84 (record or page locked): The current position is a record that may not match the filter
condition. It is also possible that the next record matched the filter condition but could not be
deleted because of locking.

 Status 22 (data buffer full): The current position is a record that matches the filter condition, but the
data buffer does not have space to write the record address, so the MicroKernel Engine did not delete
the record.

 Status 9 (end of file): The current position is both logically and physically invalid.

86

Get Next Extended (36)

The Get Next Extended operation (B_GET_NEXT_EXTENDED) examines one or more records,
starting at the logical next position and proceeding toward the end of the file, based on the specified key.
It compares the examined record or records to a filter condition and retrieves those that match. The filter
condition is a logic expression and is not limited to key fields.

Get Next Extended can also extract specified portions of records and return only those to an application.

Parameters

Prerequisites

 The file must be open.
 The file cannot be a data-only file.
 You must have an established logical next position based on the specified key. You can establish

logical positioning by issuing any unextended Get operation, such as a Get Equal.

Procedure

1 Set the operation code to 36. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Specify a data buffer to accommodate either the input structure or the returned output, whichever
is larger. Initialize the data buffer according to the instructions in Table 25.

4 Specify the buffer size as either the length of the input structure in Table 25 or the length of the
returned output in Table 26, whichever is larger.

5 Specify the key value from the previous operation in the key buffer that established logical position.

Pass the key buffer exactly as the MicroKernel Engine returned it on the previous call, since the
information stored there may be needed to determine the current position in the file.

6 Set the key number parameter to the key path used on the previous call that established logical
position. You cannot change key paths using a Get Next Extended operation.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

87

Details

The following topics cover the structure of the extended operation input buffer and use of its filter
segment, as well as the structure of the output buffer that returns the result of the operation.

 Input Buffer for Extended Operations
 Collation of LIKE Results
 Using the JSON QUERY Operator
 Processing of Logical AND and OR in a Filter
 Examples of Filtering Records
 Output Buffer for Extended Operations

Input Buffer for Extended Operations

The following table provides the structure of the extended operation input buffer. This buffer applies to
all extended operations, with differences in usage as noted.

Table 25 Input Buffer for Extended Get and Step Operations

Element Length
(Bytes)

Description

Header 2 Exact length of the input data buffer.

2 One of two string constant values (fixed length, do not null-terminate):
“EG” – Begin with the record after the one at which you are positioned.
“UC” – Begin with the record at which you are positioned.

Filter (Fixed
portion)

2 Maximum reject count, the number of records that do not match the filter that the database
engine can skip. You can set a value from 0 to 65535. Zero means the engine uses 4095
default.

2 Number of terms in the logic expression of the filter. Zero means MicroKernel Engine performs
no filtering. The only limit to the number of terms is the size of the data buffer. In Pervasive.SQL
2000i SP3 only, the limit for the number of terms is 119.

88

Filter (Repeat this
segment once for
each term in the
logic expression)

1 Data type of the field. Use one of the codes shown in table 15.

2 Field length.

2 Field offset (zero relative).

1 Specifies a comparison code:
1 Equal
2 Greater than
3 Less than
4 Not equal
5 Greater than or equal
6 Less than or equal
7 Extended operation code

• Add a +8 bias to compare strings using one of the file’s existing collation sequences.

• Add a +32 bias to compare strings using the file’s default ACS, which is the first ACS defined
in the file. If you use both a +8 bias and a +32 bias, the +32 bias is ignored.

• Add a +64 bias if the second operand is another field of the record, rather than a constant.

• Add a +128 bias to compare strings without case sensitivity.

1 Indicates an AND/OR logic expression:
0 – Identifies the last term
1 – Next term is connected with AND
2 – Next term is connected with OR

1 This field is present only when the comparison code is 7.
1 – LIKE operator
2 – NOT LIKE operator
3 – JSON QUERY operator

2 or n When comparing two fields: a 2-byte, zero-relative offset to the second field. (The second field
must be the same type and length.)
or
When comparing a field to a constant: the actual value of the constant. The length of the
constant (n) must equal the length of the field.
or
When the extended operation code is 7 and the comparison code is 1 (LIKE), 2 (NOT LIKE), or
3 (JSON QUERY), this element has the following structure:
2-byte length specifying the size of the LIKE clause, including a null terminator
Null-terminated string containing the LIKE or NOT LIKE clause or JSON query string
The LIKE or NOT LIKE clause uses the same syntax as LIKE in SQL, such as LIKE %ABC,
with the following notes:

• Only string types can be compared.

• The LIKE clause or JSON query must use the same format and text type as the data to be
compared.

• A single quotation mark does not need to be enclosed in two single quotation marks.

For more information on LIKE syntax, see LIKE in SQL Engine Reference.

0, 9, or
17

When the comparison code is extended operation code 7 (bias +8), the collation field may refer
to an existing ACS, an ISR table name, an ICU collation, or a code page name for the LIKE and
NOT LIKE operators. These options are described under Collation of LIKE Results.

When the comparison code is extended operation code 7 (bias +8), and the JSON QUERY
operator has been specified, this field should not be provided.

Table 25 Input Buffer for Extended Get and Step Operations (Continued)

Element Length
(Bytes)

Description

89

Collation of LIKE Results

In operations that specify the comparison code as extended operation code 7 (bias +8), the collation field
may refer to an existing ACS, ISR table, ICU collation, or code page, as shown in the following table. The
format is the signature byte followed by the name.

Using the JSON QUERY Operator

The JSON QUERY operator can be used to filter records that contain data stored as JSON strings. In the
record the string data may be stored as ZSTRING or CLOB data types. The filter element must contain
the comparison constant as a string that specifies the filter conditions that JSON data in a record must
satisfy. This string, also called a JSON query, is itself specified using JSON as shown in the examples
given here.

The JSON QUERY operator does not currently support a code page, ACS, or collation. The encoding of
the ZSTRING or CLOB data field can be a single-byte Windows ANSI code page or UTF-8.

When you use the JSON QUERY operator, the comparison constant that you specify under the filter
term must be a valid JSON query, using JSON syntax as shown in the following example. It must be null-
terminated. If the filter string is not in proper JSON format, then the extended operation fails with status
code 62 for an incorrect descriptor.

When you use the JSON QUERY operator, if the field of the record to compare against does not follow
the JSON specification, the record is treated as failing to meet the filter condition.

Descriptor (Fixed
portion)

2 Number of records to retrieve. To retrieve only one record instead of a set of records, specify 1.

In the case of Delete operations, the number of records to delete.

2 Number of fields to extract from each record. For Delete operations, set to zero.

Descriptor
(Repeat this
segment for each
extracted field)

2 Field length to extract. Not used for Delete operations.

2 Field offset (zero relative). Not used for Delete operations.

Note: If field length = 0xFF08 and offset = 0xFFFE (–2), then the 8-byte syskey associated with
the record is returned if it has been defined. If field length = 0xFF04 and offset = 0xFFFD (–3),
then the 4-byte record length, including variable-length data, is returned.

Type Total
Length
(Bytes)

Signature
Byte

Name
Length
(Bytes)

Description

ACS 9 0xAC 8 Unique 8-byte name that identifies the ACS to the MicroKernel Engine. Only
existing ACS definitions can be used.

ISR 17 0xAE 16 Unique 16-byte name that identifies the ISR table to the MicroKernel
Engine. See Zen Programmer’s Guide for a list of ISR table names.

ICU 17 0xAE 16 Name a supported ICU collation, either u54-msft_enus_0 or root. You must
fill with spaces to 16 bytes.

Code page 17 0xAB 16 Name of a supported code page. You must fill with spaces to 16 bytes.

Table 25 Input Buffer for Extended Get and Step Operations (Continued)

Element Length
(Bytes)

Description

90

JSON Query Examples

The following example shows the syntax required for JSON filtering.
query := {} | { expression, ... }
expression :=
 "$and" : [{ expression }, { expression } ...]
 "$or" : [{ expression }, { expression } ...]
 "$not" : { expression }
 field : value
 field : { "$eq" : value }
 field : { "$exists" : false | true }
 field : { "$gt" : value }
 field : { "$gte" : value }
 field : { "$in" : [value, value ...] }
 field : { "$lt" : value }
 field : { "$lte" : value }
 field : { "$ne" : value }
 field : { "$nin" : [value, value ...] }
 field : { "$type" : <string> }
 field := <string>
value := false | true | NULL | <string> | <number> | <array>

In another example, derived from the Bureau of Transportation Statistics data, records of airline flight
data in JSON format could have fields resembling the following:
{
 "airport_code" : "ATL",
 "carrier_code" : "AA"
 ...
}

To search for records that refer to American Airlines (AA) at Hartsfield-Jackson Atlanta International
Airport (ATL), you could use the following query string:
{ "$and" : [{ "airport_code" : { "$eq" : "ATL" } },
 { "carrier_code" : { "$eq" : "AA" } }] }

Note the use of JSON format for query string. JSON validation tools may be helpful for checking syntax.

Processing of Logical AND and OR in a Filter

The MicroKernel Engine interprets AND and OR operators in a filter with extended operations in strict
left-to-right order. It evaluates an expression in the filter and proceeds as follows:

 If the expression is true when applied to the current record and the next operator is OR, the engine
accepts this record as meeting the filter condition.

 If the expression is true and the next operator is AND, the engine continues to evaluate each
expression until one of the following situations occurs:
 The engine reaches an OR expression.
 One of the expressions evaluates to false.
 The engine reaches the end of the filter.

 If the expression is false and the next operator is OR, the engine continues and evaluates the next
expression in the filter.

 If the expression is false and the next operator is AND, the engine rejects the record.

The search for records stops if any one of the following conditions is met:

91

 The engine finds the requested number of records that satisfy the filter.
 While the engine searches for records to satisfy the filter condition, the number of records it

examines exceeds the Maximum Reject Count you specify.
 The current key path is used as a filtering field and the engine reaches a rejected record after which

no records can satisfy the filter condition in the rest of the file.
 The engine reaches the end of the file.

Examples of Filtering Records

To get the next entire record that satisfies the filter condition, set the filter portion and then set the
descriptor fields as follows:

1 Set the Number of Records to 1.

2 Set the Number of Fields to 1.

3 Set the Field Length to the length of the entire record to retrieve.

4 Set the Field Offset to 0.

To retrieve the next 12 records without using a filter condition and extract 4 fields from each record, set
the filter Number of Terms to 0 and set the descriptor fields as follows:

1 Set the Number of Records to 12.

2 Set the Number of Fields to 4.

3 Set the Field Length and Field Offset parameters for each of the 4 fields extracted.

Output Buffer for Extended Operations

When you retrieve one or more fields or portions of records with an extended Get or Step operation, you
must make sure that the data buffer can hold the information the operation returns. The following table
shows the structure of the returned output buffer.
Table 26 Output Buffer for Extended Get and Step Operations

Element Length
(Bytes)

Description

Number of Records 2 For Get and Step operations, number of records returned. For deleted records, number
removed.

Repeating portion (one for each record retrieved)

Length 0 2 Length of first record image retrieved, all fields combined. For Delete operations, it is zero.

Position 0 4 or 8 Physical currency (address) of first record retrieved. For deleted records, address of the first
record removed. Size depends on type of entry point: 4 for BTRV or 8 for BTRVEX.

Record 0 n Image of first record, all fields combined. Not used for Delete operations.

. . . (Repeated portions for each record)

Length x 2 Length in bytes of the last record image, all fields combined. For Delete operations, it is zero.

Position x 4 or 81 Physical currency (address) of the last record retrieved or deleted.

Record x n Image of last record retrieved, all fields combined. Not used for Delete operations.

92

If all returned records or fields of records are fixed length, your application can simply calculate the
location of data within the returned data buffer. However, your application may need to perform extra
steps to extract the variable-length portion of records from the data buffer that an extended operation
returns.

The MicroKernel Engine does not pad any record image in the returned data buffer when returning the
variable-length portion of a record. Consequently, if you allow room in the returned data buffer for the
maximum number of bytes that the variable-length portion of a record could occupy, but the actual data
returned is less than that maximum, the MicroKernel Engine starts the field description for the next
returned field immediately following the data for the current field.

For example, assuming an entry point using 4-byte record addresses, suppose your fixed-record length
is 100 bytes, your variable-length portion is up to 300 bytes, and you want to return just the variable-
length portion of 5 records. You would use the descriptor element of the input buffer to set a Field Length
of 300 and a Field Offset of 100. For the returned buffer, you need 2 bytes for the Number of Records +
306 bytes for each record (that is, 2 bytes for the length, 4 bytes for the address, and 300 bytes for the
data), as shown in the following calculation:

2 + ((2 bytes + 4 bytes + 300 bytes) * 5) = 1532 bytes

However, suppose that the variable-length portion of the first record returned contains only 50 bytes of
data. This means the 2-byte length for the second record returned is stored at offset 58 in the data buffer,
immediately following the image of the first record’s field. In such a situation, your application must
parse the length, position, and data from the data buffer that the MicroKernel Engine returns.

Result

If the Get Next Extended operation succeeds, the MicroKernel Engine returns the following:

 In the output buffer, one or more fields from one or more records. For details, see Output Buffer for
Extended Operations.

 In the output buffer length, the total number of bytes received.
 In the key buffer, the key value for the last data record received.

If the Get Next Extended operation fails, the MicroKernel Engine returns one of the following status
codes:

3 The file is not open.

6 The key number parameter is invalid.

7 The key number has changed.

8 The current positioning is invalid.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

60 The specified reject count has been reached.

61 The work space is too small.

62 The descriptor is incorrect.

64 The filter limit has been reached.

93

The MicroKernel Engine can return a nonzero status code and also valid data, but the last record
returned is incomplete. If the buffer length returned is greater than 0, check the buffer for extracted data.

If a field can be only partially filled because the record is too short, then the MicroKernel Engine returns
what it can of the record up to and including the partial field. If the partial field is the last field to extract,
then the engine continues the operation. Otherwise, it aborts the operation with status code 22.

For example, a Get Next Extended operation retrieves three fields from two variable-length records, the
first record 55 bytes long, the second 50 bytes. The output buffer allows 50 bytes for return data. The
three fields to be retrieved are defined as follows:

 Field 1 begins at offset 2 and is 2 bytes long.
 Field 2 begins at offset 45 and is 10 bytes long.
 Field 3 begins at offset 6 and is 2 bytes long.

When the MicroKernel Engine performs the Get Next Extended operation, it returns the first record
without any problem. However, when it attempts to extract the 10 bytes of field 2, the MicroKernel
Engine finds only 5 bytes available, between offset 45 and the end of the record at offset 49. At this point,
the MicroKernel Engine does not pad the missing 5 bytes of field 2 and thus cannot extract field 3.
Instead, it returns status code 22 and places all of field 1 and the first 5 bytes of field 2 in the return data
buffer.

Depending on the fields and operators used in the filter condition, the MicroKernel Engine may be able
to optimize your request. After reaching a certain rejected record, it returns status code 64, indicating
that no records in the rest of the file can satisfy the filter conditions.

Positioning

The Get Next Extended operation establishes the complete logical and physical currencies. The last
record examined becomes the current record. This record can be either a record that satisfies the filter
condition and is retrieved, or a record that does not satisfy the filter condition and is rejected, but is still
not past the optimization limit. For example, if the extended operation returns status 9 (end of file), the
current record is that last record in the file. If status 60 (reject count reached) is returned, then the
current record is the last record rejected. If status 64 (filter limit reached) is returned, then the current
record is the last one that satisfies the optimization criteria. Even though the MicroKernel Engine had to
look at the next record after this to determine that the optimization limit was exceeded, it sets the current
record back to the previous record that satisfied the criteria.

65 The field offset is incorrect.

82 The MicroKernel Engine lost positioning.

134 The MicroKernel Engine cannot read the International Sorting Rule.

135 The specified International Sort Rule table is corrupt or otherwise invalid.

136 The MicroKernel Engine cannot find the specified alternate collating sequence in the file.

94

Get Position (22)

The Get Position operation (B_GET_POSITION) returns the physical position of the current record.
Get Position fails if there is no established physical currency when you issue the operation. Once you
determine a record’s position (address), you can use Get Direct/Record (23) to retrieve that record
directly by its physical location in the file. The MicroKernel Engine does not perform any disk I/O to
process a Get Position request.

Parameter

Prerequisites

 The file must be open.
 Your application must have established physical currency.

Procedure

1 Set the operation code to 22.

2 Pass the position block for the file.

3 Set the data buffer length to at least 4 bytes. A minimum of 8 bytes is needed if you are using the
BTRVEX entry point.

4 Set the key number to 0.

Result

If the Get Position operation succeeds, the MicroKernel Engine returns the position of the record in the
data buffer. The position is a binary value that indicates the offset of the record in the file. The
MicroKernel Engine also sets the data buffer length to 4 bytes for BTRV type entry points or 8 bytes for
BTRVEX type entry points.

If the Get Position operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Get Position operation has no effect on positioning.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

3 The file is not open.

8 The current positioning is invalid.

137 The operation with this access method is incompatible. API mismatch.
The record address cannot be stored in 4 bytes.

95

Get Previous (7)

The Get Previous operation (B_GET_PREVIOUS) retrieves the record in the logical previous position
based on a specified key. You can use the Get Previous operation to retrieve a record within a group of
records that have duplicate key values. You can use the Get Key (+50) bias to detect the presence of a
value in a file. A Get Key operation is generally faster.

Parameters

Prerequisites

 The file must be open.
 The file cannot be a data-only file.
 Your application must have established a logical previous position based on the specified key.

Procedure

1 Set the operation code to 7. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Set the data buffer length to a value greater than or equal to the length of the record you want to
retrieve.

4 Specify the key value from the previous operation in the key buffer that established logical position.

Pass the key buffer exactly as the MicroKernel Engine returned it on the previous call, since the
information stored there may be needed to determine the current position in the file.

5 Set the key number parameter to the key path used on the previous call that established logical
position. You cannot change key paths using a Get Previous operation.

Result

If the Get Previous operation succeeds, the MicroKernel Engine updates the key buffer with the key
value for the previous record, returns the previous record in the data buffer, and returns the length of the
record in the data buffer length parameter.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

96

If the Get Previous operation fails, the MicroKernel Engine returns one of the following status codes:

This operation returns status code 9 if the logical previous position points beyond the beginning of the
file.

Positioning

The Get Previous operation establishes the complete logical and physical currencies and makes the
retrieved record the current one.

3 The file is not open

6 The key number parameter is invalid

7 The key number has changed

8 The current positioning is invalid

9 The operation encountered the end-of-file

22 The data buffer parameter is too short

82 The MicroKernel Engine lost positioning

97

Get Previous Delete Extended (86)

The Get Previous Delete Extended operation (B_GET_PREV_EXT_DELETE) examines one or more
records, starting at the logical previous position and proceeding toward the beginning of the file, based
on the specified key. It compares the examined record or records to a filter condition and retrieves those
that match. The filter condition is a logic expression and is not limited to key fields.

As noted under this topic, this operation uses the same input and output buffer structures and returns
the result described under Get Next Extended (36). See that operation for more information.

Parameters

Prerequisites

 The file must be open.
 The file cannot be a data-only file.
 You must have an established logical previous position based on the specified key.

Procedure

1 Set the operation code to 86.

By default, the lock bias is no-wait, and any lock bias setting is ignored. Behavior is identical to +500:
If the engine cannot delete a locked record, it returns immediately without retrying the operation.

2 Pass the position block for the file.

3 Specify a data buffer to accommodate either the input structure or the returned output, whichever
is larger. Initialize the data buffer according to the instructions in Table 25.

4 Specify the buffer size as either the length of the input structure in Table 25 or the length of the
returned output in Table 26, whichever is larger.

5 Specify the key value from the previous operation in the key buffer that established logical position.

Pass the key buffer exactly as the MicroKernel Engine returned it on the previous call, since the
information stored there may be needed to determine the current position in the file.

6 Set the key number parameter to the key path used on the previous call that established logical
position. You cannot change key paths using a Get Previous Delete Extended operation.

Details

The following topics under Get Next Extended (36) cover the structure of the extended operation input
buffer and use of its filter segment, as well as the structure of the output buffer that returns the result:

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

98

 Input Buffer for Extended Operations
 Output Buffer for Extended Operations

Result

This operation returns the same result as Get Next Delete Extended (85). See that operation for more
information.

Positioning

The Get Previous Delete Extended operation does not establish currency. However, you can do a Get
Next or Get Previous operation, and the next or previous logical position is valid. A valid current
position also becomes available by using Get Position (22) and Get Direct/Record (23).

The following list shows the relationships of selected status codes to filter conditions:

 Status 60 (reject count reached): The current position is a record that does not match the filter
condition.

 Status 64 (filter limit reached): The current position is a record that may not match the filter
condition. Any attempt to step to the next or previous record will not match the filter condition.

 Status 84 (record or page locked): The current position is a record that may not match the filter
condition. It is also possible that the next record matched the filter condition but could not be
deleted because of locking.

 Status 22 (data buffer full): The current position is a record that matches the filter condition, but the
data buffer does not have space to write the record address, so the MicroKernel Engine did not delete
the record.

 Status 9 (end of file): The current position is both logically and physically invalid.

99

Get Previous Extended (37)

The Get Previous Extended operation (B_GET_PREV_EXTENDED) examines one or more records,
starting at the logical previous position and proceeding toward the beginning of the file, based on the
specified key. It compares the examined record or records to a filter condition and retrieves those that
match. The filter condition is a logic expression and is not limited to key fields.

Get Previous Extended can also extract specified portions of records and return only those portions to
an application.

As noted under this topic, this operation uses the same input and output buffer structures and returns
the result described under Get Next Extended (36). See that operation for more information.

Parameters

Prerequisites

 The file must be open.
 The file cannot be a data-only file.
 You must have an established logical previous position based on the specified key.

Procedure

1 Set the operation code to 37. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Specify a data buffer to accommodate either the input structure or the returned output, whichever
is larger. Initialize the data buffer according to the instructions in Table 25.

4 Specify the buffer size as either the length of the input structure in Table 25 or the length of the
returned output in Table 26, whichever is larger.

5 Specify the key value from the previous operation in the key buffer that established logical position.

Pass the key buffer exactly as the MicroKernel Engine returned it on the previous call, since the
information stored there may be needed to determine the current position in the file.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

100

6 Set the key number parameter to the key path used on the previous call that established logical
position. You cannot change key paths using a Get Previous Extended operation.

Details

This operation uses the same input and output buffers as Get Next Extended (36). See that operation for
more information.

Result

This operation returns the same result as Get Next Extended (36). See that operation for more
information.

Positioning

The Get Previous Extended operation establishes the complete logical and physical currencies. The last
record examined becomes the current record. This record can be either a record that satisfies the filter
condition and is retrieved, or a record that does not satisfy the filter condition and is rejected.

101

Insert (2)

The Insert operation (B_INSERT) inserts a record into a file. The MicroKernel Engine adjusts the
B-trees for the keys to reflect the key values for the new record.

Parameters

Note When using the no-currency-change (NCC) option, the Insert operation does not update the
value of the key buffer parameter. It does not return any information in that parameter.

Prerequisites

 The file must be open.
 The record to be inserted must be the proper length, and the key values must conform to the keys

defined for the file.

Procedure

1 Set the operation code to 2.

2 Pass the position block for the file.

3 In the data buffer, store the record to be inserted.

4 Specify the data buffer length. This value must be at least as long as the fixed-length portion of the
record.

5 Specify the key number that the MicroKernel Engine uses to establish positioning information
(currency). To use the NCC option, specify –1 for the key number. To use the system-defined log
key (also called system data), specify 125. To use the second system key for system data v2, specify
124.

Result

If the Insert operation succeeds, then the MicroKernel Engine places the new record in the file, updates
the B-trees for the keys to reflect the new record, and returns the value of the specified key in the key
buffer. If you insert a record that contains an autoincrement key value initialized to binary 0, the
MicroKernel Engine also returns the inserted record in the data buffer, including the autoincrement
value assigned by the MicroKernel Engine. An NCC Insert operation does not change the value of the
key buffer parameter.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

102

If the Insert operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

An Insert operation that does not specify the NCC option establishes the complete logical and physical
currencies and makes the inserted record the current one. The logical currency is based on the specified
key.

An NCC Insert operation establishes physical currency without affecting logical currency. This means
that an application, having performed an NCC Insert operation, has the same logical position in the file
as it had prior to the Insert operation. In such a situation, operations that follow an NCC Insert – such
as Get Next (6), Get Next Extended (36), Get Previous (7), and Get Previous Extended (37) – return
values based on the application’s logical currency before the NCC Insert.

Note The MicroKernel Engine does not return any information in the key buffer parameter as the
result of an NCC Insert operation. Therefore, an application that must maintain the logical currency
must not change the value of the key buffer following the NCC Insert operation. Otherwise, the next
Get operation has unpredictable results.

The MicroKernel Engine establishes the physical currency to a newly inserted record for both the
standard Insert and the NCC Insert operations. Operations following an NCC Insert operation – such
as Step Next (24), Step Next Extended (38), Step Previous (35), Step Previous Extended (39), Update (3),
Delete (4), and Get Position (22) – operate based on the new physical currency.

2 The application encountered an I/O error.

3 The file is not open.

5 The record has a key field containing a duplicate key value.

18 The disk is full.

21 The key buffer parameter is too short.

22 The data buffer parameter is too short.

103

Insert Extended (40)

The Insert Extended operation (B_EXT_INSERT) inserts one or more records into a file. The
MicroKernel Engine adjusts the B-trees for the keys to reflect the key values for the new records.

Parameters

Note When using the no-currency-change (NCC) option, the Insert Extended operation does not
update the value of the key buffer parameter. It does not return any information in that parameter.

Prerequisites

 The file must be open.
 The records to be inserted must be the proper length, and the key values must conform to the keys

defined for the file.

Procedure

1 Set the operation code to 40.

2 Pass the position block for the file.

3 Specify the data buffer according to the structure shown in Table 27.

4 Specify the data buffer length. This value must be exactly the size of the data buffer structure.

5 Specify the key number that the MicroKernel Engine uses to establish currency. To use the NCC
option, specify –1 for the key number. To use the system-defined log key (also called system data),
specify 125. To use the second system key for system data v2, specify 124.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

104

Details

The following table shows the structure of the input data buffer.

Result

If the Insert Extended operation succeeds, the MicroKernel Engine places the new records in the file,
updates all B-trees to reflect the new records inserted if it is not an NCC Insert Extended operation,
returns in the key buffer the value of the specified key from the last record inserted. In addition, in the
first 2- or 4-byte unsigned integer of the returned data buffer, the MicroKernel Engine places the number
of records successfully inserted into the file. Following the count, the MicroKernel Engine stores the
record addresses of the inserted records. The following table shows the structure of the output data
buffer.

If the operation is only partially successful and the MicroKernel Engine returns a nonzero status code,
the first 2- or 4-byte unsigned integer of the data buffer equals the number of records that were
successfully inserted. The record that caused the error is the number of records that were successfully
inserted plus one.

If Insert Extended is unsuccessful, the MicroKernel Engine returns one of the following status codes:

Table 27 Input Data Buffer Structure for the Insert Extended Operation

Element Length
(Bytes)

Description

Fixed portion 2 or 41 Number of records inserted.

Repeating portion (one for each record)

2 or 41 Length of the record image.

n Record image.

1Size depends on whether you use BTRV or BTRVEX type entry points.

Table 28 Output Data Buffer Structure for the Insert Extended Operation

Element Length
(Bytes)

Description

Fixed portion 2 or 41 Number of records inserted.

Repeating portion (one for each record)

4 or 81 Record address.

1Size depends on whether you use BTRV or BTRVEX type entry points.

2 The application encountered an I/O error.

3 The file is not open.

5 The record has a key field containing a duplicate key value.

18 The disk is full.

105

Positioning

An Insert Extended operation that does not specify the NCC option establishes the complete logical and
physical currencies and makes the last inserted record the current one, unless the key value of the
inserted record is null. The logical currency is based on the specified key.

An NCC Insert Extended operation establishes physical currency without affecting logical currency.
This means that an application, having performed an NCC Insert Extended operation, has the same
logical position in the file as it had prior to the operation. In such a situation, operations that follow an
NCC Insert Extended operation – such as Get Next (6), Get Next Extended (36), Get Previous (7), and
Get Previous Extended (37) – return values based on the application’s logical currency prior to the NCC
Insert Extended operation.

Note The MicroKernel Engine does not return any information in the key buffer parameter as the
result of an NCC Insert Extended operation. Therefore, an application that must maintain the logical
currency must not change the value of the key buffer following the NCC Insert Extended operation.
Otherwise, the next Get operation has unpredictable results.

The MicroKernel Engine establishes the physical currency to a newly inserted record for both the
standard Insert Extended and the NCC Insert Extended operations. Therefore, operations following an
NCC Insert Extended operation – such as Step Next (24), Step Next Extended (38), Step Previous (35),
Step Previous Extended (39), Update (3), Delete (4), and Get Position (22) – operate based on the new
physical currency.

An NCC Insert Extended operation is useful when an application must save its logical position in the file
prior to executing the Insert Extended operation in order to perform another operation based on the
original logical currency, such as a Get Next (6)operation.

To achieve this effect without an NCC Insert Extended operation, your application would have to
execute the following steps:

1 Get Position (22) – Obtains the physical address for the logical current record. The application saves
this value and passes it back in Step 3.

2 Insert Extended (40) – Inserts the new records. This operation establishes new logical and physical
currencies.

3 Get Direct/Record (23) – Reestablishes logical and physical currencies as they were in Step 1.

The NCC Insert Extended operation has the same effect in terms of logical currency, but can have a
different effect in terms of physical currency. For example, executing Get Next (6) after either procedure
produces the same result, but executing Step Next (24) might return different records.

21 The key buffer parameter is too short.

22 The data buffer parameter is too short.

106

Login/Logout (78)

The Login/Logout operation (B_LOGIN/B_LOGOUT) allows a user to specify his/her user credentials
and obtain authentication and authorization tokens from the database engine. This operation also allows
the user to reset his/her login credentials so that they must be entered again to gain access to the
database.

Parameters

Prerequisites

 The database name and the user ID must be predefined.

Login Procedure

1 Set the operation code to 78.

2 Set the key number to 0.

3 Place the server name, database name, user ID, and password in the key buffer in the form of a
database URI. For details about URI connection strings, see Database URIs in Zen Programmer’s
Guide.

Logout Procedure

1 Set the operation code to 78.

2 Set the key number to 1.

3 Place the server name, database name, user ID, and password in the key buffer in the form of a
database URI. (In Zen Programmer’s Guide, see Database URIs.)

Result

If the Login or Logout operation succeeds, the database engine returns status 0. Otherwise, one of the
following status codes may be returned:

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

1 Invalid operation

172 Database name not found

3103 Unknown server

107

Notes

The combined length of the database URI must be less than 255 bytes. This is due to the maximum size
of the key buffer.

The Login operation has a performance cost. You should not code applications to login and logout on
every file. Instead, login once to a database at the beginning of a session, then logout when the database
work is complete.

Positioning

The Login/Logout operation has no effect on any file currency information.

108

Open (0)

The Open operation (B_OPEN) makes a file available for access. To access a file, your application must
first perform an Open operation. The file does not have to reside in the current directory as long as you
specify the full or relative path name.

Parameters

Prerequisites

 The file to be opened must exist on an accessible logical disk drive.
 A file handle must be available for the file.

Procedure

1 Set the operation code to 0.

2 If the file has an owner, specify the owner name, terminated by a binary 0, in the data buffer
parameter.

3 Specify the length of the owner name, including the binary 0 in the data buffer length parameter.

Place the path name of the file to open in the key buffer parameter. Terminate the path name with a
NULL (binary zero) depending on the setting for embedded spaces. The path name can be up to 255
bytes. Any fully-qualified Unified Naming Convention (UNC) path name including the null
terminator can be up to 255 bytes long.

The MicroKernel Engine normally expands the file name to a fully-qualified UNC file name. For
example, Z:\Data\File.dat would be converted to \\Servername\ShareName\Data\File.dat. This
expanded name must fit into 255 bytes including the null terminator. See also Database URIs in Zen
Programmer’s Guide.

However, if the Btrieve Open request is sent to a local engine, the MIF will not replace the local drive
letter with the computer and share name. Even though a file with a longer path name may be
successfully opened locally, remote clients may not be able to open the file.

In client configurations, the Embedded Spaces setting enables support for file names with embedded
spaces. By default this setting is on, which means spaces are considered part of the path. When the
setting is on, a NULL byte must delimit the file name. When the setting is off, you cannot use file
names that contain embedded spaces (such as C:\My Folder\my file.mkd). See Long File Names and
Embedded Spaces Support in Advanced Operations Guide.

For details about path names supported by Zen clients, see Network Path Formats Supported by Zen
Requesters in Getting Started with Zen.

4 In the key number parameter, specify one of the mode values listed in Table 29.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

109

Details

This section describes the open modes that are supported.

Caution The database engine cannot guarantee transaction atomicity, transaction durability, or
archival log safety for any client during use of Accelerated mode by any client. The reason for this
restriction is that in the event a restore from log is needed, the log may not contain adequate
information to complete the restore, because it is only a partial record of operations on a data file.

For example, if a system failure occurs while the same file is being accessed by a client performing
inserts using Accelerated mode and a client performing updates using Normal mode, it is possible
for the transaction log to contain updates to records that do not yet exist in the data files, since the
Accelerated insert operation in memory was never flushed to disk, while the transactional update
operation was written to the transaction log.

An attempt to roll forward an archival log containing this combination of operations will fail.

When you open a file, you can instruct the MicroKernel Engine through the open mode to use either a
local or remote engine. You specify the open mode in the key number parameter.

Note The Open operation makes no distinction between workstation, workgroup, and server
engines when you specify that the local engine should open the file.

Table 29 Open Modes

Description No
preference

Force local
engine

Force remote
engine

Normal 0 6 99

Accelerated
To improve performance on specific files, you can open a file in Accelerated
mode. (The 6.x MicroKernel Engine accepted accelerated mode opens, but
interpreted them as normal opens.) When you open a file in Accelerated
mode, the MicroKernel Engine does not perform transaction logging on the
file. See the caution above.

–1 7 100

Read-Only
When you open a file in read-only mode, you can only read the file. You
cannot perform updates. This mode allows you to open a file with corrupt
data that the MicroKernel Engine cannot automatically recover. If data in the
file’s indexes has been corrupted, you can retrieve the records by opening
the file in read-only mode and then using Step Next (24).

–2 8 101

Writable
If the MicroKernel Engine cannot open a file for writing, then the writable
mode returns an error. One common scenario is a file without file system
write permission.

–3 9 102

Exclusive
Exclusive mode gives an application exclusive access to a file. No other
application can open that file until the application that has exclusive access
to the file closes it.

–4 10 103

110

There is no fixed limit on the maximum number of open files. The number of files that can be opened
at once depends on the available memory.

A file is opened only once by the MicroKernel Engine. The engine recognizes and handles the situation
in which more than one client at a time opens a file, or where a single client has more than one position
block in the file. When you open an extended file, the engine uses a single handle and opens the base file
and all extension files.

Result

If the Open operation succeeds, the MicroKernel Engine assigns a file handle to the file, reserves the
position block passed on the Open call for the newly opened file, and makes the file available for access.

If the Open operation fails, the MicroKernel Engine returns one of the following status codes:

The following table shows open modes involving local clients.

2 The application encountered an I/O error.

11 The specified file name is invalid.

12 The MicroKernel Engine cannot find the specified file.

20 The MicroKernel Engine or Btrieve Requester is inactive.

46 Access to the requested file is denied.

84 The record or page is locked.

85 The file is locked.

86 The file table is full.

87 The handle table is full.

88 The application encountered an incompatible mode error.

Table 30 Open Mode Combinations for Local Clients

Open Mode for
Local Client 1

Open Mode for
Local Client 2

Result

Normal/Writable Normal Successful

Writable Successful

Read-Only Successful

Exclusive Status code 88

Accelerated Successful

Read-Only Normal Successful

Writable Successful

Read-Only Successful

Exclusive Status code 88

111

Positioning

An Open operation does not establish any positioning except that the physical next record becomes the
first physical record of the file.

Accelerated Successful

Exclusive Normal Status code 88

Writable Status code 88

Read-Only Status code 88

Exclusive Status code 88

Accelerated Status code 88

Accelerated Normal Successful

Writable Successful

Read-Only Successful

Exclusive Status code 88

Accelerated Successful

Table 30 Open Mode Combinations for Local Clients

Open Mode for
Local Client 1

Open Mode for
Local Client 2

Result

112

Reset (28)

The Reset operation (B_RESET) releases all resources held by a client. This operation aborts any
transactions the client has pending, releases all locks, and closes all open files for the client.

Parameters

Prerequisites

Your application can issue a Reset operation at any time after the MicroKernel Engine or Requester is
loaded, as long as the client issuing the Reset call has established a connection with the MicroKernel
Engine – for example, by opening a file or by requesting the status of a file using a Zen tool.

Procedure

1 Set the operation code to 28.

2 Set the key number and key buffer to 0.

Result

If the Reset operation succeeds, the MicroKernel Engine performs the following actions for the specified
client, window, or session:

1 Aborts any active transactions.

2 Releases all locks held.

3 Closes all open files.

If the Reset operation fails, the MicroKernel Engine returns a nonzero status code.

Positioning

The Reset operation destroys all currencies because it closes any open files.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

113

Set Directory (17)

The Set Directory operation (B_SET_DIR) sets the current directory to a specified path name.

Parameters

Prerequisites

The target logical disk drive and directory must be accessible.

Procedure

1 Set the operation code to 17.

2 Store the logical disk drive and directory path, terminated by a binary 0, in the key buffer. If you omit
the drive name, the MicroKernel Engine uses the default drive. If you do not specify the complete
path for the directory, the MicroKernel Engine appends the directory path specified in the key buffer
to the current directory.

For details about path names supported by Zen clients, see Network Path Formats Supported by Zen
Requesters in Getting Started with Zen.

Result

If the Set Directory operation succeeds, the MicroKernel Engine makes the directory specified in the key
buffer the current directory.

If the Set Directory operation fails, the MicroKernel Engine leaves the current directory unchanged and
returns a nonzero status code.

Positioning

The Set Directory operation has no effect on positioning.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

114

Set Owner (29)

The Set Owner operation (B_SET_OWNER) assigns an owner name to a file, which serves as an access
password. If a file is given an owner name, users or applications must provide that string each time they
access the file. You can specify that an owner name be required for any access or only for update
privileges. Owner names are in ASCII and in the case of long owner names can also be hexadecimal. For
more information, see Owner Names in Advanced Operations Guide.

When you assign an owner name, you can also direct the MicroKernel Engine to encrypt the file data on
the disk. If you do so, the MicroKernel Engine encrypts all data during the Set Owner operation.
Performance may be affected, since the longer the file, the more time Set Owner takes to execute.

Parameters

Prerequisites

 The file must be open.
 No transactions can be active.
 The file cannot already have an owner name.

Procedure

1 Set the operation code to 29.

Optionally, you can include a bias of +17000 to create a long owner name up to 24 bytes in length.
This bias is also defined in btrconst.h as B_LONG_OWNER_NAME_BIAS.

2 Pass the position block that identifies the file to protect.

3 Store the owner name in both the data buffer and the key buffer. The MicroKernel Engine requires
that the name be in both buffers to avoid accidentally providing an incorrect value.

If the +17000 bias is not set, a short owner name can be up to 8 bytes long and must end with a binary
0. If the +17000 bias is set, a long owner name can be used and must end with a binary 0. In either
case, the owner name cannot consist of all spaces (0x20). The length of a long owner name depends
on the file format. For more information, see Owner Names.

4 Set the length of the owner name, including the binary 0, in the data buffer length parameter.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

115

5 Set the key number to an integer that specifies the type of access restrictions and encryption for the
file. The following table lists the four key numbers and their results.

Details

Once you specify an owner name, it remains in effect until you issue a Clear Owner (30) operation. The
table above lists the access restriction codes you can set for the key number.

Result

If the Set Owner operation succeeds, the MicroKernel Engine prevents future operations from accessing
or modifying the file unless those operations specify the correct owner name. The only exception is if
read-only access is allowed without an owner name.

In addition, if the Set Owner operation succeeds, the MicroKernel Engine encrypts the data in the file if
encryption is specified. Encryption begins immediately. The MicroKernel Engine has control until the
entire file is encrypted.

Regarding performance, it is helpful to note that the MicroKernel Engine decrypts an encrypted page
when it loads it from the disk and encrypts it before writing it to the disk again. Reading data from an
encrypted file is slower than reading data from an unencrypted file. Also, the larger the file, the longer
it takes to encrypt or decrypt. In an encrypted file scenario, if you have a small cache or use a relatively
large number of modification operations, the MicroKernel Engine must execute the encryption routine
more frequently.

If the Set Owner operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Set Owner operation has no effect on positioning.

Code Description

0 Requires an owner name for any access mode (no data encryption).

1 Permits read-only access without an owner name (no data encryption).

2 Requires an owner name for any access mode (with data encryption).

3 Permits read-only access without an owner name (with data encryption).

41 The MicroKernel Engine does not allow the attempted operation.

50 An owner name is already set.

51 The submitted owner name is invalid.

116

Stat (15)

The Stat operation (B_STAT) uses the data buffer to retrieve statistics about the file specification, such
as the number of records it contains, the number of unique key values stored for each of its indexes, its
number of empty pages, and any alternate collating sequences (ACS). New keys and ACS values may
have been added since the file was created. Since you must account for this new information, you may
not be able to reuse the original data buffer size that was used for the Create (14) operation.

Parameters

Prerequisites

The file must be open.

Procedure

1 Set the operation code to 15.

2 Pass the position block for the file.

3 Indicate a data buffer to hold the statistics defined for the file.

4 Specify the data buffer length, which must be long enough to hold the file statistics.

5 Specify a key buffer at least 255 characters long.

6 Set the key number as follows:

 0 to exclude file version
 –1 to include file version

Details

Because Create (14) and Stat (15) use the same data buffer structure, they are documented together
under Create (14) with the slight differences noted.

File Specifications

The File Specification fields in the returned data buffer are the same as those described for Create (14),
with the following exceptions in the File Specification area:

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

117

 If the data buffer includes file version information, the Number of Indexes is 1 byte long and is
followed by a 1-byte File Version Number. Do not translate the File Version Number value to
decimal. A value of 0x95 indicates that the file is a 9.5 file, a value of 0x80 indicates that the file is
8.x, and so on. When creating a file, the MicroKernel Engine assigns a version number according to
these attributes.

 The Number of Records is a 4- or 8-byte value representing the number of records in the file.
 In the File Flags word, Bits 9(0x0200) and 12 (0x1000) have the following meaning:

Stat does not indicate whether system data was included by default or explicitly.

 Number of Unused Duplicate Pointers indicates how many unused duplicate pointers remain in the
file.

 The reserved areas are allocated even though the MicroKernel Engine ignores them on a Stat
operation.

Key Specifications

The Key Specification fields in the returned data buffer are the same as those described in Table 14,
except that a 4- or 8-byte Number of Unique Key Values indicates the number of records that have a
unique, nonduplicate value for the specified key.

Alternate Collating Sequences

The alternate collating sequences (ACS) in the returned data buffer are the same as those described
under Create (14).

Result

If the Stat operation succeeds, the MicroKernel Engine returns the file and key characteristics to the data
buffer and the length of the data buffer in the data buffer length. If the file is an extended file, the
MicroKernel Engine returns the file name of the first extension file in the key buffer. If the file name of
the first extension file is longer than 63 bytes, the MicroKernel Engine truncates the file name. If the file
is not an extended file, the MicroKernel Engine initializes the first byte of the key buffer to 0. You can
also use the Stat Extended (65) operation to retrieve information on extended files.

If the Stat operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Stat operation has no effect on positioning.

Bit 9 = 1 and
Bit 12 = 0

File was created with system data or system data v2. This does not necessarily
mean that the system keys are currently in use. It may have been dropped. See
Stat Extended (65).

Bit 9 = 1 and
Bit 12 = 1

File was created without system data.

3 The file is not open.

22 The data buffer parameter is too short.

118

Stat Extended (65)

The Stat Extended operation (B_EXTENDED_STAT) has several subfunctions that allow an application
to gather information about an open file.

See the following subfunction topics for more information.

Parameters

Prerequisites

The file must be open.

Procedure

1 Set the operation code to 65.

2 Pass the position block for the given file.

3 Store the stat extended structure in the data buffer. See the subsections below for more information
about the stat extended structure required for each subfunction.

4 Specify the data buffer length.

5 Set the key number to 0.

Table 31 Stat Extended (65) Subfunctions

Subfunction ID Description

1 Listing of extension file names

2 System data information for the file

3 Duplicate conflict record and key identification

4 File information

5 Gateway identification

6 Lock owner identification

7 Security information

8 Listing of table or file name causing a status code 71 (a violation of the referential integrity definitions)

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

119

Subfunction 1: Extended File Information

For the file specified by the input position block, this subfunction returns information about the
extension files associated with the specified data file. Returned information includes number of
extension files that exist, number returned by the function, and file names for the returned files.

Input Data Buffer Structure

To receive information about extension files, you must create an extended files descriptor in the data
buffer, as follows.

Output Data Buffer Structure

For the extended files subfunction, the MicroKernel Engine updates the value of the data buffer length
parameter and returns an extended files structure in the data buffer, as illustrated in Table 33.

Subfunction 2: System Data Information

For the file specified by the input position block, this subfunction returns information about whether a
file has system keys defined, and whether the file can be logged (transaction durable).

Table 32 Extended Files Descriptor

Element Length
(Bytes)

Description

Signature 4 Type of stat extended call. Specify the following 4 bytes to indicate a stat extended call: 0x45, 0x78,
0x53, 0x74. These are equivalent to ASCII ExSt or to the value 0x74537845 on Intel-types, LoHi and
little-endian hardware.

Subfunction 4 Type of stat extended call. Specify 0x00000001.

Namespace 4 File naming convention. Specify 0x00000000.

Max Files 4 Maximum number of file names to return. You can set this value higher than the number of extension
files composing the extended file. (An extended file can contain up to 32 extension files.)

First File
Sequence

4 Sequence number of the first file name to return. Specify 0 to begin with the base file, 1 to begin with
the first extension file, and so on. If you specify a number higher than the number of extension files,
the MicroKernel Engine returns status code 0 and no file names.

Buffer space n Allow enough additional space for the return data. If you receive status code 22, retry the operation
with a larger data buffer size.

Table 33 Extended Files Return Buffer

Element Length
(Bytes)

Description

Number of Files 4 Number of operating system files that comprise
the extended file.

Number of Extensions 4 Number of extension files returned.

File Name Portion (Repeated for each file name returned)

Length of File Name 4 Length of the extension file name.

File Name n Extension file name.

120

Input Data Buffer Structure

To receive information about use of system data in a file, you must create a system data descriptor in the
data buffer, as follows.

Output Data Buffer Structure

For the system data subfunction, the MicroKernel Engine returns a system data structure in the data
buffer, as follows.

Subfunction 3: Duplicate Record Conflict Information

For the file specified by the input position block, this subfunction returns information about duplicate
record conflicts. Returned information includes the record address and key number that caused a status
code 5 (Duplicate Key) on a previous failed insert or update operation.

Table 34 System Data Descriptor

Element Length
(Bytes)

Description

Signature 4 Type of stat extended call. Specify the following 4 bytes to indicate a stat extended call: 0x45, 0x78,
0x53, 0x74. These are equivalent to ASCII ExSt or to the value 0x74537845 on Intel-types, LoHi and
little-endian hardware.

Subfunction 4 Type of stat extended call. Specify 0x00000002.

Table 35 System Data Return Buffer

Element Length
(Bytes)

Description

Has System
Data

1 Indicates whether the file has system data defined. 0 = None, 1 = Has System Data, 2 = Has
System Data v2.

Has System
Keys

1 Indicates presence of system keys. 0 = None, 1 = System key 125, 2 = System key 124, 3 = Both.

Is Loggable 1 Indicates whether the file has any unique key that can be used for transaction logging and
durability. The key can be user- or system-defined. 1 = Yes and 0 = No.

Log Key
Number

1 Key number used as a transaction log key. If the system-defined key is the one being used, this
value is 125.

Size of System
Data

2 8 = System data only in key 125.
16 = System data v2 in keys 125 and 124.

Engine Major
Version

2 A two-byte field that contains the major version of the database engine.

121

Input Data Buffer Structure

To receive information about the record address and key number that caused the most recent status code
5 (duplicate key), you must create a duplicate record information descriptor in the data buffer, as follows.

Output Data Buffer Structure

For the duplicate record conflict subfunction, the MicroKernel Engine returns a duplicate record
conflict structure in the data buffer, as follows.

Subfunction 4: File Information

For the file specified by the input position block, this subfunction returns file information. Returned
information includes: the internal file ID used by the MicroKernel Engine to identify the file, the number
of file handles currently open, the timestamp of the last time the file was opened, and a variety of flags
indicating file properties.

Input Data Buffer Structure

To receive information about an open file, you must create a file information descriptor in the data
buffer, as follows.

Table 36 Duplicate Record Conflict Descriptor

Element Length
(Bytes)

Description

Signature 4 Type of stat extended call. Specify the following 4 bytes to indicate a stat extended call: 0x45, 0x78,
0x53, 0x74. These are equivalent to ASCII ExSt or to the value 0x74537845 on Intel-types, LoHi and
little-endian hardware.

Subfunction 4 Type of stat extended call. Specify 0x00000003.

Table 37 Duplicate Record Conflict Return Buffer

Element Length
(Bytes)

Description

Duplicate Record Address 4 or 81 Physical address of record containing the duplicate key value. The 13.0 file format
requires 8 bytes.

Key Number 2 Key number of the key containing the duplicate value.

1Size depends on whether you use BTRV or BTRVEX type entry points.

Table 38 File Information Descriptor - Open File

Element Length
(Bytes)

Description

Signature 4 Type of stat extended call. Specify the following 4 bytes to indicate a stat extended call: 0x45, 0x78,
0x53, 0x74. These are equivalent to ASCII ExSt or to the value 0x74537845 on Intel-types, LoHi
and little-endian hardware.

122

Output Data Buffer Structure

For the file information subfunction, the MicroKernel Engine returns a file information structure in the
data buffer, as follows.

The permitted values for the Flags field are described in the following tables.

Subfunction 4 Type of stat extended call. Specify 0x00000004.

Buffer space 12 Additional bytes needed for returned information. See Output Data Buffer Structure. For the file
information subfunction, the MicroKernel Engine returns a file information structure in the data
buffer.

Table 39 File Information Structure - Open File

Element Length
(Bytes)

Description

FileID 4 A unique number which the MicroKernel Engine uses to identify the file.

Number of Handles 4 The current number of handles that the MicroKernel Engine has open on this file.

Open Time Stamp 4 The system time when the physical file was last opened by the MicroKernel Engine. This
system time is expressed as the number of seconds since midnight on January 1, 1970 in
coordinated universal time (UTC) time.

File Usage Count 4 This number increments at each checkpoint or System Transaction. It is also the usage count
placed in the FCR. The number returned here is the usage count of the file as it is represented
in the MicroKernel Engine cache. When a checkpoint starts, this number increments.

Flags 4 A four-byte bitmap in which various values may be set. See the following table for descriptions
of the possible values. More flags may be added in the future.

Table 40 File Information Flags

Value Name Description

0x00000001 Explicit Locks There are explicit locks currently on the file.

0x00000002 Client Transactions There is at least one client transaction currently open on the file.

0x00000004 Read Only The file was opened by the MicroKernel Engine as Read Only. This may be a
CD-ROM drive or a read-only directory.

0x00000008 Continuous
Operations

The file is currently in continuous operations.

0x00000010 Referential Integrity The file has referential integrity constraints on it.

0x00000020 Owner Read/Write The file has a Read/Write Owner name assigned to it. The owner name is
required to read from or write to the file.

0x00000040 Owner Reads OK The file has an owner name that is required only to write to the file. Reads can
be done without an owner name.

Table 38 File Information Descriptor - Open File

Element Length
(Bytes)

Description

123

Subfunction 5: Gateway Information

For the file specified by the input position block, this subfunction returns information about the
Gateway engine that has control of the file.

Input Data Buffer Structure

To receive information about the Gateway engine that is responsible for the specified file, you must
create a gateway information descriptor in the data buffer, as follows.

Output Data Buffer Structure

For the gateway information subfunction, the MicroKernel Engine modifies the data buffer length
parameter and returns a file information structure in the data buffer, as follows.

0x00000080 Opened with Wrong
Owner

The file has a Reads-OK Owner name assigned to it and the handle was opened
with the wrong owner name.

0x00000100 Owner Encryption The file has the encryption flag on the owner name. This flag means that every
page in the file is encrypted and cannot be read using a text editor.

0x00000200 Opened by Cache
Engine

If set, this file has been opened by a cache engine.

0x00000400 Traditional Encryption The file is encrypted using the Btrieve traditional encryption algorithm.

0x00000800 128-Byte Encryption The file is encrypted using a 128-byte encryption algorithm.

0x00001000 AES-192 Encryption The file is encrypted using AES-192 encryption.

0x00002000 AES-256 Encryption The file is encrypted using AES-256 encryption.

Table 41 Gateway Information Descriptor

Element Length
(Bytes)

Description

Signature 2 Type of stat extended call. Specify the following 4 bytes to indicate a stat extended call:
0x45, 0x78, 0x53, 0x74. These are equivalent to ASCII ExSt or to the value 0x74537845 on
Intel-types, LoHi and little-endian hardware.

Subfunction 2 Type of stat extended call. Specify 0x00000005.

Buffer Space at least 80 Additional bytes needed for returned information. See Output Data Buffer Structure for
details.

Table 42 File Information Structure - Gateway Information

Element Length
(Bytes)

Description

Major Version 2 The major version of the engine, such as version 7 or 8.

Minor Version 2 The minor version of the engine, such as 05 or 82.

Table 40 File Information Flags (Continued)

Value Name Description

124

Subfunction 6: Lock Owner Identification

For the file specified by the input position block, this subfunction returns information about the cause
of the most recent status code 84 or 85 that occurred when accessing the file.

Input Data Buffer Structure

To receive information about the cause of a status code 84 or 85, you must create a lock owner
information descriptor in the data buffer, as follows.

Output Data Buffer Structure

For the lock owner information subfunction, the MicroKernel Engine modifies the data buffer length
parameter and returns a file information structure in the data buffer, as follows.

Patch Level 2 The patch level of the engine, such as 1, 2, or 3.

Platform 2 The type of requester or engine, as listed in Table 55 for Version Block information.

Server Name 64 A null-terminated string indicating the name of the machine where the database engine is running.
The data buffer length returned by the Btrieve API call contains the actual length of the data
returned, including the server name and the null terminator.

Table 43 Lock Owner Information Descriptor

Element Length
(Bytes)

Description

Signature 4 Unique identifier for a stat extended call. Specify ExSt. See Table 32.

Subfunction 4 Type of stat extended call. Specify 0x00000006.

Buffer Space at least
96

Additional bytes needed for returned information. See Subfunction 7: Security Information for
details.

Table 44 Lock Owner Information Return Buffer

Element Length (Bytes) Description

Client ID 16 The 16-byte client ID of the blocking client.

Flags 4 A four-byte bitmap containing flags indicating the type of conflict that occurred.
See the following table for a description of each flag value.

Time In Transaction 4 Number of milliseconds in which the blocking client has been in a transaction. This
can be helpful in determining whether to retry the operation.

Key Number 4 If the conflict occurred on a key page, this element indicates which key is involved.
Tracking this information can be useful in designing a database with fewer
potential conflicts.

Transaction Level 4 If this number is nonzero, then the blocking client is currently in a transaction.
Since some page and record locks are held until the transaction completes, this
information might be useful in determining if the operation should be retried.

Table 42 File Information Structure - Gateway Information

Element Length
(Bytes)

Description

125

If there is no record in the MicroKernel Engine of a previous blocking client, then the output data buffer
length is set to zero.

The permitted values for the Flags field are described in the following table.

Subfunction 7: Security Information

This subfunction returns information about how the client was authenticated and authorized to access
the current file. It also shows information about the current database being used for security.

Reserved 8 Reserved for future use. If there is some information about the blocking client
which you think may be useful, please contact technical support.

Display Name 64 This is a null-terminated string which is the same identifying name that is displayed
in Monitor for each client. Use at least 64 bytes since that is the current maximum
display name length. The data buffer length returned by the Btrieve API call
contains the actual length of the data returned, including the display name and the
null terminator.

Table 45 Lock Owner Flags

Value Name Description

0x00000001 Implicit Lock The blocking client is using an implicit lock.

0x00000002 Explicit Lock The blocking client is using an explicit lock.

0x00000010 File Lock The blocking client is using a file lock.

0x00000020 Page Lock The blocking client is using a page lock.

0x00000040 Record Lock The blocking client is using a record lock.

0x00000100 Data Page If the conflict was a Page Lock, this flag indicates the conflict occurred on a data page.

0x00000200 Key Page If the conflict was a Page Lock, this flag indicates the conflict occurred on a key page.

0x00000400 Variable Page If the conflict was a Page Lock, this flag indicates the conflict occurred on a variable page.

0x00000800 Same Process If this flag is set, then the first 12 bytes of the blocking client ID are the same as the first
12 bytes of the client that got blocked, that is, the client that is issuing the Stat Extended
call. In this case, it means that the two blocking clients came from the same process on
the same system. If you have a single threaded application making Btrieve API calls, then
retrying this operation will not help. You need to complete or abort the work that is blocking.

0x00001000 Write No Wait Indicates that the blocking client is using the 500 bias.

0x00002000 Write Hold Indicates that the blocking client made a change to a page that caused that client to keep
the full page lock until its transaction completes. This situation can occur on implicit key
page locks when a change causes key entries to move to another page.

0x00004000 Read No Wait For explicit record locks, this flag indicates that the blocking client is using either lock bias
200 or 400.

0x00008000 Read Multiple For explicit record locks, this flag indicates that the blocking client is using either lock bias
300 or 400.

Table 44 Lock Owner Information Return Buffer

Element Length (Bytes) Description

126

Input Data Buffer Structure

To receive security information about how this handle is authenticated and what permissions it has, you
must create a security information descriptor in the data buffer, as follows.

Output Data Buffer Structure

For the security information subfunction, the MicroKernel modifies the data buffer length parameter
and returns a file information structure in the data buffer, as follows.

Table 46 Security Information Descriptor

Element Length
(Bytes)

Description

Signature 4 Type of stat extended call. Specify the following 4 bytes to indicate a stat extended call: 0x45,
0x78, 0x53, 0x74. These are equivalent to ASCII ExSt or to the value 0x74537845 on Intel-
types, LoHi and little-endian hardware.

Subfunction 4 Type of stat extended call. Specify 0x00000007.

Buffer Space at least 142 Additional bytes needed for returned information. See Result for details.

Table 47 Security Information Return Buffer

Element Length
(Bytes)

Description

Flags for Handle 4 A four-byte bitmap containing flags indicating the methods used for security on this
handle. See the following table for a description of each flag value.

Flags for Database 4 A four-byte bitmap containing flags indicating the methods used for security on the
current default database for this client. See the following table for a description of
each flag value.

Permissions 4 These are the permissions granted to the client using this handle. See the
permission following table for a description of each flag value.

Buffer Size for Handle
Database Name

2 Length of the buffer used to store the null-terminated Handle Database Name
string.

Buffer Size for Handle
Table Name

2 Length of the buffer used to store the null-terminated Handle Table Name string.
Note: The table name will not be known unless the file is bound to a database
(Referential Constraints, for example), or the file was opened using a URI
connection string that referred to the file by its Table Name. For details about URI
connection strings, see Database URIs in Zen Programmer’s Guide.

Buffer Size for Handle
User Name

2 Length of the buffer used to store the null-terminated Handle User Name string.

Buffer Size for Current
Database Name

2 Length of the buffer used to store the null-terminated Current Database Name
string.

Buffer Size for Current
User Name

2 Length of the buffer used to store the null-terminated Current User Name string.

Handle Database Name Variable The database name used to establish security for this handle.

Handle Table Name Variable The table name associated with this handle

Handle User Name Variable The user name used to establish security for this handle.

127

The permitted values for the two Flags fields are described in the following tables.

Current Database
Name

Variable The current default database name for this client.

Current User Name Variable The user name associated with the current default database for this client.

Table 48 Security Flags

Value Name Description

0x00000001 Trusted This handle is trusted, no database is assigned.

0x00000002 Implicit Database login is implicit - during the open.

0x00000004 Explicit Database login is explicit - a Btrieve login was made.

0x00000008 Authentication by
Database

Authentication was done by database security. If not set, authentication was done
using operating system security.

0x00000010 Authorization by
Database

Authorization was done by database security. If not set, authorization was done using
operating system security.

0x00000020 Windows Named Pipe If authentication is by the operating system, this indicates that an NT named pipe
connection was used for security.

0x00000040 Workgroup If authentication is by the operating system, this indicates that Workgroup Engine
style security was done, which means that no authentication or authorization was
done.

0x00000080 Btpasswd If authentication is by a Linux, macOS, or Raspbian operating system, this indicates
that etc/btpasswd file was used.

0x00000100 PAM If authentication is by the Linux, macOS, or Raspbian operating system, this indicates
that PAM authentication was used.

0x00000200 RTSS Complete If authentication is by the operating system, this indicates that authentication was
done using RTSS with the Complete setting.

0x00000400 RTSS Preauthorized If authentication is by the operating system, this indicates that authentication was
done using RTSS with the Preauthorized setting.

0x00000800 RTSS Disabled If authentication is by the operating system, this indicates that authentication was
done using RTSS with the Disabled setting.

Table 49 Permission Flags

Value Name Description

0x00000000 No Rights No rights to the database object. No permission granted.

0x00000001 Open Permission granted to open the file. This also implies that the records can be
read.

0x00000002 Insert Permission granted to insert records.

Table 47 Security Information Return Buffer

Element Length
(Bytes)

Description

128

Subfunction 8: Listing of Table or File Name Causing a Status Code 71

This subfunction returns information on the table or data file that caused a status code 71, a violation of
the referential integrity definitions. Returned information includes the file name, Btrieve operation
code, and position of the record that caused the referential integrity error.

Input Data Buffer Structure

To receive information about an open file, you must create a file information descriptor in the data
buffer, as follows.

Output Data Buffer Structure

For the file information subfunction, the MicroKernel Engine returns a file information structure in the
data buffer, as follows. The data buffer supplied must be large enough to hold the data returned.

0x00000004 Update Permission granted to update records.

0x00000008 Create Permission granted to create this file.

0x00000010 Delete Permission granted to delete records.

0x00000020 Execute Permission granted to execute stored procedures in SQL.

0x00000040 Alter Permission granted to alter this file in SQL.

0x00000080 Refer Permission granted to refer to this file in SQL.

0x00000100 Create View Permission granted to create views to this file in SQL.

0x00000200 Create Stored Procedure Permission granted to create stored procedures for this file in SQL.

Table 50 Listing of Table or File Name Descriptor

Element Length
(Bytes)

Description

Signature 4 Type of stat extended call. Specify the following 4 bytes to indicate a stat extended call: 0x45,
0x78, 0x53, 0x74. These are equivalent to ASCII ExSt or to the value 0x74537845 on Intel-
types, LoHi and little-endian hardware.

Subfunction 4 Type of stat extended call. Specify 0x00000008.

Table 51 Table or File Information Structure

Element Length
(Bytes)

Description

File Name 255 File name causing the RI error.

Btrieve Op Code 4 Btrieve operation code that caused the RI error.

Table 49 Permission Flags

Value Name Description

129

Result

If the Stat Extended operation fails, the MicroKernel Engine returns one of the following status codes:

Record Position 4 or 81 Physical record position of the record that caused the RI error. The 13.0 file format requires 8
bytes.

1Size depends on whether you use BTRV or BTRVEX type entry points.

3 The file is not open.

06 The key number parameter is invalid.

22 The data buffer parameter is too short.

62 The descriptor is incorrect.

Table 51 Table or File Information Structure

Element Length
(Bytes)

Description

130

Step First (33)

The Step First operation (B_STEP_FIRST) retrieves the first physical record of the file. The MicroKernel
Engine does not use a key path to retrieve the record.

Parameters

Prerequisites

The file must be open.

Procedure

1 Set the operation code to 33. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Set the data buffer length to a value greater than or equal to the length of the record to retrieve.

Result

If the Step First operation succeeds, the MicroKernel Engine returns the file’s first physical record in the
data buffer and sets the data buffer length parameter to the number of bytes returned.

If the Step First operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Step First operation destroys logical currency. Step First sets the physical currency using the
retrieved record as the physical current record. The previous physical position points beyond the
beginning of the file.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

3 The file is not open.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

131

Step Last (34)

The Step Last operation (B_STEP_LAST) retrieves the last physical record of the file. The MicroKernel
Engine does not use a key path to retrieve the record.

Parameters

Prerequisites

The file must be open.

Procedure

1 Set the operation code to 34. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Set the data buffer length to a value greater than or equal to the length of the record to retrieve.

Result

If the Step Last operation succeeds, the MicroKernel Engine returns the file’s last physical record in the
data buffer and sets the data buffer length parameter to the number of bytes returned.

If the Step Last operation fails, the MicroKernel Engine may return one of the following status codes:

Positioning

The Step Last operation destroys logical currency. Step Last sets the physical currency using the retrieved
record as the current physical record. The next physical position points beyond the end of the file.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

3 The file is not open.

9 The operation encountered the end-of-file. (when the file is empty)

22 The data buffer parameter is too short.

132

Step Next (24)

The Step Next operation (B_STEP_NEXT) retrieves the record to which the next physical position
points. The MicroKernel Engine does not use a key path to retrieve the record.

A Step Next operation issued immediately after any Get or Step operation returns the record physically
following the record retrieved by the previous operation.

Parameters

Prerequisites

The file must be open.

Procedure

1 Set the operation code to 24. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Set the data buffer length to a value greater than or equal to the length of the record to retrieve.

Result

If the Step Next operation succeeds, the MicroKernel Engine returns the file’s next physical record in the
data buffer and sets the data buffer length parameter to the number of bytes returned.

If the Step Next operation fails, the MicroKernel Engine returns one of the following status codes:

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

3 The file is not open.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

133

Positioning

The Step Next operation does not establish logical currency. Step Next sets the physical currency using
the retrieved record as the physical current record.

If a Step Next operation is issued immediately following a Delete (4), Step Next returns the record that
was established as the next physical record by the operation preceding the Delete.

If a Step Next operation is issued immediately after an Open (0), it returns the first record in the file.

134

Step Next Extended (38)

The Step Next Extended operation (B_STEP_NEXT_EXT) examines one or more records, starting at the
next physical position and proceeding toward the end of the file. It compares the examined record or
records to a filter condition and retrieves those that match. The filter condition is a logic expression and
is not limited to key fields.

Step Next Extended can also extract specified fields from existing records and return a new set of records
that contain only the extracted fields.

As noted under this topic, this operation uses the same input and output buffer structures and returns
the result described under Get Next Extended (36). See that operation for more information.

Parameters

Prerequisites

 The file must be open.
 You must have established a next physical position. For example, a Step Next Extended operation

cannot follow a Delete operation.

Procedure

1 Set the operation code to 38. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Specify a data buffer to accommodate either the input structure or the returned output, whichever
is larger. Initialize the data buffer according to the instructions in Table 25.

4 Specify the buffer size as either the length of the input structure in Table 25 or the length of the
returned output in Table 26, whichever is larger.

5 Specify the data buffer length from the preceding step.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

135

Details

The Step Next Extended operation shares the same details as the Get Next Extended operation. See the
Details topic for that operation for more information.

Result

If the Step Next Extended operation succeeds, the MicroKernel Engine returns one or more fields from
one or more records to the data buffer (as shown in Table 26). The MicroKernel Engine also sets the data
buffer length parameter to the number of bytes it returned to the data buffer.

If the Step Next Extended operation fails, the MicroKernel Engine returns one of the following status
codes:

The MicroKernel Engine can return a nonzero status code and also valid data, but the last record
returned is incomplete. If the buffer length returned is greater than zero, check the output buffer for
extracted data.

If a field can be only partially filled because the record is too short, then the MicroKernel Engine returns
what it can of the record up to and including the partial field. If the partial field is the last field to extract,
then the engine continues the operation. Otherwise, it aborts the operation with status code 22.

For example, a Step Next Extended operation retrieves three fields from two variable-length records, the
first record 55 bytes long, the second 50 bytes. The output buffer allows 50 bytes for return data. The
three fields to be retrieved are defined as follows:

 Field 1 begins at offset 2 and is 2 bytes long.
 Field 2 begins at offset 45 and is 10 bytes long.
 Field 3 begins at offset 6 and is 2 bytes long.

When the MicroKernel Engine performs the Step Next Extended operation, it returns the first record
without any problem. However, when attempting to extract 10 bytes from field 2 of the second record,
the MicroKernel Engine finds that only 5 bytes are available (between offset 45 and the end of the record,
at offset 49). At this point, the MicroKernel Engine does not pad the missing 5 bytes of field 2, and thus

3 The file is not open.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

60 The specified reject count has been reached.

61 The work space is too small.

62 The descriptor is incorrect.

65 The field offset is incorrect.

82 The MicroKernel Engine lost positioning.

134 The MicroKernel Engine cannot read the International Sorting Rule.

135 The specified International Sort Rule table is corrupt or otherwise invalid.

136 The MicroKernel Engine cannot find the specified alternate collating sequence in the file.

136

cannot extract field 3. Instead, the MicroKernel Engine returns status code 22 and places all of field 1
and first 5 bytes of field 2 in the return data buffer.

Depending on the fields and operators used in the filter condition, the MicroKernel Engine may be able
to optimize your request. After reaching a certain rejected record, it returns status code 64, indicating
that no records in the rest of the file can satisfy the filter conditions.

Positioning

The Step Next Extended operation does not establish any logical currency, but the last record examined
becomes the current physical record. This record can be either a record that satisfies the filter condition
and is retrieved or a record that does not satisfy the filter condition and is rejected.

137

Step Next Delete Extended (87)

The Step Next Delete Extended operation (B_STEP_NEXT_EXT_DELETE) examines one or more
records, starting at the next physical position and proceeding toward the end of the file. It compares the
examined record or records to a filter condition and deletes those that match. The filter condition is a
logic expression and is not limited to key fields.

As noted under this topic, this operation uses the same input and output buffer structures and returns
the result described under Get Next Extended (36). See that operation for more information.

Parameters

Prerequisites

 The file must be open.
 You must have established a next physical position. For example, a Step Next Extended operation

cannot follow a Delete operation.

Procedure

1 Set the operation code to 38.

By default, the lock bias is no-wait, and any lock bias setting is ignored. Behavior is identical to +500:
If the engine cannot delete a locked record, it returns immediately without retrying the operation.

2 Pass the position block for the file.

3 Specify a data buffer to accommodate either the input structure or the returned output, whichever
is larger. Initialize the data buffer according to the instructions in Table 25.

4 Specify the buffer size as either the length of the input structure in Table 25 or the length of the
returned output in Table 26, whichever is larger.

5 Specify the data buffer length from the preceding step.

Details

The following topics under Get Next Extended (36) cover the structure of the extended operation input
buffer and use of its filter segment, as well as the structure of the output buffer that returns the result:

 Input Buffer for Extended Operations
 Output Buffer for Extended Operations

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

138

Result

If the Step Next Delete Extended operation succeeds, the MicroKernel Engine deletes one or more
records. The MicroKernel Engine also sets the data buffer length parameter to the number of bytes it
returned to the data buffer.

If the Step Next Delete Extended operation fails, the MicroKernel Engine returns one of the following
status codes:

If the output buffer length is zero, then no records were deleted. However, the operation may have
succeeded in deleting some records before failing. The following list gives some examples of these partial
successes:

 The output buffer no longer has room to write out the record address for the current record that
matches the filter conditions. That record is not deleted, and the operation fails with status code 22.

 Another client has locked the current record, and the operation fails with status code 84.

In these cases, the output buffer length is greater than zero, and the first two bytes of the buffer give a
count of the number of deleted records.

Positioning

The Step Next Delete Extended operation does not establish currency. When a record is deleted, both
the logical and physical current positions are no longer valid. However, you can do a Step Next or Step
Previous operation because those physical positions are accessible and then have a valid position. If the
deleted record has been reached by a Get operation, the next and previous logical positions are also valid.
A valid current position becomes available when those operations are called or by using Get Position
(22) and Get Direct/Record (23).

The following list shows the relationships of selected status codes to filter conditions:

 Status 60 (reject count reached): The current position is a record that does not match the filter
condition.

3 The file is not open.

9 The operation encountered the end-of-file.

22 The data buffer parameter is too short.

60 The specified reject count has been reached.

61 The work space is too small.

62 The descriptor is incorrect.

65 The field offset is incorrect.

82 The MicroKernel Engine lost positioning.

134 The MicroKernel Engine cannot read the International Sorting Rule.

135 The specified International Sort Rule table is corrupt or otherwise invalid.

136 The MicroKernel Engine cannot find the specified alternate collating sequence in the file.

139

 Status 84 (record or page locked): The current position is a record that may not match the filter
condition. It is also possible that the next record matched the filter condition but could not be
deleted because of locking.

 Status 22 (data buffer full): The current position is a record that matches the filter condition, but the
data buffer does not have space to write the record address, so the MicroKernel Engine did not delete
the record.

 Status 9 (end of file): The current position is both logically and physically invalid.

140

Step Previous (35)

The Step Previous operation (B_STEP_PREVIOUS) retrieves the record to which the previous physical
position points. The MicroKernel Engine does not use an index path to retrieve a record for a Step
Previous operation.

A Step Previous operation performed immediately after any Get or Step operation returns the record
physically preceding the record that the previous operation retrieves.

Parameters

Prerequisites

 The file must be open.
 You must have an established previous physical position. For example, a Step Previous cannot follow

a Delete operation.

Procedure

1 Set the operation code to 35. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Set the data buffer length to a value greater than or equal to the length of the record to retrieve.

Result

If the operation succeeds, the MicroKernel Engine returns the previous physical record in the data buffer
and sets the data buffer length parameter to the number of bytes returned.

If the operation fails, the MicroKernel Engine returns one of the following status codes:

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

3 The file is not open.

9 The operation encountered the end-of-file. (at the beginning of the file)

22 The data buffer parameter is too short.

141

Positioning

The Step Previous operation does not establish logical currency. Step Previous sets the physical currency
using the retrieved record as the physical current record.

142

Step Previous Delete Extended (88)

The Step Previous Delete Extended operation (B_STEP_PREV_EXT_DELETE) examines one or more
records, starting at the previous physical position and proceeding toward the beginning of the file. It
compares the examined record or records to a filter condition and deletes those that match. The filter
condition is a logic expression and is not limited to key fields.

As noted under this topic, this operation uses the same input and output buffer structures and returns
the result described under Get Next Extended (36). See that operation for more information.

Parameters

Prerequisites

 The file must be open.
 You must have established a previous physical position. For example, a Step Previous Extended

operation cannot follow a Delete operation.

Procedure

1 Set the operation code to 88.

By default, the lock bias is no-wait, and any lock bias setting is ignored. Behavior is identical to +500:
If the engine cannot delete a locked record, it returns immediately without retrying the operation.

2 Pass the position block for the file.

3 Specify a data buffer to accommodate either the input structure or the returned output, whichever
is larger. Initialize the data buffer according to the instructions in Table 25.

4 Specify the data buffer length from the preceding step.

Details

The following topics under Get Next Extended (36) cover the structure of the extended operation input
buffer and use of its filter segment, as well as the structure of the output buffer that returns the result:

 Input Buffer for Extended Operations
 Output Buffer for Extended Operations

Result

This operation returns the same result as Step Next Delete Extended (87). See that operation for more
information.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

143

Positioning

The Step Previous Delete Extended operation does not establish currency. When a record is deleted,
both the logical and physical current positions are no longer valid. However, you can do a Step Next or
Step Previous operation because those physical positions are accessible and then have a valid position.
If the deleted record has been reached by a Get operation, the next and previous logical positions are also
valid. A valid current position becomes available when those operations are called or by using Get
Position (22) and Get Direct/Record (23).

The following list shows the relationships of selected status codes to filter conditions:

 Status 60 (reject count reached): The current position is a record that does not match the filter
condition.

 Status 84 (record or page locked): The current position is a record that may not match the filter
condition. It is also possible that the next record matched the filter condition but could not be
deleted because of locking.

 Status 22 (data buffer full): The current position is a record that matches the filter condition, but the
data buffer does not have space to write the record address, so the MicroKernel Engine did not delete
the record.

 Status 9 (end of file): The current position is both logically and physically invalid.

144

Step Previous Extended (39)

The Step Previous Extended operation (B_STEP_PREVIOUS_EXT) examines one or more records,
starting at the previous physical position and proceeding toward the beginning of the file. It compares
the examined record or records to a filter condition and retrieves those that match. The filter condition
is a logic expression and is not limited to key fields.

Step Previous Extended can also extract specified fields from existing records and return a new set of
records that contain only the extracted fields.

As noted under this topic, this operation uses the same input and output buffer structures and returns
the result described under Get Next Extended (36). See that operation for more information.

Parameters

Prerequisites

 The file must be open.
 You must have established a previous physical position. For example, a Step Previous Extended

operation cannot follow a Delete operation.

Procedure

1 Set the operation code to 39. Optionally, you can include a lock bias:

 +100 – Single wait record lock.
 +200 – Single no-wait record lock.
 +300 – Multiple wait record lock.
 +400 – Multiple no-wait record lock.

For details about record locking and data integrity, see Zen Programmer’s Guide, as well as the Wait
Lock Timeout property for configuring Zen database servers in Advanced Operations Guide.

2 Pass the position block for the file.

3 Specify a data buffer to accommodate either the input structure or the returned output, whichever
is larger. Initialize the data buffer according to the instructions in Table 25.

4 Specify the data buffer length from the preceding step.

Details

This operation uses the same input and output buffers as Get Next Extended (36). See that operation for
more information.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

145

Result

This operation returns the same result as Get Next Extended (36). See that operation for more
information.

Positioning

The Step Previous Extended operation does not establish logical currency, but the last record examined
becomes the current physical record. This record can be either a record that satisfies the filter condition
and is retrieved or a record that does not satisfy the filter condition and is rejected.

146

Stop (25)

The Stop operation (B_STOP) performs a number of termination routines for the client, such as
releasing all locks and closing all open files associated with that client.

Parameters

Procedure

Set the operation code to 25.

Result

If the Stop operation succeeds, the MicroKernel Engine performs the following actions:

1 Aborts any active transactions.

2 Releases all locks held by the client.

3 Closes all files open for the client.

4 If no other clients (other applications registered with the MicroKernel Engine) exist and depending
on the MicroKernel Engine configuration, the MicroKernel Engine may terminate itself and free a
number of resources.

If the Stop operation fails, the MicroKernel Engine returns a nonzero status code. The most common
nonzero status code is 20 (Record Manager Inactive). This status occurs because the MicroKernel
Engine or the Requester is not loaded.

Positioning

The Stop operation destroys all currencies because it closes any open files.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

147

Unlock (27)

The Unlock operation (B_UNLOCK) unlocks one or more records that have been locked explicitly (that
is, the records were locked using a lock bias of +100, +200, +300, or +400). The Unlock operation
releases locks held by the specified position block. Therefore, if you have the same file opened more than
once, you must issue an Unlock for each position block before the record is completely unlocked.
Similarly, each client that holds a lock on records in the file must issue an Unlock before the record is
completely unlocked.

Parameters

Prerequisites

You must have at least one record lock.

Procedure

 To unlock a single-record lock

1 Set the operation code to 27.

2 Pass the position block for the file that contains the locked record.

3 Set the key number to a nonnegative value.

 To unlock a record locked by a multiple-record lock

1 Retrieve the 4- or 8-byte position of the record to unlock by issuing a Get Position (22) for that
record. Then, continue to the next steps to issue the Unlock operation.

2 Set the operation code to 27.

3 Pass the position block for the file that contains the locked record.

4 Store in the data buffer the 4- or 8-byte position that Get Position (22) returned. Use the same BTRV
or BTRVEX type entry point for Get Position and Unlock to be consistent with record address size.

5 Set the data buffer length to 4 or 8.

6 Set the key number parameter to –1.

 To unlock all the multiple record locks on a file

1 Set the operation code to 27.

2 Pass the position block for the file that contains the multiple locks.

3 Set the key number parameter to –2.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

148

Result

If the Unlock operation succeeds, the MicroKernel Engine releases all the locks that the operation
specified.

If the Unlock operation fails, the MicroKernel Engine returns a nonzero status code – most likely, status
code 81.

Positioning

The Unlock operation has no effect on positioning.

149

Update (3)

The Update operation (B_UPDATE) changes the information in an existing record.

Parameters

Note When using the no-currency-change (NCC) option, the Update operation does not update the
value of the key buffer parameter. It does not return any information in that parameter.

Prerequisites

 The file must be open.
 You must have established physical currency in the file. Note that although an Extended Get,

Extended Step, or Get Key operation establishes the required position, these operations cannot be
followed by an Update.

Procedure

1 Set the operation code to 3.

2 Pass the position block for the file containing the record.

3 Store the updated data record in the data buffer.

4 Set the data buffer length to the length of the updated record.

5 Set the key number used for retrieving the record. To use the NCC option, specify –1 for the key
number. To use the system-defined log key (also called system data), specify 125. To use the second
system key for system data v2, specify 124.

When you are performing a non-NCC Update operation immediately following a Get operation,
pass the key number exactly as the MicroKernel Engine returned it on the Get operation. Otherwise,
the MicroKernel Engine updates the record successfully but returns status code 7 on the first Get
operation performed after the update.

Result

If the Update operation succeeds, the MicroKernel Engine updates the record stored in the file with the
new value in the data buffer, adjusts the indexes to reflect any change in the key values, and returns the
value of the specified key in the key buffer. An NCC Update operation does not update the value of the
key buffer parameter.

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

150

If the application holds a single-record lock on the record to be updated, the MicroKernel Engine
releases the lock. However, a multiple-record lock is never released by an Update operation.

If the Update operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Update operation and the NCC Update operation do not affect physical currency.

An Update operation that does not use the NCC option can affect logical currency if the value of the
updated key repositions the record in the index. For example, suppose an INTEGER key’s logical current
record has a value of 1. For that same key, the logical next record has a value of 2. If you update 1 to 4,
you no longer have the same logical next record. In this example, after the Update operation, the logical
next record has a value that is greater than 4.

An NCC Update operation does not affect logical currency. This means that an application, having
performed an NCC Update operation, has the same logical position in the file as it had prior to the
Update operation. In such a situation, operations that follow an NCC Update – such as Get Next (6), Get
Next Extended (36), Get Previous (7), and Get Previous Extended (37) – return values based on the
application’s logical currency prior to the NCC Update.

Note The MicroKernel Engine does not return any information in the key buffer parameter as the
result of an NCC Update operation. Therefore, an application that must maintain the logical
currency must not change the value of the key buffer following the NCC Update operation.
Otherwise, the next Get operation has unpredictable results.

5 The record has a key field containing a duplicate key value.

8 The current positioning is invalid.

10 The key field is not modifiable.

22 The data buffer parameter is too short.

80 The MicroKernel Engine encountered a record-level conflict.

151

Update Chunk (53)

The Update Chunk operation (B_CHUNK_UPDATE) can change the information in one or more
portions of a record (each portion being a chunk). It can also append information to an existing record
(thereby lengthening the record), or truncate an existing record at a specified offset.

Parameters

Prerequisites

 The file must be open.
 You must have an established current physical or logical record in the file.

Note Although an extended operation or a Get Key (+50) establishes the required position, you
cannot issue an Update Chunk operation immediately after these operations, since they do not
return a single record.

Procedure

1 Set the operation code to 53.

2 Pass the position block for the file containing the record.

3 Specify a data buffer, as described in Details.

4 Set the data buffer length to a value greater than or equal to the number of bytes your application
has placed in the data buffer. See the “Details” section for more information about calculating the
data buffer length.

5 Set the key number used for retrieving the record in the key number parameter. To use the system-
defined log key (also called system data), specify 125. To use the second system key for system data
v2, specify 124.

Details

Use one of the following chunk descriptors in the data buffer:

 Random Chunk Descriptor – To update a single chunk per operation, or to update more than one
chunk in a single operation when the chunks are spaced randomly throughout the record.

 Rectangle Chunk Descriptor – To update many chunks in an operation, when each chunk is the
same length and chunks are spaced equidistantly in the record.

 Truncate Chunk Descriptor – To truncate a record at a specified offset.

Op Code Pos
Block

Data
Buf

Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

152

Random Chunk Descriptor Structure

The following example shows a record with three randomly spaced chunks (areas containing [*]): chunk
0 (bytes 0x12 through 0x16), chunk 1 (bytes 0x2A through 0x31), and chunk 2 (bytes 0x41 through
0x4E).

To define a random chunk descriptor, your application must create a structure in the data buffer, based
on the following table.

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 [*] [*] [*] [*] [*] 17 18 19 1A 1B 1C 1D 1E 1F

20 21 22 23 24 25 26 27 28 29 [*] [*] [*] [*] [*] [*]

[*] [*] 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

40 [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] [*] 4F

Table 52 Random Chunk Descriptor Structure

Element Length (Bytes) Description

Subfunction 4 Type of chunk descriptor. One of the following:

• 0x80000000 (Direct random chunk descriptor) – Updates chunks stored directly in
the data buffer. The data for updating the first chunk is stored in the data buffer
immediately after the last chunk definition (Chunk n), the data for the second chunk
immediately follows the first, and so on.

• 0x80000001 (Indirect random chunk descriptor) – Updates chunks from data at
addresses specified by the Chunk Definitions.

NumChunks 4 Number of chunks to be updated. The value must be at least 1. Although no explicit
maximum value exists, the chunk definitions must fit in the data buffer.

Chunk Definition
(Repeat for each
chunk)

12 (for 32-bit
applications)

16 (for 64-bit
applications)

Each Chunk Definition is a 4-byte Chunk Offset, followed by a 4-byte Chunk Length,
followed by a 4-byte User Data for 32-bit applications or an 8-byte User Data for 64-bit
applications, described as follows:

• Chunk Offset – Indicates where the chunk begins as an offset in bytes from the
beginning of the record. The minimum value is 0, and the maximum value is the
offset of the last byte in the record, plus 1.

• Chunk Length – Indicates how many bytes are in the chunk. The minimum value is
0, and the maximum value 65535. However, the chunk definitions must fit in the data
buffer.

• User Data – (Used only for indirect descriptors.) For 32-bit applications, a 32-bit
pointer to the actual chunk data. For 64-bit applications, a 64-bit pointer to the actual
chunk data. The format you should use depends on your operating system.1 The
MicroKernel Engine ignores this element for direct chunk descriptor subfunctions.

1For DOS applications, initialize User Data as a 16-bit offset and a 16-bit segment. User Data cannot address memory beyond
the end of its segment. When Chunk Length is added to the offset portion of User Data, the result must be within the segment
that User Data defines. By default, the MicroKernel Engine does not check for violations of this rule and does not properly
handle such violations.

153

The following table shows a sample direct random chunk descriptor structure for a 32-bit application.

Rectangle Chunk Descriptor Structure

When chunks of the same length are spaced equidistantly throughout a record, you can describe all the
chunks to update with a rectangle chunk descriptor. For example, consider the following diagram, which
represents offset 0x00 through 0x4F in a record:

Element Sample Value Length (Bytes)

Subfunction 0x8000000 4

NumChunks 3 4

Chunk 0

Chunk Offset 0x12 4

Chunk Length 0x05 4

User Data N/A 4

Chunk 1

Chunk Offset 0x2A 4

Chunk Length 0x08 4

User Data N/A 4

Chunk 2

Chunk Offset 0x41 4

Chunk Length 0x0E 4

User Data N/A 4

Data for Chunk 0 N/A 5

Data for Chunk 1 N/A 8

Data for Chunk 2 N/A 14

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

10 11 12 13 14 15 16 17 18 [*] [*] [*] [*] 1D 1E 1F

20 21 22 23 24 25 26 27 28 [*] [*] [*] [*] 2D 2E 2F

30 31 32 33 34 35 36 37 38 [*] [*] [*] [*] 3D 3E 3F

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

154

The record contains three chunks (areas containing [*]): chunk 0 (bytes 0x19 through 0x1C), chunk 1
(bytes 0x29 through 0x2C), and chunk 2 (bytes 0x39 through 0x3C). Each chunk is four bytes long, and
a total of 16 (0x10) bytes, calculated from the beginning of each chunk, separates the chunks from one
another.

You can update all three chunks using a single rectangle descriptor. To update rectangle chunks, you
must create a structure in the data buffer based on Table 53.

If the rectangle has the same number of bytes between rows when it is in memory as when it is stored as
a record, set Application Distance Between Rows with the same value as Distance Between Rows.
However, if the rectangle is arranged in your application’s memory with either more or fewer bytes
between rows, Application Distance Between Rows allows you to pass that information to the
MicroKernel Engine.

When you use an indirect rectangle descriptor, the MicroKernel Engine uses both the User Data and the
Application Distance Between Rows elements to determine the locations from which to read the data for
the update. The MicroKernel Engine reads data for the first row from offset 0 of User Data. The
MicroKernel Engine reads the second row’s data from an address specified by User Data + Application

Table 53 Rectangle Chunk Descriptor Structure

Element Length (Bytes) Description

Subfunction 4 Type of chunk descriptor. One of the following:

• 0x80000002 (Direct rectangle chunk descriptor) – Updates chunks stored directly in
the data buffer. The data for updating the first chunk is stored in the data buffer
immediately after the last chunk definition (Chunk n), the data for the second chunk
immediately follows the first, and so on.

• 0x80000003 (Indirect rectangle chunk descriptor) – Updates chunks from data at
addresses specified by the Chunk Definitions.

Number of Rows 4 Number of chunks on which the rectangle chunk descriptor must operate. The minimum
value is 1. No explicit maximum value exists.

Offset 4 Offset from the beginning of the record of the first byte to update. The minimum value
is 0, and the maximum value is the offset of the last byte in the record, plus 1. If the
record is viewed as a rectangle, this element refers to the offset of the first byte in the
first row to be retrieved.

Bytes Per Row 4 Number of bytes in each chunk to be updated. The minimum value is 0, and the
maximum value is 65535. However, the chunk definitions must fit in the data buffer.

Distance
Between Rows

4 Number of bytes between the beginning of each chunk.

User Data 4 (for 32-bit
applications)

8 (for 64-bit
applications)

(Used only with indirect descriptors.) For 32-bit applications, a 32-bit pointer to the
actual chunk data. For 64-bit applications, a 64-bit pointer to the actual chunk data. The
format you should use depends on your operating system.1 The MicroKernel Engine
ignores this element for direct rectangle descriptors. However, you must still allocate the
element and initialize it to 0.

Application
Distance
Between Rows

4 (Used only with indirect rectangle descriptors.) Number of bytes between the beginning
of chunks in the rectangle, as the rectangle is stored in your application’s memory, at
the address specified by User Data. The MicroKernel Engine ignores this element for
direct rectangle descriptors. However, you must still allocate the element and initialize
it to 0.

1For DOS applications, express User Data as a 16-bit offset followed by a 16-bit segment.

155

Distance Between Rows. The MicroKernel Engine reads the third row’s data from the address specified
by User Data + (Application Distance Between Rows * 2), and so on.

The following table shows a sample direct rectangle chunk descriptor structure for a 32-bit application.

Truncate Descriptor Structure

The truncate descriptor allows you to truncate a record at a specified offset. To use this type of chunk
descriptor, you must create a structure in the data buffer, based on the following table:

Next-in-Record Subfunction Bias

If you add a bias of 0x40000000 to any of the subfunctions previously listed, the MicroKernel Engine
calculates the subfunction Offset element values based on your physical intrarecord currency (that is,
your current physical position within the record). When you use the Next-in-Record subfunction, the
MicroKernel Engine ignores the Offset element in the chunk descriptor.

If you use this bias in combination with a random chunk descriptor and it updates more than one chunk
in a single operation, the MicroKernel Engine calculates the offset for all chunks (except the first) by
adding the previous chunk’s length to the previous chunk’s offset. In other words, the next-in-record bias
applies to all chunks in the operation.

Element Name Sample Value Length
(Bytes)

Subfunction 0x80000002 4

Number of Rows 3 4

Offset 0x19 4

Bytes Per Row 0x04 4

Distance Between Rows 0x10 4

User Data 0 4

Application Distance Between Rows 0 4

Data (Row 0) N/A 4

Data (Row 1) N/A 4

Data (Row 2) N/A 4

Table 54 Truncate Descriptor Structure

Element Length
(Bytes)

Description

Subfunction 4 Type of chunk descriptor. Specify 0x80000004.

ChunkOffset 4 Byte offset into the record where truncation begins. That byte and every byte following it is
eliminated. The minimum value is 4. The maximum value is the offset of the final byte in the
record.

156

Append Subfunction Bias

If you add a bias of 0x20000000 to the random chunk descriptor’s subfunction or to the rectangle chunk
descriptor’s subfunction, the MicroKernel Engine calculates the subfunction’s Offset element value to be
one byte beyond the end of the record.

Note Do not use this bias with the Next-in-Record bias or the Truncate subfunction.

If you use this bias in combination with a random chunk descriptor and it updates more than one chunk
in a single operation, the MicroKernel Engine calculates the offset for all chunks (except the first chunk)
based on the record’s length after the MicroKernel Engine appends the previous chunk.

Result

If the Update Chunk operation succeeds, the MicroKernel Engine updates the portions of the record
identified as chunks in the chunk descriptor portion of the data buffer. The new data for updating the
chunks is contained either in the chunk descriptor itself (for direct chunk descriptor subfunctions) or in
the memory address specified by the 32-bit pointer in each chunk’s User Data element (for indirect
chunk descriptor subfunctions). After the Update Chunk operation completes, the MicroKernel Engine
adjusts the key indexes to reflect any change in the key values, and, if necessary, updates the key buffer
parameter.

In addition, if the application holds a single-record lock on the record to be updated, the MicroKernel
Engine releases the lock. However, a multiple-record lock is never released by an Update Chunk
operation.

If the Update Chunk operation fails, the MicroKernel Engine returns one of the following status codes:

Positioning

The Update Chunk operation does not change the physical currency or the current logical record.

5 The record has a key field containing a duplicate key value.

8 The current positioning is invalid.

10 The key field is not modifiable.

22 The data buffer parameter is too short.

58 The compression buffer length is too short.

62 The descriptor is incorrect.

80 The MicroKernel Engine encountered a record-level conflict.

97 The data buffer is too small.

103 The chunk offset is too big.

106 The MicroKernel Engine cannot perform a Get Next Chunk operation.

157

Note When you perform an Update Chunk operation following a Get operation, do not pass to the
Update Chunk operation a key number that differs from the one specified in the preceding Get
operation. If you do, the positioning established by the MicroKernel Engine is unpredictable.

158

Version (26)

For client applications, the Version operation (B_VERSION) returns the local MicroKernel Engine
version and the Requester version, if applicable. If a client application opens a file on a server or specifies
a server file path name in the key buffer, the Version operation also returns the MicroKernel Engine
version on that server. For server-based applications, the Version operation returns the server-based
MicroKernel Engine version and revision numbers.

Parameters

Prerequisites

Either the MicroKernel Engine or the Requester must be loaded before you can issue a Version
operation.

Procedure

1 Set the operation code to 26.

2 Set the data buffer length to at least 15. (For more information, see Table 55.)

3 To retrieve the version number of a server-based MicroKernel Engine, you must specify either a
valid position block for an opened file on that server or a valid path name in the key buffer.

Result

If you have both a workstation MicroKernel Engine and client Requester configured for access and the
Version operation succeeds, the operation returns the version information for the workstation
MicroKernel Engine, the client Requester, and the server-based MicroKernel Engine.

Specify a 15-byte data buffer and data buffer length.

If both the client Requester and the workstation MicroKernel Engine are loaded and you specify only a
5-byte data buffer and data buffer length, the operation returns only the client Requester’s version
information.

If you specify only a 10-byte data buffer and data buffer length, the operation returns the client Requester
and the local workstation engine.

If you specify a 15-byte data buffer and data buffer length, the operation returns the client Requester, the
local workstation engine, and the server engine (if applicable).

Op Code Pos
Block

Data Buf Data Buf
Len

Key
Buffer

Key
Number

Sent

Returned

159

In the data buffer, the Version operation returns a 5-byte Version Block for each MicroKernel Engine or
Requester, according to the format shown in the following table. The fifth byte of each block identifies
each MicroKernel Engine or Requester.

For example, if you are running Zen 14.10 on a Windows server, the Version operation returns the
following hexadecimal values in the data buffer:
0E 00 0A 00 54

After converting these values to decimal, the version number is 14 and the revision number is 10. If the
Version operation fails, the MicroKernel Engine returns a nonzero status code.

Positioning

The Version operation has no effect on positioning.

Table 55 Version Block

Element Length
(Bytes)

Description

Version Number 2 Zen version number.

Revision Number 2 Zen revision number.

Requester or
Engine Type

1 Type of engine or requester. One of the following:

• B (0x42) for the Btrieve engine

• C (0x43) for the Client engine

• 9 (0x39) for the Workgroup database engine or Linux or macOS database server
using Workgroup authentication mode

• D (0x44) for DOS workstation

• N (0x4E) for client Requester

• R (0x52) for Reporting Engine

• T (0x54) for Windows server

• U (0x55) for Linux, macOS, or Raspbian server using PAM or BTPASSWD
authentication

160

161

c h a p t e r

AQuick Reference of Btrieve
Operations

This appendix provides a summary of Btrieve API operations in numerical order by operation code.

Table of Btrieve API Operations

Table 56 Quick Reference of Btrieve API Operations

Operation Code Constant Description

Open 0 B_OPEN Makes a file available for access.

Close 1 B_CLOSE Releases a file from availability.

Insert 2 B_INSERT Inserts a new record into a file.

Update 3 B_UPDATE Updates the current record.

Delete 4 B_DELETE Removes the current record from the file.

Get Equal 5 B_GET_EQUAL Returns the record whose key value matches the
specified key value.

Get Next 6 B_GET_NEXT Returns the record following the current record in the
index path.

Get Previous 7 B_GET_PREVIOUS Returns the record preceding the current record in the
index path.

Get Greater Than 8 B_GET_GT Returns the record whose key value is greater than the
specified key value.

Get Greater Than or
Equal

9 B_GET_GE Returns the record whose key value is equal to or
greater than the specified key value.

Get Less Than 10 B_GET_LT Returns the record whose key value is less than the
specified key value.

Get Less Than or
Equal

11 B_GET_LE Returns the record whose key value is equal to or less
than the specified key value.

Get First 12 B_GET_FIRST Returns the first record in the specified index path.

Get Last 13 B_GET_LAST Returns the last record in the specified index path.

Create 14 B_CREATE Creates a file with the specified characteristics.

Stat 15 B_STAT Returns file and index characteristics, and number of
records.

Extend 16 B_EXTEND Divides a data file over two logical disk drives. This
operation is not supported in Btrieve 6.0 and later.

Set Directory 17 B_SET_DIR Sets the current directory to a specified path name.

162

Get Directory 18 B_GET_DIR Returns the current directory for a specified logical disk
drive.

Begin Transaction 19
1019

B_BEGIN_TRAN Marks the beginning of a set of logically related
operations. Operation 19 begins an exclusive
transaction. Operation 1019 begins a concurrent
transaction.

End Transaction 20 B_END_TRAN Marks the end of a set of logically related operations.

Abort Transaction 21 B_ABORT_TRAN Removes operations performed during an incomplete
transaction.

Get Position 22 B_GET_POSITION Returns the position of the current record.

Get Direct/Chunk 23 B_GET_DIRECT Returns data from the specified chunks of a record at a
specified position.

Get Direct/Record 23 B_GET_DIRECT Returns the record at a specified position.

Step Next 24 B_STEP_NEXT Returns the record from the physical location following
the current record.

Stop 25 B_STOP Terminates the Workgroup MicroKernel Engine. Not
available for other instances of MicroKernel Engine.

Version 26 B_VERSION Returns the version number of the MicroKernel Engine.

Unlock 27 B_UNLOCK Unlocks a record or records.

Reset 28 B_RESET Releases all resources held by a client.

Set Owner 29 B_SET_OWNER Assigns an owner name to a file.

Clear Owner 30 B_CLEAR_OWNER Removes an owner name from a file.

Create Index 31 B_BUILD_INDEX Creates an index.

Drop Index 32 B_DROP_INDEX Removes an index.

Step First 33 B_STEP_FIRST Returns the record in the first physical location in the file.

Step Last 34 B_STEP_LAST Returns the record in the last physical location in the file.

Step Previous 35 B_STEP_PREVIOUS Returns the record in the physical location preceding the
current record.

Get Next Extended 36 B_GET_NEXT_EXTENDED Returns one or more records that follow the current
record in the index path. Filtering conditions can be
applied.

Get Previous
Extended

37 B_GET_PREV_EXTENDED Returns one or more records that precede the current
record in the index path. Filtering conditions can be
applied.

Step Next Extended 38 B_STEP_NEXT_EXT Returns one or more successive records from the
location physically following the current record. Filtering
conditions can be applied.

Table 56 Quick Reference of Btrieve API Operations (Continued)

Operation Code Constant Description

163

Step Previous
Extended

39 B_STEP_PREVIOUS_EXT Returns one or more preceding records from the
location physically preceding the current record.
Filtering conditions can be applied.

Insert Extended 40 B_EXT_INSERT Inserts one or more records into a file.

Continuous Operation 42 B_CONTINUOUS Allows system backups without closing active
MicroKernel Engine files.

Get By Percentage 44 B_SEEK_PERCENT Returns the record located approximately at a position
derived from the specified percentage value.

Find Percentage 45 B_GET_PERCENT Returns a percentage figure based on the current
record’s position in the file.

Get Key +50 KEY_BIAS Detects the presence of a key value in a file, without
returning an actual record.

Update Chunk 53 B_CHUNK_UPDATE Updates specified portions (chunks) of the current
record. This operation can also append data to a record
or truncate a record.

Stat Extended 65 B_EXTENDED_STAT Returns file names and paths of an extended file’s
components and reports whether a file is using a
system-defined log key.

Single-record wait lock +100 S_WAIT_LOCK Locks only one record at a time. If the record is already
locked, the MicroKernel Engine retries the operation.

Single-record
no-wait lock

+200 S_NOWAIT_LOCK Locks only one record at a time. If the record is already
locked, the MicroKernel Engine returns an error status
code.

Multiple-record wait
lock

+300 M_WAIT_LOCK Locks several records concurrently in the same file. If
the record is already locked, the MicroKernel Engine
retries the operation.

Multiple-record
no-wait lock

+400 M_NOWAIT_LOCK Locks several records concurrently in the same file. If
the record is already locked, the MicroKernel Engine
returns an error status code.

No-wait page lock +500 NOWRITE_WAIT In a concurrent transaction, tells the MicroKernel Engine
not to wait if the page to be changed has already been
changed by another active concurrent transaction. This
bias can be combined with any of the record locking
biases (+100, +200, +300, or +400).

Table 56 Quick Reference of Btrieve API Operations (Continued)

Operation Code Constant Description

164

	Btrieve API Guide
	About This Document
	Who Should Read This Document
	Typographical Conventions

	Introduction to Btrieve APIs
	Btrieve API Functions
	BTRV
	BTRVID
	BTRCALL
	BTRCALLID
	BTRVEX
	BTRVEXID
	Obsolete Functions

	Btrieve API Function Parameters
	Operation Code
	Status Code
	Position Block
	Data Buffer
	Data Buffer Length
	Key Buffer
	Key Number
	Client ID
	Key Length

	Summary of Btrieve API Operations
	Session-Specific Operations
	File-Specific Operations
	Unsupported Operations

	Sequence of Events in Performing a Btrieve API Operation

	Btrieve API Operations
	Abort Transaction (21)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Begin Transaction (19 or 1019)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Clear Owner (30)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Close (1)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Continuous Operation (42)
	Parameters
	Procedure
	Details
	Result
	Positioning

	Create (14)
	Parameters
	Prerequisites
	Procedure
	Details
	File Specification Block
	Key Specification Block
	Alternate Collating Sequence
	Data Buffer Length
	Key Number
	Delete and Rename Subfunctions for the Create Operation
	Notes on Rename and Delete Subfunctions

	Result
	Positioning

	Create Index (31)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Delete (4)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Drop Index (32)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	End Transaction (20)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Find Percentage (45)
	Parameters
	Prerequisites
	Procedure
	Details
	Granularity

	Result
	Positioning

	Get By Percentage (44)
	Parameters
	Prerequisites
	Procedure
	Details
	Granularity

	Result
	Positioning

	Get Direct/Chunk (23)
	Parameters
	Prerequisites
	Procedure
	Details
	Random Chunks
	Rectangle Chunk Descriptor Structure
	Next-in-Record Subfunction Bias

	Result
	Positioning

	Get Direct/Record (23)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Directory (18)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Equal (5)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get First (12)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Greater Than (8)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Greater Than or Equal (9)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Key (+50)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Last (13)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Less Than (10)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Less Than or Equal (11)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Next (6)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Next Delete Extended (85)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Get Next Extended (36)
	Parameters
	Prerequisites
	Procedure
	Details
	Input Buffer for Extended Operations
	Collation of LIKE Results
	Using the JSON QUERY Operator
	JSON Query Examples

	Processing of Logical AND and OR in a Filter
	Examples of Filtering Records
	Output Buffer for Extended Operations

	Result
	Positioning

	Get Position (22)
	Parameter
	Prerequisites
	Procedure
	Result
	Positioning

	Get Previous (7)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Get Previous Delete Extended (86)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Get Previous Extended (37)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Insert (2)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Insert Extended (40)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Login/Logout (78)
	Parameters
	Prerequisites
	Login Procedure
	Logout Procedure
	Result
	Notes
	Positioning

	Open (0)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Reset (28)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Set Directory (17)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Set Owner (29)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Stat (15)
	Parameters
	Prerequisites
	Procedure
	Details
	File Specifications
	Key Specifications
	Alternate Collating Sequences

	Result
	Positioning

	Stat Extended (65)
	Parameters
	Prerequisites
	Procedure
	Subfunction 1: Extended File Information
	Input Data Buffer Structure
	Output Data Buffer Structure

	Subfunction 2: System Data Information
	Input Data Buffer Structure
	Output Data Buffer Structure

	Subfunction 3: Duplicate Record Conflict Information
	Input Data Buffer Structure
	Output Data Buffer Structure

	Subfunction 4: File Information
	Input Data Buffer Structure
	Output Data Buffer Structure

	Subfunction 5: Gateway Information
	Input Data Buffer Structure
	Output Data Buffer Structure

	Subfunction 6: Lock Owner Identification
	Input Data Buffer Structure
	Output Data Buffer Structure

	Subfunction 7: Security Information
	Input Data Buffer Structure
	Output Data Buffer Structure

	Subfunction 8: Listing of Table or File Name Causing a Status Code 71
	Input Data Buffer Structure
	Output Data Buffer Structure

	Result

	Step First (33)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Step Last (34)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Step Next (24)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Step Next Extended (38)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Step Next Delete Extended (87)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Step Previous (35)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Step Previous Delete Extended (88)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Step Previous Extended (39)
	Parameters
	Prerequisites
	Procedure
	Details
	Result
	Positioning

	Stop (25)
	Parameters
	Procedure
	Result
	Positioning

	Unlock (27)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Update (3)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Update Chunk (53)
	Parameters
	Prerequisites
	Procedure
	Details
	Random Chunk Descriptor Structure
	Rectangle Chunk Descriptor Structure
	Truncate Descriptor Structure
	Next-in-Record Subfunction Bias
	Append Subfunction Bias

	Result
	Positioning

	Version (26)
	Parameters
	Prerequisites
	Procedure
	Result
	Positioning

	Quick Reference of Btrieve Operations
	Table of Btrieve API Operations

