
Zen v15

Data Providers for ADO.NET
Guide to Developing Applications

Copyright © 2023 Actian Corporation. All Rights Reserved.

This Documentation is for the end user’s informational purposes only and may be subject to change or withdrawal by Actian
Corporation (“Actian”) at any time. This Documentation is the proprietary information of Actian and is protected by the
copyright laws of the United States and international treaties. The software is furnished under a license agreement and may be
used or copied only in accordance with the terms of that agreement. No part of this Documentation may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or for any purpose
without the express written permission of Actian. To the extent permitted by applicable law, ACTIAN PROVIDES THIS
DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, AND ACTIAN DISCLAIMS ALL WARRANTIES
AND CONDITIONS, WHETHER EXPRESS OR IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION,
ANY IMPLIED WARRANTY OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OR OF NON-
INFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT WILL ACTIAN BE LIABLE TO THE END USER OR ANY
THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,
INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA,
EVEN IF ACTIAN IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

The manufacturer of this Documentation is Actian Corporation.

For government users, the Documentation is delivered with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48
C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS Section 252.227-7013 or applicable successor provisions.

Actian, Actian DataCloud, Actian DataConnect, Actian X, Avalanche, Versant, PSQL, Actian Zen, Actian Director, Actian
Vector, DataFlow, Ingres, OpenROAD, and Vectorwise are trademarks or registered trademarks of Actian Corporation and its
subsidiaries. All other trademarks, trade names, service marks, and logos referenced herein belong to their respective
companies.

This product includes software developed by Powerdog Industries. Copyright 1994 Powerdog Industries. All rights reserved.
This product includes software developed by KeyWorks Software. Copyright 2002 KeyWorks Software. All rights reserved.
This product includes software developed by DUNDAS SOFTWARE. Copyright 1997-2000 DUNDAS SOFTWARE LTD.,
all rights reserved. This product includes software developed by the Apache Software Foundation (www.apache.org).

This product uses the free unixODBC Driver Manager as written by Peter Harvey (pharvey@codebydesign.com), modified and
extended by Nick Gorham (nick@easysoft.com), with local modifications from Actian Corporation. Actian Corporation will
donate their code changes to the current maintainer of the unixODBC Driver Manager project, in accordance with the LGPL
license agreement of this project. The unixODBC Driver Manager home page is located at www.unixodbc.org. For further
information on this project, contact its current maintainer: Nick Gorham (nick@easysoft.com).

A copy of the GNU Lesser General Public License (LGPL) is included on the distribution media for this product. You may also
view the LGPL at www.fsf.org/licensing/licenses/lgpl.html.

Zen Data Providers for ADO.NET Guide
April 2023

iii

Contents
About This Document . ix

What Are the Zen Data Providers? . x
Using This Guide . xi
Typographical Conventions . xii

1 Quick Start . 1
ADO.NET Data Providers Installed with Zen . 2

Supported .NET Framework Versions. . 2
Zen ADO.NET Data Providers Available with SDK Download . 3
Defining Basic Connection Strings . 4
Connecting to a Database . 5

Example: Using the Provider-Specific Objects . 5
Example: Using the Common Programming Model . 6
Example: Using the Zen Common Assembly . 7

Using the Zen ADO.NET Entity Framework Data Provider . 9

2 Using the Data Providers . 11
About the Data Providers . 12
Using Connection Strings . 13

Guidelines. . 13
Using the Zen Performance Tuning Wizard . 14

Stored Procedures. . 15
Using IP Addresses . 16
Transaction Support . 17

Using Local Transactions . 17
Thread Support . 18
Unicode Support . 19
Isolation Levels . 20
SQL Escape Sequences . 21
Event Handling . 22
Error Handling . 23
Using .NET Objects . 24
Developing Applications for .NET . 25

3 Advanced Features . 27
Using Connection Pooling . 28

Creating a Connection Pool . 28
Adding Connections to a Pool . 28
Removing Connections from a Pool . 29
Handling Dead Connection in a Pool . 30
Tracking Connection Pool Performance . 30

Using Statement Caching . 31
Enabling Statement Caching . 31
Choosing a Statement Caching Strategy . 31

Using Connection Failover. . 32
Using Client Load Balancing. . 33
Using Connection Retry . 34
Configuring Connection Failover . 35
Setting Security . 36

iv

Code Access Permissions . 36
Security Attributes . 36

Using Zen Bulk Load . 37
Use Scenarios for Zen Bulk Load. . 37
Zen Common Assembly. . 38
Bulk Load Data File . 38
Bulk Load Configuration File . 39
Determining the Bulk Load Protocol . 39
Character Set Conversions . 40
External Overflow File. . 40
Bulk Copy Operations and Transactions . 40

Using Diagnostic Features . 41
Tracing Method Calls . 41
PerfMon Support. . 42
Analyzing Performance With Connection Statistics . 43
Enabling and Retrieving Statistical Items . 43

4 The ADO.NET Data Providers . 45
About Zen ADO.NET Data Providers . 46

Namespace . 46
Assembly Name . 46

Using Connection Strings with the Zen ADO.NET Data Provider . 47
Constructing a Connection String . 47

Performance Considerations. . 48
Connection String Options that Affect Performance . 48
Properties that Affect Performance . 49

Data Types . 50
Mapping Zen Data Types to .NET Framework Data Types . 50
Mapping Parameter Data Types . 52
Data Types Supported with Stream Objects. . 54

Using Streams as Input to Long Data Parameters . 55
Parameter Markers . 56
Parameter Arrays . 57

5 Zen ADO.NET Core Data Providers . 59
About Zen ADO.NET Core Data Providers . 60
Creating an Application in Visual Studio Using Zen ADO.Net Core DLL 61
Creating a UWP Application in Visual Studio Using Zen ADO.Net Core Data Provider 62
ADO.NET Data Provider Features Missing in Zen ADO.NET Core Data Provider 65

6 Zen ADO.NET Entity Framework Data Providers. 67
About Zen ADO.NET Entity Framework Data Providers . 68

Namespace . 68
Assembly Names . 68

Configuring Entity Framework 6.1 . 69
Configuration File Registration . 69
Code-Based Registration . 69
Using Multiple Entity Framework Versions Against the Same Database 70

Using Connection Strings with the Zen ADO.NET Entity Framework Data Provider 71
Defining Connection String Values in Server Explorer . 71
Changes in Default Values for Connection String Options . 71

Code First and Model First Support . 72
Handling Long Identifier Names . 72

v

Using Code First Migrations with the ADO.NET Entity Framework . 73
Using Enumerations with the ADO.NET Entity Framework . 74
Mapping Data Types and Functions . 75

Type Mapping for Database First . 75
Type Mapping for Model First . 76
Type Mapping for Code First . 78
Mapping EDM Canonical Functions to Zen Functions . 79

Extending Entity Framework Functionality . 84
Enhancing Entity Framework Performance . 85

Limiting the Size of XML Schema Files . 85
Using Stored Procedures with the ADO.NET Entity Framework . 86

Providing Functionality . 86
Using Overloaded Stored Procedures . 87

Using .NET Objects . 88
Creating a Model . 89

Upgrading Entity Framework 5 Applications to Entity Framework 6.1 94
For More Information . 97

7 Zen ADO.NET Entity Framework Core Data Providers 99
About Zen ADO.NET Entity Framework Core Data Providers . 100

Namespace . 100
Assembly Names . 100

Configuring the Zen ADO.NET Entity Framework Core Data Provider 101
Using Connection Strings with the Zen ADO.NET Entity Framework Core Data Provider 102

Changes in Default Values for Connection String Options . 102
Code First Support . 103

Handling Long Identifier Names . 103
Using Code First Migrations with the ADO.NET Entity Framework Core 104
Using Reverse Engineering (Scaffolding). . 105
Type Mapping for Code First . 106

Mapping EDM Canonical Functions to Zen Functions . 107
Extending Entity Framework Functionality . 112
Using Stored Procedures with the ADO.NET Entity Framework Core 113
Upgrading an Application from Entity Framework 6.x to Entity Framework Core 114
Limitations. . 115

8 Using Zen Data Providers in Visual Studio . 117
Adding Connections . 118

Adding Connections in Server Explorer. . 118
Adding Connections with the Data Source Configuration Wizard. 126

Using the Zen Performance Tuning Wizard . 128
Using Provider-Specific Templates . 130

Creating a New Project . 130
Adding a Template to an Existing Project. . 131

Using the Zen Visual Studio Wizards. . 132
Creating Tables with the Add Table Wizard . 132
Creating Views with the Add View Wizard . 135

Adding Components from the Toolbox . 138
Data Provider Integration Scenario . 139

9 Using the Microsoft Enterprise Libraries . 141
Using the Data Access Application Blocks in Applications

Data Access Application Blocks . 142

vi

When Should You Use the DAAB? . 142
Should You Use Generic or Database-specific Classes? . 142
Configuring the DAAB . 142
Using the DAAB in Application Code. . 144

Logging Application Blocks . 145
When Should You Use the LAB? . 145
Configuring the LAB . 145
Adding a New Logging Application Block Entry . 146
Using the LAB in Application Code . 146

Additional Resources . 148

A .NET Objects Supported . 149
Using the .NET Objects

.NET Base Classes . 150
Data Provider-Specific Classes. . 151

PsqlBulkCopy. . 151
PsqlBulkCopyColumnMapping . 151
PsqlBulkCopyColumnMappingCollection . 151
PsqlCommand Object . 152
PsqlCommandBuilder Object . 154
PsqlConnection Object . 155
PsqlConnectionStringBuilder Object . 157
PsqlCredential Object . 166
PsqlDataAdapter Object. . 167
PsqlDataReader Object . 168
PsqlError Object . 169
PsqlErrorCollection Object . 169
PsqlException Object . 170
PsqlFactory Object . 170
PsqlInfoMessageEventArgs Object. . 171
PsqlParameter Object . 171
PsqlParameterCollection Object . 172
PsqlTrace Object . 173
PsqlTransaction Object . 173

Zen Common Assembly Classes. . 175
CsvDataReader . 175
CsvDataWriter . 176
DbBulkCopy . 177
DbBulkCopyColumnMapping . 177
DbBulkCopyColumnMappingCollection . 177

B Getting Schema Information . 179
Finding and Returning Metadata for a Database

Columns Returned by the GetSchemaTable Method . 180
Retrieving Schema Metadata with the GetSchema Method . 182

MetaDataCollections Schema Collections. . 182
DataSourceInformation Schema Collection . 182
DataTypes Collection . 183
ReservedWords Collection . 185
Restrictions Collection . 185

Additional Schema Collections . 187
Columns Schema Collection . 187

vii

ForeignKeys Schema Collection . 188
Indexes Schema Collection . 190
PrimaryKeys Schema Collection . 190
ProcedureParameters Schema Collection . 191
Procedures Schema Collection . 193
TablePrivileges Schema Collection. . 194
Tables Schema Collection . 194
Views Schema Collection . 195

C SQL Escape Sequences for .NET . 197
Date, Time, and Timestamp Escape Sequences . 198
Scalar Functions . 199
Outer Join Escape Sequences . 200

D Locking and Isolation Levels . 201
Locking . 202
Isolation Levels . 203
Locking Modes and Levels . 205

E Designing .NET Applications for Performance Optimization 207
Retrieving Data . 208

Retrieving Long Data . 208
Reducing the Size of Data Retrieved . 208
Using CommandBuilder Objects. . 208
Choosing the Right Data Type . 209

Selecting .NET Objects and Methods . 210
Using Parameter Markers as Arguments to Stored Procedures. 210

 Designing .NET Applications . 211
Managing Connections . 211
Opening and Closing Connections . 211
Using Statement Caching . 212
Using Commands Multiple Times . 212
Using Native Managed Providers . 212

Updating Data . 213
Using the Disconnected DataSet . 213
Synchronizing Changes Back to the Data Source. . 213

F Using an .edmx File . 215
Code Examples . 216

G Bulk Load Configuration Files . 221
Sample Bulk Data Configuration File . 222
XML Schema Definition for a Bulk Data Configuration File. . 223

H IANA Code Page Mappings . 225

I Glossary . 227
.NET Architecture . 227
ADO.NET. . 227
ADO.NET Entity Framework . 227
assembly. . 227
bulk load . 227
client load balancing . 228

viii

code access security (CAS) . 228
common language runtime (CLR) . 228
connection failover. . 228
connection pooling . 228
connection retry . 228
Data Access Application Block (DAAB). . 228
destination table . 228
entity. . 228
global assembly cache (GAC). . 228
isolation level . 228
load balancing . 229
locking level. . 229
Logging Application Block (LAB) . 229
managed code . 229
namespace . 229
Performance Monitor . 229
stream . 229
schema collection . 230
strong name. . 230
unmanaged code . 230

ix

About This Document

This documentation covers the Zen ADO.NET data provider, Zen ADO.NET Entity Framework data
provider, and Zen ADO.NET Entity Framework Core data provider.

x

What Are the Zen Data Providers?

Zen ADO.NET data providers are managed data providers, built with 100% managed code. The data
providers are native wire protocol providers, which means that the provider does not have to call out to
unmanaged code, code outside of the .NET Framework, in the form of a database client unless your
application enlists in Microsoft Distributed Transaction Coordinator (MS DTC) coordinated
transactions.

The Zen ADO.NET data providers enable you to connect to Zen database engines. They work with both
32- and 64-bit .NET and are supported on all Zen supported Windows platforms.

See also ADO.NET Data Providers Installed with Zen and Zen ADO.NET Data Providers Available with
SDK Download.

xi

Using This Guide

We assume you are familiar with your operating system and its commands, the definition of directories,
and accessing a database through an end-user application.

This guide covers the following information:

 Quick Start provides information about connecting to a database with your .NET data provider.
 Using the Data Providers provides information about using .NET applications with the Zen data

provider and provides information about developing .NET applications in the .NET environment.
 Advanced Features describes advanced features of the data providers, including connection

pooling, statement caching, configuring security, and using Zen Bulk Load.
 The ADO.NET Data Providers describes connection string options, data types, and other

information for the Zen Entity Framework data provider.
 Zen ADO.NET Core Data Providers describes how to create an application and a UWP application

in Visual Studio using Zen ADO.NET Core DLL.
 Zen ADO.NET Entity Framework Data Providers describes features of the Zen ADO.NET Entity

Framework data provider. It explains how to create a Entity Data Model for the Zen ADO.NET
Entity Framework data provider.

 Zen ADO.NET Entity Framework Core Data Providers describes the Actian Zen ADO.NET Entity
Framework Core data provider and provides instructions on how to configure and use it.

 Using Zen Data Providers in Visual Studio describes how to use the Zen data provider and the
Performance Wizard from within Visual Studio.

 Using the Microsoft Enterprise Libraries describes how to configure the Data Access Application
Block and Logging Application Block, and use them in your application code.

 .NET Objects Supported provides the .NET public objects, properties, and methods supported by
the Zen data provider.

 Getting Schema Information describes the schema collections supported by the Zen data provider.
 SQL Escape Sequences for .NET describes the scalar functions supported for the Zen data provider.

Your data store may not support all of these functions.
 Locking and Isolation Levels discusses locking and isolation levels and how their settings can affect

the data you retrieve.
 Designing .NET Applications for Performance Optimization provides recommendations for

improving the performance of your applications by optimizing its code.
 Using an .edmx File explains the necessary changes to an .edmx file in order to provide Extended

Entity Framework functionality to the EDM layer.
 Bulk Load Configuration Files provides samples of the files created during bulk load operations.
 IANA Code Page Mappings maps the most widely used IBM code pages to IANA code page names.
 Glossary defines terms used in this guide.

Note: This guide refers the reader to online links for more information about specific topics. Because it
is the nature of web content to change frequently, we can guarantee only that the links referenced here
were correct at the time of publishing.

xii

Typographical Conventions

The documentation uses the following typographical conventions.

Convention Explanation

bold Bold typeface usually indicates elements of a graphical user interface, such as menu names,
dialog box names, commands, options, buttons, and so forth. Bold typeface is also applied
occasionally in a standard typographical use for emphasis.

italics Italics indicate a variable that must be replaced with an appropriate value. For example,
user_name would be replaced with an actual user name. Italics is also applied occasionally
in a standard typographical use for emphasis, such as for a book title.

cAsE Uppercase text is used typically to improve readability of code syntax, such as SQL syntax,
or examples of code. Case is significant for some operating systems. For such instances, the
subject content mentions whether literal text must be uppercase or lowercase.

monospace Monospace text is used typically to improve readability of syntax examples and code
examples, to indicate results returned from code execution, or for text displayed on a
command line. The text may appear uppercase or lowercase, depending on context.

', ", and “ ” Straight quotes, both single and double, are used in code and syntax examples to indicate
when a single or double quote is required. Curly double quotes are applied in the standard
typographical use for quotation marks.

| The vertical rule indicates an OR separator to delineate items for which you must choose one
item or another. See explanation for angle brackets below.

[] Square brackets indicate optional items. Code syntax not enclosed by brackets is required
syntax.

< > Angle brackets indicate that you must select one item within the brackets. For example, <yes
| no> means you must specify either “yes” or “no.”

. . . Ellipsis indicates that the preceding item can be repeated any number of times in succession.
For example, [parameter . . .] indicates that parameter can be repeated. Ellipsis following
brackets indicate the entire bracketed content can be repeated.

::= The symbol ::= means one item is defined in terms of another. For example, a::=b means that
item “a” is defined in terms of “b.”

%string% A variable defined by the Windows operating system. String represents the variable text. The
percent signs are literal text.

$string An environment variable defined by the Linux operating system. String represents the variable
text. The dollar sign is literal text.

1

c h a p t e r

1Quick Start

The following basic information enables you to connect to a database using the Zen ADO.NET data
providers immediately after their installation:

 ADO.NET Data Providers Installed with Zen
 Zen ADO.NET Data Providers Available with SDK Download
 Defining Basic Connection Strings
 Connecting to a Database
 Using the Zen ADO.NET Entity Framework Data Provider

To take full advantage of Zen ADO.NET data provider features, we recommend that you also read other
Zen ADO.NET topics documented here.

2

ADO.NET Data Providers Installed with Zen

This section describes the .NET Framework versions supported by the Zen ADO.NET data providers
installed with Zen v15. For a description of Zen ADO.NET data providers for .NET Core and Entity
Framework Core provided by downloading the SDK, see Zen ADO.NET Data Providers Available with
SDK Download.

Zen v15 provides two versions of the ADO.NET data providers: 4.4 and 4.5. All versions are installed by
default with the database engine.

If you are using ADO.NET without customization, then code written for earlier versions of the .NET
Framework and of the Zen data provider is compatible with Zen data provider 4.4 and 4.5.

Supported .NET Framework Versions

Zen ADO.NET Data Provider 4.4 and 4.5 add support for the combinations with Microsoft .NET
Framework and Microsoft Entity Framework as shown in the following table. Each row of the table
represents the compatible combinations of the supported versions of these three products.

To use Zen ADO.NET Entity Framework Provider 4.4 or 4.5, your applications must target .NET
Framework 4.5 or later.

All versions listed here apply to both 32- and 64-bit versions of .NET Framework.

Zen ADO.NET Entity Framework Provider 4.4 and 4.5 support Microsoft Entity Framework 6.1.

For more information on the Zen ADO.NET data providers, see the topic for each provider.

Zen Data
Provider for

Version Namespace Assembly File Name
(Installed by Zen)

Microsoft .NET
Framework

Microsoft Entity
Framework

ADO.NET 4.4 Pervasive.Data.
SqlClient

Pervasive.Data.SqlClient.dll 2.0, 3.0, 3.5, 3.5 SP1,
4.5, 4.5.1, 4.5.2, 4.6,
4.6.1, 4.6.2, 4.7,
4.7.1, 4.7.2, 4.8

—

ADO.NET 4.5 Pervasive.Data.
SqlClient

Pervasive.Data.SqlClient.dll 2.0, 3.0, 3.5, 3.5 SP1,
4.5, 4.5.1, 4.5.2, 4.6,
4.6.1, 4.6.2, 4.7,
4.7.1, 4.7.2, 4.8

—

ADO.NET Entity
Framework

4.4 Pervasive.Data.
SqlClient.Entity

Pervasive.Data.SqlClient.
Entity.dll

4.5, 4.5.1, 4.5.2, 4.6,
4.6.1, 4.6.2, 4.7,
4.7.1, 4.7.2, 4.8

6.1, 6.1.1, 6.1.2

ADO.NET Entity
Framework

4.5 Pervasive.Data.
SqlClient.Entity

Pervasive.Data.SqlClient.
Entity.dll

4.5, 4.5.1, 4.5.2, 4.6,
4.6.1, 4.6.2, 4.7,
4.7.1, 4.7.2, 4.8

6.1, 6.1.1, 6.1.2

3

Zen ADO.NET Data Providers Available with SDK Download

Beyond the ADO.NET data providers installed with Zen v15, additional providers are available to
support .NET Standard 2.0 compliant applications. These providers are listed in the following table and
made available as NuGet packages included in a downloadable SDK at the Actian website. As with the
versions of providers installed with Zen, the following table lists two versions for compliant applications.

Note The associated NuGet packages are available only in the downloadable SDK listed in the table.

Zen ADO.NET Entity Framework Core data providers require the Zen ADO.NET Core data provider of
the same version to be added to the application project.

For more information on the Zen ADO.NET Core data providers, see the topic for each provider.

Zen Data
Provider
for

Version Namespace Assembly File
Name

.NET EF
Core

NuGet Package (see
note)

SDK Download

ADO.NET
Core

4.4 Pervasive.Data.
SqlClient

Pervasive.Data.
SqlClientStd.dll

Core
2.0

— Pervasive.Data.SqlClientStd.
4.4.0.<build>.nupkg

Zen-SDK-
AdoNetDataProvider
4.4-NetStandard-
Windows-noarch-
<version>.zip

ADO.NET
Core

4.5 Pervasive.Data.
SqlClient

Pervasive.Data.
SqlClientStd.dll

Core
2.1,
6.0

— Pervasive.Data.SqlClientStd.
4.5.0.<build>.nupkg

Zen-SDK-
AdoNetDataProvider
4.5-NetStandard-
Windows-noarch-
<version>.zip

ADO.NET
Entity
Framework
Core

4.4 Actian.EntityFra
meworkCore.Zen

Actian.Entity
Framework
Core.Zen.dll

Core
2.0

3.1 Actian.EntityFrameworkCore
.Zen.4.4.0.<build>.nupkg

Zen-SDK-
AdoNetDataProvider
4.4-NetStandard-
Windows-noarch-
<version>.zip

ADO.NET
Entity
Framework
Core

4.5 Actian.EntityFra
meworkCore.Zen

Actian.Entity
Framework
Core.Zen.dll

Core
2.1,
6.0

3.1,
6.0

Actian.EntityFrameworkCore
.Zen.4.5.0.<build>.nupkg

Zen-SDK-
AdoNetDataProvider
4.5-NetStandard-
Windows-noarch-
<version>.zip

https://www.actian.com/data-management/psql-embedded-database

4

Defining Basic Connection Strings

The data provider uses a connection string to provide information needed to connect to a specific
database server. The connection information is defined by connection string options.

The Zen ADO.NET Entity Framework data provider can specify an existing connection in the Entity
Framework Wizard, or can define a new connection. The Zen ADO.NET Entity Framework uses
information contained in connection strings to connect to the underlying Zen ADO.NET data provider
that supports the Entity Framework. The connection strings also contain information about the required
model and mapping files. The data provider uses the connection string when accessing model and
mapping metadata and connecting to the data source.

The connection string options have the form:
"option name=value"

Each connection string option value pair is separated by a semicolon. For example,
"Server DSN=DEMODATA;UID=test;PWD=test;Host=localhost"

See Table 35 for detailed information about all of the supported connection string options.

Notes

 The spaces in the option names are optional.
 All connection string option names are case-insensitive. For example, User ID is the same as user id.

However, the values of some options, such as User ID and Password, might be case-sensitive.
 If the connection string does not specify a port number, the data provider uses 1583, the default port

number.

Table 1 gives the name and description for each option required for a minimum connection to a Zen
server.

Table 1 Minimum Connection String Options Required

Option Description

Server DSN Specifies the name of the data source on the server to which you want to connect, for example, DEMODATA.

Host Specifies the name or the IP address of the Zen server to which you want to connect. For example, you can
specify a server name such as Accountingserver or an IP address such as 199.226.22.34
(IPv4) or 1234:5678:0000:0000:0000:0000:9abc:def0 (IPv6).

The initial default value is localhost.

5

Connecting to a Database

Once your data provider is installed, you can connect from your application to your database with a
connection string. See Table 35 for a list of the connection string options.

Note: If your application uses the Zen ADO.NET Entity Framework, you can use the Entity Data Model
Wizard to create a new connection or use an existing connection. See Creating a Model for more
information.

Example: Using the Provider-Specific Objects

The following example uses the provider-specific objects to connect to a database using the Zen
ADO.NET data provider from an application developed in Visual Studio using C#.

1 In the Solution Explorer, right-click References and then select Add Reference.

2 In the Reference Manager wizard, click the Browse button and navigate to the folder that contains
the Zen data provider assembly.

3 Select Pervasive.Data.SqlClient.dll and click Add. The Browse tab of the Reference Manager
wizard lists the Zen data provider assembly in the Recent items.

4 Select it and click OK. The Solution Explorer now includes the Zen data provider.

6

5 Add the Zen data provider’s namespace to the beginning of your application, as shown in the
following C# code fragment:
// Access Zen

using System.Data;

using System.Data.Common;

using Pervasive.Data.SqlClient;

6 Add exception handling code and the connection information for your server:
PsqlConnection DBConn = new PsqlConnection("Server DSN=DEMODATA;Host=localhost");

try

{

 // Open the connection

 DBConn.Open();

 Console.WriteLine("Connection Successful!")

}

catch (PsqlException ex)

{

 // Connection failed

 writer.WriteLine(ex.Message);

}

7 Close the connection.
// Close the connection

DBConn.Close();

Example: Using the Common Programming Model

The following example illustrates connecting to a Zen database from an application developed in Visual
Studio using C# and the Common Programming Model.

1 Check the beginning of your application. Ensure that the ADO.NET namespaces are present.
// Access Zen using factory

7

using System.Data;

using System.Data.Common;

2 Add the connection information of your server and exception handling code and close the
connection.
DbProviderFactory

factory=DbProviderFactories("Pervasive.Data.SqlClient");

DbConnection Conn = factory.createConnection();

Conn.CommandText = "Server DSN=DEMODATA;Host=localhost;";

try

{

 Conn.Open();

 Console.WriteLine("Connection successful!");

}

catch (Exception ex)

{

 // Connection failed

 Console.WriteLine(ex.Message);

}

// Close the connection

Conn.Close();

Example: Using the Zen Common Assembly

You can optionally include the Zen Common Assembly if you want to use features such as Zen Bulk Load
in an application that conforms to the Common Programming Model. See Using Zen Bulk Load for
information about how to use Zen Bulk Load with your application.

The following example illustrates how to use the Zen Common Assembly in an application developed in
Visual Studio using C# and the Common Programming Model.

1 Check the beginning of your application. Ensure the .NET Framework and Zen data provider
namespaces are present.
// Access Zen using factory

using System.Data;

using System.Data.Common;

using Pervasive.Data.Common;

2 Add the connection information of your server and exception handling code and close the
connection.

// This code does a bulk copy operation from
// one database to another
DbProviderFactory Factory =

DbProviderFactories.GetFactory("Pervasive.Data.SqlClient");
DbConnection sourceConnection = Factory.CreateConnection();
sourceConnection.ConnectionString = "Host=localhost;Server DSN=DEMODATA;";

sourceConnection.Open();

DbCommand command = sourceConnection.CreateCommand();

8

command.CommandText = "SELECT * FROM test";
DbDataReader reader = command.ExecuteReader();

DbConnection destinationConnection = Factory.CreateConnection();
destinationConnection.ConnectionString =

 "Host= ntsl2003b;Server DSN=DEMODATA";
destinationConnection.Open();

DbBulkCopy bulkCopy = new DbBulkCopy(destinationConnection);
 bulkCopy.DestinationTableName = "test";
 try
 {
 bulkCopy.WriteToServer(reader);
 }//end try
 catch (DbException ex)
 {
 Console.WriteLine(ex.Message);
 }//end catch
 finally
 {
 reader.Close();
 MessageBox.Show("done");
 }//end finally

9

Using the Zen ADO.NET Entity Framework Data Provider

The Entity Data Model wizard asks questions that help you to define the components in your Entity Data
Model (EDM). The wizard then creates a model of your data in Visual Studio, and automatically sets
values for the components in the model. See Using an .edmx File for information about using the wizard
to create an EDM.

Alternatively, you can use other tools in Visual Studio to define values and connection strings manually.

Provider is an attribute of the Schema element in the storage model file of an EDM. The storage model
file is written in the store schema definition language (SSDL).

The Entity Data Model wizard assigns the value when you select the Zen ADO.NET Entity Framework
data provider. If you choose to manually define an Entity Data Model, assign the string
Pervasive.Data.SqlClient to the Provider attribute of the Schema element, as shown in the following
example:
<Schema Namespace="AdventureWorksModel.Store" Alias="Self"
Provider="Pervasive.Data.SqlClient" ProviderManifestToken="Zen"
xmlns:store="http://schemas.microsoft.com/ado/2007/12/edm/EntityStoreSchemaGenerato
r" xmlns="http://schemas.microsoft.com/ado/2006/04/edm/ssdl">

10

11

c h a p t e r

2Using the Data Providers

The Zen data providers provide data access to any .NET-enabled application or application server. The
data providers delivers high-performance point-to-point and n-tier access to industry-leading data
stores across the Internet and intranets. Because they are optimized for the .NET environment, the data
providers allow you to incorporate .NET technology and extend the functionality and performance of
your existing system.

See Advanced Features for information on advanced features such as connection pooling, statement
caching, configuring security, Zen Bulk Load, and diagnostic support.

See The ADO.NET Data Providers for information about using the Zen ADO.NET data provider in the
standard Zen ADO.NET environment.

See Zen ADO.NET Entity Framework Data Providers for information about using the data provider
with the Zen ADO.NET Entity Framework.

12

About the Data Providers

Zen data providers are built with 100% managed code, so they can run and connect to the database
entirely within the common language runtime (CLR).

Code that runs in the native operating system, such as client libraries and COM components, is called
unmanaged code. You can mix managed and unmanaged code within a single application. However,
unmanaged code reaches outside the CLR, which means that it effectively increases complexity, reduces
performance, and opens possible security risks.

13

Using Connection Strings

You can define the behavior of a connection using a connection string or the properties of the
PsqlConnection object.

However, values set in the connection string cannot be changed by the connection properties.

The basic format of a connection string includes a series of keyword/value pairs separated by
semicolons. The following example shows the keywords and values for a simple connection string for
the Zen data provider:
"Server DSN=SERVERDEMO;Host=localhost"

Guidelines

Use the following guidelines when specifying a connection string:

 The spaces in the connection string option names are required.
 All connection string option names are case-insensitive. For example, Password is the same as

password. However, the values of options such as User ID and Password may be case-sensitive.
 To include values that contain a semicolon, single quote, or double quotes, enclose the value in

double quotes. If the value contains both a semicolon and double quotes, use single quotes to enclose
the value.

 You can also use single quotes when the value starts with a double quote. Conversely, double quotes
can be used if the value starts with a single quote. If the value contains both single quotes and double
quotes, the character used to enclose the value must be doubled every time it occurs within the value.

 To include leading or trailing spaces in the string value, the value must be enclosed in either single
quotes or double quotes. Any leading or trailing spaces around integer, Boolean, or enumerated
values are ignored, even if enclosed in single or double quotes. However, spaces within a string literal
keyword or value are preserved. Single or double quotes can be used within a connection string
without using delimiters (for example, Data Source= my'Server or Data Source= my"Server),
unless it is the first or last character in the value.

 Special characters can be used in the value of the connection string option. To escape special
characters, surround the value in single or double quotes.

 The Equals character (=) can also be repeated within the connection string. For example:
Initialization String=update mytable set col1 == 'foo'"

 If the connection string contains invalid connection string options, the connection attempt returns
an error. For example, an error is returned if you specify a value for Load Balancing when Alternate
Servers has not been defined.

 If the connection string contains duplicated connection string options, the data provider uses the
connection string option that appears last in the connection string. For example, Connection
Timeout appears twice in the following connection string, with different values. The data provider
uses the second value and waits 35 seconds before terminating an attempted connection:
"Server DSN=SERVERDEMO;Host=localhost;Connection Timeout=15;Min Pool

Size=50;Connection Timeout=35"

See Table 35 for a list of the supported connection string options.

14

Using the Zen Performance Tuning Wizard

You can use the Performance Wizard to select the optimal connection string options for both the Zen
ADO.NET data provider or the Zen ADO.NET Entity Framework data provider.

See Using the Zen Performance Tuning Wizard for more information.

15

Stored Procedures

To enable stored procedures in the application, do the following:

 Set the CommandText property in the PsqlCommand object to the stored procedure name.
MyCommand.CommandText = "GetEmpSalary";

 Set the CommandType property in the PsqlCommand object to StoredProcedure.
MyCommand.CommandType = CommandType.StoredProcedure;

 Specify parameter arguments, if needed. The application should add the parameters to the
parameter collection of the PsqlCommand object in the order of the arguments to the stored
procedure. The application does not need to specify the parameter markers in the CommandText
property of the PsqlCommand object.

To retrieve the return value from a stored procedure, the application should add an extra parameter to
the parameter collection for the PsqlCommand object. This parameter’s ParameterDirection property
should be set to ParameterDirection.ReturnValue. The return value parameter can be anywhere in the
parameter collection because it does not correspond to a specific parameter marker in the Text property
of the PsqlCommand object.

If the stored procedure does not produce a return value, parameters bound with the ParameterDirection
property as ReturnValue are ignored.

If the stored procedure returns a ReturnValue from the database and the application has not bound a
parameter for it, the data provider discards the value.

Note for Zen ADO.NET Entity Framework Users: The PsqlConnection object includes properties and
methods that provide enhanced statistics functionality. The methods and properties are standard in the
Zen ADO.NET data provider but are not available at the Zen ADO.NET Entity Framework layer.
Instead, the Zen ADO.NET Entity Framework data provider exposes the same functionality through
"pseudo" stored procedures. See Using Stored Procedures with the ADO.NET Entity Framework for
more information.

16

Using IP Addresses

The data providers support Internet Protocol (IP) addresses in IPv4 and IPv6 formats. If your network
supports named servers, the server name specified in the data source can resolve to an IPv4 or an IPv6
address.

The EnableIPv6 connection string option, when set to True, allows a client with IPv6 protocol installed
to connect to the server using either an IPv4 address or an IPv6 address. For more information about
IPv6 formats, see IPv6 in Getting Started with Zen.

17

Transaction Support

Zen data providers use only 100% managed code to support the transactions, which are implemented
entirely within the .NET Framework.

Using Local Transactions

Local transactions use the internal transaction manager of the underlying database.

The application creates a PsqlTransaction object by calling BeginTransaction on the PsqlConnection
object. Subsequent operations, such as committing or aborting the transaction, are performed on the
PsqlTransaction object.

18

Thread Support

The PsqlConnection object is thread-safe. Multiple PsqlCommand objects, each accessed on a separate
thread, can simultaneously use a single connection.

Accessing other public and data provider-specific objects simultaneously on separate threads is not
thread-safe.

19

Unicode Support

The data provider supports Unicode as specified in the .NET Framework SDK. Effectively, this means
that the data provider uses Unicode UTF-16 encoding to represent characters.

The data provider converts UTF-16 characters to the format used by the database, and returns .NET
Framework strings to the application. For example, if a Zen database code page is in extended ASCII
format, the data provider uses extended ASCII to represent characters sent to the database. The data
provider then converts the extended ASCII characters returned before sending them back to the
application.

For more information about the .NET Framework implementation of Unicode and international
characters, refer to the Microsoft .NET Framework SDK documentation.

20

Isolation Levels

Zen supports the ReadCommitted and Serializable isolation levels. It supports record-level locking. See
Locking and Isolation Levels for details.

21

SQL Escape Sequences

See SQL Escape Sequences for .NET for information about the SQL escape sequences supported by the
Zen data provider.

22

Event Handling

The event handler receives an argument of type PsqlInfoMessageEventArgs, which contains data
relevant to an event. See PsqlInfoMessageEventArgs Object for more information.

This event is defined as:
public event PsqlInfoMessageEventHandler InfoMessage;

Clients that want to process warnings and informational messages sent by the database server should
create an PsqlInfoMessageEventHandler delegate to listen to this event.

You can use these events to capture failures that can occur when creating packages, stored procedures,
or stored functions, which all create commands. If Zen encounters errors when compiling a command
created by a package, stored procedure, or stored function, the object is created, even though it is not
valid. An event will be sent, indicating the failure.

The following code fragment defines a delegate that represents the method that handles the InfoMessage
event of a PsqlConnection object:
[Serializable]
public delegate void PsqlInfoMessageEventHandler(
 object sender
 PsqlInfoMessageEventArgs e
);

where sender is the object that generated the event and e is an PsqlInfoMessageEventArgs object that
describes the warning. For more information on Events and Delegates, refer to the .NET Framework
SDK documentation.

23

Error Handling

The PsqlError object collects information relevant to errors and warnings generated by the Zen server.
See PsqlError Object for more information.

The PsqlException object is created and thrown when the Zen server returns an error. Exceptions
generated by the data provider are returned as standard run time exceptions. See PsqlException Object
for more information.

24

Using .NET Objects

The data provider supports the .NET public objects, exposing them as sealed objects.

See .NET Objects Supported for more information.

25

Developing Applications for .NET

Developers of data consumer applications must be familiar with the Microsoft .NET specification and
object-oriented programming techniques.

Microsoft also provides extensive information about ADO.NET online, including the following articles:

 Upgrading to Microsoft .NET: ADO.NET for the ADO Programmer
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndotnet/html/upgradingtodotnet.asp

 Using .NET Framework Data Providers to Access Data
http://msdn2.microsoft.com/en-us/library/s7ee2dwt(vs.71).aspx

 Generic Coding with the ADO.NET 2.0 Base Classes and Factories
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvs05/html/vsgenerics.asp

 Security Policy Best Practices
http://msdn.microsoft.com/en-us/library/sa4se9bc(v=vs.100).aspx

 Writing Serviced Components
http://msdn2.microsoft.com/en-us/library/3x7357ez(vs.71).aspx

 DataSets, DataTables, and DataViews
http://msdn.microsoft.com/en-us/library/ss7fbaez(vs.110).aspx

 Using XML in a DataSet
http://msdn.microsoft.com/en-us/library/84sxtbxh(v=vs.110).aspx

http://msdn.microsoft.com/en-us/library/ss7fbaez(vs.110).aspx
http://msdn.microsoft.com/en-us/library/84sxtbxh(v=vs.110).aspx
http://msdn2.microsoft.com/en-us/library/aa302323.aspx
http://msdn2.microsoft.com/en-us/library/aa302323.aspx
http://msdn2.microsoft.com/en-us/library/s7ee2dwt(vs.71).aspx
http://msdn2.microsoft.com/en-us/library/ms379620(VS.80).aspx
http://msdn.microsoft.com/en-us/library/sa4se9bc(v=vs.100).aspx
http://msdn2.microsoft.com/en-us/library/3x7357ez(vs.71).aspx

26

27

c h a p t e r

3Advanced Features

The following topics describe advanced features of the data provider:

 Using Connection Pooling
 Using Statement Caching
 Using Connection Failover
 Using Client Load Balancing
 Using Connection Retry
 Setting Security
 Using Zen Bulk Load
 Using Diagnostic Features

28

Using Connection Pooling

Connection pooling allows you to reuse connections rather than creating a new one every time the data
provider needs to establish a connection to the underlying database. The data provider automatically
enables connection pooling for your .NET client application.

You can control connection pooling behavior by using connection string options. For example, you can
define the number of connection pools, the number of connections in a pool, and the number of seconds
before a connection is discarded.

Connection pooling in ADO.NET is not provided by the .NET Framework. It must be implemented in
the ADO.NET data provider itself.

Creating a Connection Pool

Each connection pool is associated with a specific connection string. By default, when the first
connection with a unique connection string connects to the database, the connection pool is created.
The pool is populated with connections up to the minimum pool size. Additional connections can be
added until the pool reaches the maximum pool size.

The pool remains active as long as any connections remain open, either in the pool or used by an
application with a reference to a Connection object that has an open connection.

If a new connection is opened and the connection string does not match an existing pool, a new pool
must be created. By using the same connection string, you can enhance the performance and scalability
of your application.

In the following C# code fragments, three new PsqlConnection objects are created, but only two
connection pools are required to manage them. Note that the first and second connection strings differ
only by the values assigned for User ID and Password, and by the value of the Min Pool Size option.
DbProviderFactory Factory =
DbProviderFactories.GetFactory("Pervasive.Data.SqlClient");

DbConnection conn1 = Factory.CreateConnection();

conn1.ConnectionString = "Server DSN=DEMODATA;User ID=test;
Password = test; Host = localhost;MinPoolSize=5 ";

conn1.Open();
// Pool A is created.

DbConnection conn2 = Factory.CreateConnection();
conn2.ConnectionString = "Server DSN=DEMODATA2;User ID=lucy;

Password = quake; Host = localhost;MinPoolSize=10 ";

conn2.Open();
// Pool B is created because the connection strings differ.
DbConnection conn3 = Factory.CreateConnection();
conn3.ConnectionString = "Server DSN=DEMODATA;User ID=test;

Password = test; Host = localhost;MinPoolSize=5 ";
conn3.Open();
// conn3 goes into Pool A with conn1.

Adding Connections to a Pool

A connection pool is created in the process of creating each unique connection string that an application
uses. When a pool is created, it is populated with enough connections to satisfy the minimum pool size

29

requirement, set by the Min Pool Size connection string option. If an application is using more
connections than Min Pool Size, the data provider allocates additional connections to the pool up to the
value of the Max Pool Size connection string option, which sets the maximum number of connections
in the pool.

When a Connection object is requested by the application calling the Connection.Open(…) method, the
connection is obtained from the pool, if a usable connection is available. A usable connection is defined
as a connection that is not currently in use by another valid Connection object, has a matching
distributed transaction context (if applicable), and has a valid link to the server.

If the maximum pool size has been reached and no usable connection is available, the request is queued
in the data provider. The data provider waits for the value of the Connection Timeout connection string
option for a usable connection to return to the application. If this time period expires and no connection
has become available, then the data provider returns an error to the application.

You can allow the data provider to create more connections than the specified maximum pool size
without affecting the number of connections pooled. This may be useful, for example, to handle
occasional spikes in connection requests. By setting the Max Pool Size Behavior connection string
option to SoftCap, the number of connections created can exceed the value set for Max Pool Size, but the
number of connections pooled does not. When the maximum connections for the pool are in use, the
data provider creates a new connection. If a connection is returned and the pool contains idle
connections, the pooling mechanism selects a connection to be discarded so that the connection pool
never exceeds the Max Pool Size. If Max Pool Size Behavior is set to HardCap, the number of connections
created does not exceed the value set for Max Pool Size.

Important: Closing the connection using the Close() or Dispose() method of the PsqlConnection object
adds or returns the connection to the pool. When the application uses the Close() method, the
connection string settings remain as they were before the Open() method was called. If you use the
Dispose method to close the connection, the connection string settings are cleared, and the default
settings are restored.

Removing Connections from a Pool

A connection is removed from a connection pool when it either exceeds its lifetime as determined by the
Load Balance Timeout connection string option, or when a new connection that has a matching
connection string is initiated by the application (PsqlConnection.Open() is called).

Before returning a connection from the connection pool to an application, the Pool Manager checks to
see if the connection has been closed at the server. If the connection is no longer valid, the Pool Manager
discards it, and returns another connection from the pool, if one is available and valid.

You can control the order in which a connection is removed from the connection pool for reuse, based
on how frequently or how recently the connection has been used, with the Connection Pool Behavior
connection string option. For a balanced use of connections, use the LeastFrequentlyUsed or
LeastRecentlyUsed values. Alternatively, for applications that perform better when they use the same
connection every time, you can use the MostFrequentlyUsed or MostRecentlyUsed values.

The ClearPool and ClearAllPools methods of the Connection object remove all connections from
connection pools. ClearPool clears the connection pool associated with a specific connection. In
contrast, ClearAllPools clears all of the connection pools used by the data provider. Connections that are
in use when the method is called are discarded when they are closed.

30

Note: By default, if discarding an invalid connection causes the number of connections to drop below
the number specified in the Min Pool Size attribute, a new connection will not be created until an
application needs one.

Handling Dead Connection in a Pool

What happens when an idle connection loses its physical connection to the database? For example,
suppose the database server is rebooted or the network experiences a temporary interruption. An
application that attempts to connect using an existing Connection object from a pool could receive
errors because the physical connection to the database has been lost.

The Control Center handles this situation transparently to the user. The application does not receive any
errors on the Connection.Open() attempt because the data provider simply returns a connection from a
connection pool. The first time the Connection object is used to execute a SQL statement (for example,
through the Execute method on the Command object), the data provider detects that the physical
connection to the server has been lost and attempts to reconnect to the server before executing the SQL
statement. If the data provider can reconnect to the server, the result of the SQL execution is returned to
the application; no errors are returned to the application. The data provider uses the connection failover
options, if enabled, when attempting this seamless reconnection. See Using Connection Failover for
information about configuring the data provider to connect to a backup server when the primary server
is not available.

Note: Because the data provider can attempt to reconnect to the database server when executing SQL
statements, connection errors can be returned to the application when a statement is executed. If the data
provider cannot reconnect to the server (for example, because the server is still down), the execution
method throws an error indicating that the reconnect attempt failed, along with specifics about the
reason the connection failed.

This technique for handling dead connections in connection pools allows for the maximum
performance out of the connection pooling mechanism. Some data providers periodically ping the
server with a dummy SQL statement while the connections sit idle. Other data providers ping the server
when the application requests the use of the connection from the connection pool. Both of these
approaches add round trips to the database server and ultimately slow down the application during
normal operation of the application is occurring.

Tracking Connection Pool Performance

The data providers install a set of PerfMon counters that let you tune and debug applications that use the
data provider. See PerfMon Support for information about using the PerfMon counters.

31

Using Statement Caching

A statement cache is a group of prepared statements or instances of Command objects that can be reused
by an application. Using statement caching can improve application performance because the actions on
the prepared statement are performed once even though the statement is reused multiple times over an
application’s lifetime. You can analyze the effectiveness of the statements in the cache (see Analyzing
Performance With Connection Statistics).

A statement cache is owned by a physical connection. After being executed, a prepared statement is
placed in the statement cache and remains there until the connection is closed.

Statement caching can be used across multiple data sources and can be used beneath abstraction
technologies such as the Microsoft Enterprise Libraries with the Data Access Application Blocks.

Enabling Statement Caching

By default, statement caching is not enabled. To enable statement caching for existing applications, set
the Statement Cache Mode connection string option to Auto. In this case, all statements are eligible to
be placed in the statement cache.

You can also configure statement caching so that only statements that you explicitly mark to be cached
are placed in the statement cache. To do this, set the StatementCacheBehavior property of the statement’s
Command object to Cache and set the Statement Cache Mode connection string option to ExplicitOnly.

Table 2 summarizes the statement caching settings and their effects.

Choosing a Statement Caching Strategy

Statement caching provides performance gains for applications that reuse prepared statements multiple
times over the lifetime of an application. You set the size of the statement cache with the Max Statement
Cache Size connection string option. If space in the statement cache is limited, do not cache prepared
statements that are used only once.

Caching all of the prepared statements that an application uses might appear to offer the best
performance. However, this approach may come at a cost of database memory if you implement
statement caching with connection pooling. In this case, each pooled connection has its own statement
cache that may contain all of the prepared statements used by the application. All of these pooled
prepared statements are also maintained in the database’s memory.

Table 2 Summary of Statement Cache Behavior

Behavior StatementCacheBehavior Statement Cache Mode

Explicitly add the statement to the statement cache. Cache ExplicitOnly (the default)

Add the statement to the statement cache. If necessary, the
statement is removed to make room for a statement marked
Cache.

Implicit (the default) Auto

Specifically exclude the statement from the statement cache. DoNotCache Auto or ExplicitOnly

32

Using Connection Failover

Connection failover allows an application to connect to an alternate, or backup, database server if the
primary database is unavailable, for example, because of a hardware failure or traffic overload.
Connection failover ensures that the data on which your critical .NET applications depend is always
available.

You can customize the data provider for connection failover by configuring a list of alternate databases
that are tried if the primary server is not accepting connections. Connection attempts continue until a
connection is successfully established or until all of the alternate databases have been tried the specified
number of times.

For example, Figure 1 shows an environment with multiple database servers. Database Server A is
designated as the primary database server, Database Server B is the first alternate server, and Database
Server C is the second alternate server.

Figure 1 Connection Failover

First, the application attempts to connect to the primary database, Database Server A (1). If connection
failover is enabled and Database Server A fails to accept the connection, the application attempts to
connect to Database Server B (2). If that connection attempt also fails, the application attempts to
connect to Database Server C (3).

In this scenario, it is probable that at least one connection attempt would succeed, but if no connection
attempt succeeds, the data provider can retry the primary server and each alternate database for a
specified number of attempts. You can specify the number of attempts that are made through the
connection retry feature. You can also specify the number of seconds of delay, if any, between attempts
through the connection delay feature. For more information about connection retry, see Using
Connection Retry.

The data provider fails over to the next alternate server only if it cannot establish communication with
the current alternate server. If the data provider successfully establishes communication with a database
and the database rejects the connection request because, for example, the login information is invalid,
then the data provider generates an exception and does not try to connect to the next database in the list.
It is assumed that each alternate server is a mirror of the primary and that all authentication parameters
and other related information are the same.

Connection failover provides protection for new connections only and does not preserve states for
transactions or queries. For details on configuring connection failover for your data provider, see
Configuring Connection Failover.

33

Using Client Load Balancing

Client load balancing works with connection failover to distribute new connections in your environment
so that no one server is overwhelmed with connection requests. When both connection failover and
client load balancing are enabled, the order in which primary and alternate databases are tried is
random.

For example, suppose that client load balancing is enabled as shown in Figure 2:

Figure 2 Client Load Balancing Example

First, Database Server B is tried (1). Then, Database Server C may be tried (2), followed by a connection
attempt to Database Server A (3); subsequent connection attempts use this same sequence. In contrast,
if client load balancing was not enabled in this scenario, each database would be tried in sequential order,
primary server first, then alternate servers based on their entry order in the alternate servers list.

For details on configuring client and load balancing for your data provider, see Configuring Connection
Failover.

34

Using Connection Retry

Connection retry defines the number of times that the data provider attempts to connect to the primary,
and, if configured, alternate database servers after the first unsuccessful connection attempt. Connection
retry can be an important strategy for system recovery. For example, suppose you have a power failure
scenario in which both the client and the server fail. When the power is restored and all computers are
restarted, the client may be ready to attempt a connection before the server has completed its startup
routines. If connection retry is enabled, the client application can continue to retry the connection until
a connection is successfully accepted by the server.

Connection retry can be used in environments that only have one server or can be used as a
complementary feature in connection failover scenarios with multiple servers.

Using connection string options, you can specify the number of times the data provider attempts to
connect and the time in seconds between connection attempts. For details on configuring connection
retry, see Configuring Connection Failover.

35

Configuring Connection Failover

Connection failover allows an application to connect to an alternate, or backup, database server if the
primary database server is unavailable, for example, because of a hardware failure or traffic overload.

See Using Connection Failover for more information about connection failover.

To configure connection failover to another server, you must specify a list of alternate database servers
that are tried at connection time if the primary server is not accepting connections. To do this, use the
Alternate Servers connection string option. Connection attempts continue until a connection is
successfully established or until all the databases in the list have been tried once (the default).

Optionally, you can specify the following additional connection failover features:

 The number of times the data provider attempts to connect to the primary and alternate servers after
the initial connection attempt. By default, the data provider does not retry. To set this feature, use
the Connection Retry Count connection string option.

 The wait interval, in seconds, used between attempts to connect to the primary and alternate servers.
The default interval is 3 seconds. To set this feature, use the Connection Retry Delay connection
option.

 Whether the data provider will use load balancing in its attempts to connect to primary and alternate
servers. If load balancing is enabled, the data provider uses a random pattern instead of a sequential
pattern in its attempts to connect. The default value is not to use load balancing. To set this feature,
use the Load Balancing connection string option.

You use a connection string to direct the data provider to use connection failover. See Using Connection
Strings.

The following C# code fragment includes a connection string that configures the data provider to use
connection failover in conjunction with all of its optional features – load balancing, connection retry,
and connection retry delay:
Conn = new PsqlConnection Conn = new PsqlConnection();
Conn = new PsqlConnection("Host=myServer;User ID=test;Password=secret;

Server DSN=SERVERDEMO;Alternate Servers="Host=AcctServer, Host=AcctServer2";
Connection Retry Count=4;Connection Retry Delay=5;Load Balancing=true;
Connection Timeout=60")

Specifically, this connection string configures the data provider to use two alternate servers as
connection failover servers, to attempt to connect four additional times if the initial attempt fails, to wait
five seconds between attempts, and to try the primary and alternate servers in a random order. Each
connection attempt lasts for 60 seconds, and uses the same random order that was established on the
first retry.

36

Setting Security

The data provider supports Encrypted Network Communications, also known as wire encryption, on
connections. By default, the data provider reflects the server's setting. See Table 35 for more information
on encryption settings.

The level of encryption allowed by the data provider depends on the encryption module used. With the
default encryption module, the data provider supports 40-, 56-, and 128-bit encryption.

Data encryption may adversely affect performance because of the additional overhead, mainly CPU
usage, required to encrypt and decrypt data.

In addition to encryption, the Control Center implements security through the security permissions
defined by the .NET Framework.

Code Access Permissions

The data provider requires the FullTrust permission to be set in order to load and run. This requirement
is due to underlying classes in System.Data that demand FullTrust for inheritance. All ADO.NET data
providers require these classes to implement a DataAdapter.

Security Attributes

The data provider is marked with the AllowPartiallyTrustedCallers attribute.

37

Using Zen Bulk Load

Zen Bulk Load offers a one-stop approach for all of your bulk load needs, with a simple, consistent way
to do bulk load operations for Zen and for all of the DataDirect Connect products that support this bulk
load feature. This means that you can write your bulk load applications using the standards-based API
bulk interfaces, and then, just plug in the database data providers or drivers to do the work for you.

Suppose you need to load data into Zen, Oracle, DB2, and Sybase. In the past, you probably had to use
a proprietary tool from each database vendor for bulk load operations, or write your own tool. Now,
because of the interoperability built into Zen Bulk Load, your task is much easier. Another advantage is
that Zen Bulk Load uses 100% managed code, and requires no underlying utilities or libraries from other
vendors.

Bulk load operations between dissimilar data stores are accomplished by persisting the results of the
query in a comma-separated value (CSV) format file, a bulk load data file. The file can be used between
the Control Center and any DataDirect Connect for Zen ADO.NET data providers that support bulk
load. In addition, the bulk load data file can be used with any DataDirect Connect product driver or data
provider that supports the Bulk load functionality. For example, the CSV file generated by the Zen data
provider can be used by a DataDirect Connect for ODBC driver that supports bulk load.

Use Scenarios for Zen Bulk Load

You can use Zen Bulk Load with the Control Center in two ways:

 Upgrade to a new Zen version and copy data from the old Zen data source to the new one, as shown
in Figure 3.

Figure 3 Using Zen Bulk Load Between Two Data Sources

 Export data from a database and migrate the results to a Zen database. Figure 4 shows an ODBC
environment copying data to an Zen ADO.NET database server.

Figure 4 Copying Data from ODBC to ADO.NET

38

In this figure, the ODBC application includes code to export data to the CSV file, and the ADO.NET
application includes code to specify and open the CSV file. Because the Control Center and the
DataDirect ODBC drivers use a consistent format, interoperability is supported via these standard
interfaces.

Zen Common Assembly

The Zen Bulk Load implementation for ADO.NET uses the de facto standard defined by the Microsoft
SqlBulkCopy classes, and adds powerful built-in features to enhance interoperability as well as the
flexibility to make bulk operations more reliable.

The data provider includes provider-specific classes to support Zen Bulk Load. See Data Provider-
Specific Classes for more information. If you use the Common Programming Model, you can use the
classes in the Zen Common Assembly (see Zen Common Assembly Classes).

The Pervasive.Data.Common assembly includes classes that support Zen Bulk Load, such as the
CsvDataReader and CsvDataWriter classes that provide functionality between bulk data formats.

The Common assembly also extends support for bulk load classes that use the Common Programming
Model. This means that the SqlBulkCopy patterns can now be used in a new DbBulkCopy hierarchy.

Future versions of the data provider will include other features that enhance the Common Programming
Model experience. See Zen Common Assembly Classes for more information on the classes supported
by the Pervasive.Data.Common assembly.

Bulk Load Data File

The results of queries between dissimilar data stores are persisted in a comma-separated value (CSV)
format file, a bulk load data file. The file name, which is defined by the BulkFile property, is using for
writing and reading the bulk data. If the file name does not contain an extension, the ".csv" extension is
assumed.

Example

The Zen source table GBMAXTABLE contains four columns. The following C# code fragment writes
the GBMAXTABLE.csv and GBMAXTABLE.xml files that will be created by the CsvDataWriter. Note
that this example uses the DbDataReader class.
cmd.CommandText = "SELECT * FROM GBMAXTABLE ORDER BY INTEGERCOL";
DbDataReader reader = cmd.ExecuteReader();
CsvDataWriter csvWriter = new CsvDataWriter();
csvWriter.WriteToFile("\\NC1\net\Zen\GBMAXTABLE\GBMAXTABLE.csv", reader);

The bulk load data file GBMAXTABLE.csv contains the results of the query:
1,0x6263,"bc","bc"
2,0x636465,"cde","cde"
3,0x64656667,"defg","defg"
4,0x6566676869,"efghi","efghi"
5,0x666768696a6b,"fghijk","fghijk"
6,0x6768696a6b6c6d,"ghijklm","ghijklm"
7,0x68696a6b6c6d6e6f,"hijklmno","hijklmno"
8,0x696a6b6c6d6e6f7071,"ijklmnopq","ijklmnopq"
9,0x6a6b6c6d6e6f70717273,"jklmnopqrs","jklmnopqrs"
10,0x6b,"k","k"

39

The GBMAXTABLE.xml file, which is the bulk load configuration file that provides the format of this
bulk load data file, is described in the following section.

Bulk Load Configuration File

A bulk load configuration file is produced when the CsvDataWriter.WriteToFile method is called (see
CsvDataWriter for more information).

The bulk load configuration file defines the names and data types of the columns in the bulk load data
file. These names and data types are defined the same way as the table or result set from which the data
was exported.

If the bulk data file cannot be created or does not comply with the schema described in the XML
configuration file, an exception is thrown. See XML Schema Definition for a Bulk Data Configuration
File for more information about using an XML schema definition.

If a bulk load data file that does not have a configuration file is read, the following defaults are assumed:

 All data is read in as character data. Each value between commas is read as character data.
 The default character set is the character set of the platform on which the Bulk Load CSV file is being

read. See Character Set Conversions for more information.

The bulk load configuration file describes the bulk data file and is supported by an underlying XML
schema.

Example

The format of the bulk load data file shown in the previous section is defined by the bulk load
configuration file, GBMAXTABLE.xml. The file describes the data type and other information about
each of the four columns in the table.
<?xml version="1.0" encoding="utf-8"?>
<table codepage="UTF-16LE"

xsi:noNamespaceSchemaLocation="http://www.datadirect.com/ns/bulk/BulkData.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <row>
 <column datatype="DECIMAL" precision="38" scale="0" nullable=

 "false">INTEGERCOL</column>
 <column datatype="VARBINARY" length="10" nullable=

 "true">VARBINCOL</column>
 <column datatype="VARCHAR" length="10" sourcecodepage="Windows-1252"

 externalfilecodepage="Windows-1252" nullable="true">VCHARCOL</column>
 <column datatype="VARCHAR" length="10" sourcecodepage="Windows-1252"

 externalfilecodepage="Windows-1252" nullable="true">UNIVCHARCOL</column>
 </row>
</table>

Determining the Bulk Load Protocol

Bulk operations can be performed using dedicated bulk protocol, that is, the data provider uses the
protocol of the underlying database. In some cases, the dedicated bulk protocol is not available, for
example, when the data to be loaded is in a data type not supported by the dedicated bulk protocol. Then,
the data provider automatically uses a non-bulk method such as array binding to perform the bulk
operation, maintaining optimal application uptime.

40

Character Set Conversions

At times, you might need to bulk load data between databases that use different character sets.

For the Control Center, the default source character data, that is, the output from the CsvDataReader
and the input to the CsvDataWriter, is in Unicode (UTF-16) format. The source character data is always
transliterated to the code page of the CSV file. If the threshold is exceeded and data is written to the
external overflow file, the source character data is transliterated to the code page specified by the
externalfilecodepage attribute defined in the bulk configuration XML schema (see XML Schema
Definition for a Bulk Data Configuration File). If the configuration file does not define a value for
externalfilecodepage, the CSV file code page is used.

To avoid unnecessary transliteration, it's best for the CSV and external file character data to be stored in
Unicode (UTF-16). You might want your applications to store the data in another code page in one of
the following scenarios:

 The data will be written by ADO.NET and read by ODBC. In this case, the read (and associated
transliteration) is done by ODBC. If the character data is already in the correct code page, no
transliteration is necessary.

 Space is a consideration. Depending on the code page, the character data could be represented more
compactly. For example, ASCII data is a single byte per character, UTF-16 is 2 bytes per character).

The configuration file may optionally define a second code page for each character column. When
character data exceeds the value defined by the CharacterThreshold property and is stored in a separate
file (see External Overflow File), the value defines the code page for that file.

If the value is omitted or if the code page defined by the source column is unknown, the code page
defined for the CSV file will be used.

External Overflow File

If the value of the BinaryThreshold or CharacterThreshold property of the CsvDataWriter object is
exceeded, separate files are generated to store the binary or character data. These overflow files are
located in the same directory as the bulk data file.

If the overflow file contains character data, the character set of the file is governed by the character set
specified in the CSV bulk configuration file.

The filename contains the CSV filename and a ".lob" extension (for example,
CSV_filename_nnnnnn.lob). These files exist in the same location as the CSV file. Increments start at
_000001.lob.

Bulk Copy Operations and Transactions

By default, bulk copy operations are performed as isolated operations and are not part of a transaction.
This means there is no opportunity for rolling the operation back if an error occurs.

Zen allows bulk copy operations to take place within an existing transaction. You can define the bulk
copy operation to be part of a transaction that occurs in multiple steps. Using this approach enables you
to perform more than one bulk copy operation within the same transaction, and commit or roll back the
entire transaction.

Refer to the Microsoft online help topic "Transaction and Bulk Copy Operations (ADO.NET)" for
information about rolling back all or part of the bulk copy operation when an error occurs.

41

Using Diagnostic Features

The .NET Framework provides a Trace class that can help end users identify the problem without the
program having to be recompiled.

The Control Center delivers additional diagnostic capability:

 Ability to trace method calls
 Performance Monitor hooks that let you monitor connection information for your application

Tracing Method Calls

Tracing capability can be enabled either through environment variables or the PsqlTrace class. The data
provider traces the input arguments to all of its public method calls, as well as the outputs and returns
from those methods (anything that a user could potentially call). Each call contains trace entries for
entering and exiting the method.

During debugging, sensitive data can be read, even if it is stored as a private or internal variable and
access is limited to the same assembly. To maintain security, trace logs show passwords as five asterisks
(*****).

Using Environment Variables

Using environment variables to enable tracing means that you do not have to modify your application.
If you change the value of an environment variable, you must restart the application for the new value to
take effect.

Table 3 describes the environment variables that enable and control tracing.

Notes

 Setting PVSW_NET_Enable_Trace = 1 starts the tracing process. Therefore, you must define the
property values for the trace file before enabling the trace. Once the trace processing starts, the
values of the other environment variables cannot be changed.

 If tracing is enabled and no trace file is specified by either the connection string option or the
environment variable, the data provider saves the results to a file named PVSW_NETTrace.txt.

Using Static Methods

Some users may find that using static methods on the data provider’s Trace class to be a more convenient
way to enable tracing. The following C# code fragment uses static methods on the .NET Trace object to
create a PsqlTrace class with a trace file named MyTrace.txt. The values set override the values set in the
environmental variables. All subsequent calls to the data provider will be traced to MyTrace.txt.

Table 3 Environment Variables

Environment Variable Description

PVSW_NET_Enable_Trace If set to 1 or higher, enables tracing. If set to 0 (the default), tracing is disabled.

PVSW_NET_Recreate_Trace If set to 1, recreates the trace file each time the application restarts. If set to 0 (the default),
the trace file is appended.

PVSW_NET_Trace_File Specifies the path and name of the trace file.

42

PsqlTrace.TraceFile="C:\\MyTrace.txt";
PsqlTrace.RecreateTrace = 1;
PsqlTrace.EnableTrace = 1;

The trace output has the following format:
<Correlation#> <Timestamp> <CurrentThreadName>
 <Object Address> <ObjectName.MethodName> ENTER (or EXIT)
 Argument #1 : <Argument#1 Value>
 Argument #2 : <Argument#2 Value>
 ...
 RETURN: <Method ReturnValue> // This line only exists for EXIT

where:

Correlation# is a unique number that can be used to match up ENTER and EXIT entries for the same
method call in an application.

Value is the hash code of an object appropriate to the individual function calls.

During debugging, sensitive data can be read, even if it is stored as private or internal variable and access
is limited to the same assembly. To maintain security, trace logs show passwords as five asterisks (*****).

PerfMon Support

The Performance Monitor (PerfMon) and VS Performance Monitor (VSPerfMon) utilities allow you to
record application parameters and review the results as a report or graph. You can also use Performance
Monitor to identify the number and frequency of CLR exceptions in your applications. In addition, you
can fine-tune network load by analyzing the number of connections and connection pools being used.

The data provider installs a set of PerfMon counters that let you tune and debug applications that use the
data provider. The counters are located in the Performance Monitor under the category name Zen
ADO.NET data provider.

Table 4 describes the PerfMon counters that you can use to tune connections for your application.

For information on using PerfMon and performance counters, refer to the Microsoft documentation
library.

Table 4 PerfMon Counters

Counter Description

Current # of Connection Pools Current number of pools associated with the process.

Current # of Pooled and Non-Pooled Connections Current number of pooled and non-pooled connections.

Current # of Pooled Connections Current number of connections in all pools associated with the process.

Peak # of Pooled Connections The highest number of connections in all connection pools since the
process started.

Total # of Failed Commands The total number of command executions that have failed for any reason
since the process started.

Total # of Failed Connects The total number of attempts to open a connection that have failed for any
reason since the process started.

43

Analyzing Performance With Connection Statistics

The .NET Framework 2.0 and higher supports run-time statistics, which are gathered on a per-
connection basis. The Control Center supports a wide variety of run-time statistical items. These
statistical items provide information that can help you to:

 Automate analysis of application performance
 Identify trends in application performance
 Detect connectivity incidents and send notifications
 Determine priorities for fixing data connectivity problems

Measuring the statistics items affects performance slightly. For best results, consider enabling statistics
gathering only when you are analyzing network or performance behavior in your application.

Statistics gathering can be enabled on any Connection object, for as long as it is useful. For example, you
can define your application to enable statistics before beginning a complex set of transactions related to
performing a business analysis, and disable statistics when the task is complete. You can retrieve the
length of time the data provider had to wait for the server and the number of rows that were returned as
soon as the task is complete, or wait until a later time. Because the application disables statistics at the
end of the task, the statistical items are measured only during the period in which you are interested.

Functionally, the statistical items can be grouped into four categories:

 Network layer items retrieve values associated with network activities, such as the number of bytes
and packets that are sent and received and the length of time the data provider waited for replies
from the server.

 Aggregate items return a calculated value, such as the number of bytes sent or received per round
trip to the server.

 Row disposition statistical items provide information about the time and resources required to
dispose of rows not read by the application.

 Statement cache statistical items return values that describe the activity of statements in a statement
cache (see Using Statement Caching for more information on using the statement cache).

Enabling and Retrieving Statistical Items

When you create a Connection object, you can enable statistics gathering using the StatisticsEnabled
property. The data provider begins the counts for the statistical items after you open a connection, and
continues until the ResetStatistics method is called. If the connection is closed and reopened without
calling ResetStatistics, the count on the statistical items continues from the point when the connection
was closed.

Calling the RetrieveStatistics method retrieves the count of one or more statistical items. The values
returned form a "snapshot in time" at the moment when the RetrieveStatistics method was called.

You can define the scope for the statistics gathering and retrieval. In the following C# code fragment, the
statistical items measure only the Task A work; they are retrieved after processing the Task B work:
connection.StatisticsEnabled = true;
 // do Task A work
connection.StatisticsEnabled = false;
 // do Task B work
IDictionary currentStatistics = connection.RetrieveStatistics();

To view all the statistical items, you can use code like the following C# code fragment:

44

foreach (DictionaryEntry entry in currentStatistics) {
 Console.WriteLine(entry.Key.ToString() + ": " + entry.Value.ToString());
}
Console.WriteLine();

To view only the SocketReads and SocketWrites statistical items, you can use code like the following C#
code fragment:
foreach (DictionaryEntry entry in currentStatistics) {
 Console.WriteLine("SocketReads = {0}",

 currentStatistics["SocketReads"]);
 Console.WriteLine("SocketWrites = {0}",

 currentStatistics["SocketWrites"]);
}

Console.WriteLine();

Note for Zen ADO.NET Entity Framework Users: The PsqlConnection methods and properties for
statistics are not available at the Zen ADO.NET Entity Framework layer. Instead, the data provider
exposes the same functionality through "pseudo" stored procedures. See Using Stored Procedures with
the ADO.NET Entity Framework for more information.

45

c h a p t e r

4The ADO.NET Data Providers

The Zen ADO.NET data providers deliver data access to any .NET-enabled application or application
server. The Zen ADO.NET data providers enable point-to-point and n-tier access to data stores across
the Internet and intranets. Because they are optimized for the .NET environment, the Zen ADO.NET
data providers allow you to incorporate .NET technology and extend the functionality and performance
of your existing system.

The following topics describe features that pertain to the Zen ADO.NET data providers:

 About Zen ADO.NET Data Providers
 Using Connection Strings with the Zen ADO.NET Data Provider
 Performance Considerations
 Data Types
 Parameter Arrays

Note: See Zen ADO.NET Entity Framework Data Providers for information about using the data
provider with the Zen ADO.NET Entity Framework.

46

About Zen ADO.NET Data Providers

Zen ADO.NET data providers are built with 100% managed code, so they can run and connect to the
database entirely within the common language runtime (CLR).

Code that runs in the native operating system, such as client libraries and COM components, is called
unmanaged code. You can mix managed and unmanaged code within a single application. However,
unmanaged code reaches outside the CLR, which means that it effectively raises complexity, reduces
performance, and opens possible security risks.

Namespace

The namespace for the Zen ADO.NET data provider is Pervasive.Data.SqlClient. When connecting to
the Zen database, you use the PsqlConnection and PsqlCommand objects in the
Pervasive.Data.SqlClient namespace.

The following code fragment shows how to include a Zen ADO.NET data provider namespace in your
applications:

C#

// Access Zen
using System.Data;
using System.Data.Common;
using Pervasive.Data.SqlClient;

Visual Basic

' Access Zen
Imports System.Data
Imports System.Data.Common
Imports Pervasive.Data.SqlClient

Assembly Name

The strongly named assembly for the Zen ADO.NET data provider is placed in the Global Assembly
Cache (GAC) during installation. The assembly name is Pervasive.Data.SqlClient.dll.

The Pervasive.Data.Common assembly includes features such as support for bulk load.

47

Using Connection Strings with the Zen ADO.NET Data Provider

You can define the behavior of a connection using a connection string or the properties of the
PsqlConnection object. However, values set in the connection string cannot be changed by the
connection properties.

The basic format of a connection string includes a series of keyword/value pairs separated by
semicolons. The following example shows the keywords and values for a simple connection string for
the data provider:
"Server DSN=SERVERDEMO;Host=localhost"

See Using Connection Strings for guidelines on specifying connection strings.

See Table 35 for a description of the supported connection string options.

Constructing a Connection String

PsqlConnectionStringBuilder property names are the same as the connection string option names.
However, the connection string option name can consist of multiple words, with required spaces
between the words. For example, the Min Pool Size connection string option is equivalent to the
MinPoolSize property. Table 35 lists the connection string properties, and describes each property.

The connection string options have the following form:
option name=value

Each connection string option value pair is separated by a semicolon. The following example shows the
keywords and values for a simple connection string for the Zen ADO.NET data provider:
"Server DSN=SERVERDEMO;Host=localhost"

48

Performance Considerations

The performance of your application can be affected by the values you set for connection string options
and the properties of some data provider objects.

Connection String Options that Affect Performance

Encrypt: Data encryption may adversely affect performance because of the additional overhead, mainly
CPU usage, required to encrypt and decrypt data.

Max Statement Cache Size: Caching all of the prepared statements that an application uses might
appear to offer the best performance. However, this approach may come at a cost of database server
memory if you implement statement caching with connection pooling. In this case, each pooled
connection has its own statement cache, which may contain all of the prepared statements used by the
application. All of the cached prepared statements are also maintained in database server memory.

Pooling: If you enable the data provider to use connection pooling, you can define additional options
that affect performance:

 Load Balance Timeout: You can define how long to keep connections in the pool. The pool manager
checks a connection's creation time when it is returned to the pool. The creation time is compared
to the current time, and if the timespan exceeds the value of the Load Balance Timeout option, the
connection is destroyed. The Min Pool Size option can cause some connections to ignore this value.

 Connection Reset: Resetting a re-used connection to the initial configuration settings impacts
performance negatively because the connection must issue additional commands to the server.

 Max Pool Size: Setting the maximum number of connections that the pool can contain too low
might cause delays while waiting for a connection to become available. Setting the number too high
wastes resources.

 Min Pool Size: A connection pool is created when the first connection with a unique connection
string connects to the database. The pool is populated with connections up to the minimum pool
size, if one has been specified. The connection pool retains this number of connections, even when
some connections exceed their Load Balance Timeout value.

Schema Options: Returning some types of database metadata can affect performance. To optimize
application performance, the data provider prevents the return of performance-expensive database
metadata such as procedure definitions or view definitions. If your application needs this database
metadata, you can specifically request its return.

To return more than one type of the omitted metadata, specify either a comma-separated list of the
names, or the sum of the hexadecimal values of the column collections that you want to return. For
example, to return procedure definitions and view definitions, specify one of the following:

 Schema Option=ShowProcedureDefinitions, ShowViewDefinitions
 Schema Options=0x60

Statement Cache Mode: In most cases, enabling statement caching results in improved performance. To
enable the caching of prepared statements (Command instances), set this option to Auto. Use this setting
if your application has marked prepared statements for implicit inclusion in the statement cache, or has
marked some statements for implicit inclusion and others for explicit inclusion. If you want the
statement cache to include only prepared statements that are marked Cache, 1) set the
StatementCacheBehavior property of the Command object to Cache and 2) set this option to
ExplicitOnly.

49

Properties that Affect Performance

StatementCacheBehavior: If your application reuses prepared statements multiple times over an
application’s lifetime, you can influence performance by using a statement cache. This property identifies
how a prepared statement (a Command object instance) is handled during statement caching.

When set to Cache, the prepared statement is included in the statement cache.

When set to Implicit and the Statement Cache Mode connection string option is set to Auto, the
prepared statement is included in the statement cache.

When set to DoNotCache, the prepared statement is excluded from the statement cache.

You can use connection statistics to determine the effect that caching specific statements has on
performance (see Analyzing Performance With Connection Statistics).

50

Data Types

Table 5 through Table 8 list the data types supported by the Zen ADO.NET Data Provider.

 Table 5 maps the Zen data types to the .NET Framework types.
 Table 6 maps the data types the data provider uses if only the System.Data.DbType is specified.
 Table 7 maps the data types the data provider uses to infer a data type if neither the provider-specific

type nor the System.Data.DbType are provided.
 Table 8 maps the data types the data provider uses when streams are used as inputs to Long data

parameters.

Mapping Zen Data Types to .NET Framework Data Types

Table 5 lists the data types supported by the Zen ADO.NET data providers and how they are mapped to
the .NET Framework types. You can use the table to infer the data types that will be used when a DataSet
is filled using a DataAdapter.

This table also identifies the proper accessors for the data when a DataReader object is used directly.

 The Zen Data Type column refers to the native type name.
 The PsqlDbType column refers to the ADO.NET Data Provider’s type enumeration. Generally, there

is a one to one mapping between the native type and the PsqlDbType. The Zen NUMBER data type,
which can be either a decimal or a double, is an exception to this rule.

 The .NET Framework Type column refers to the base data types available in the Framework.
 The .NET Framework Typed Accessor column refers to the method that must be used to access a

column of this type when using a DataReader.

Table 5 Mapping of Zen Data Types

Zen Data Type PsqlDbType .NET Framework Type .NET Framework Typed Accessor

AUTOTIMESTAMP Timestamp DateTime GetDateTime()

BFLOAT4 BFloat4 Single GetSingle()

BFLOAT8 BFloat8 Double GetDouble()

BIGIDENTITY BigInt Int64 GetInt64()

BIGINT BigInt Int64 GetDecimal()

BINARY Binary Byte[] GetBytes()

BIT Bit Byte[] GetBytes()

CHAR Char String
Char[]

GetString()
GetChars()

CURRENCY Currency Decimal GetDecimal()

DATE Date DateTime GetDateTime()

DATETIME DateTime1
1

DateTime GetDateTime()

DECIMAL Decimal Decimal GetDecimal()

51

DOUBLE Double Double GetDouble()

FLOAT Float Double GetDouble()

IDENTITY Identity Int32 GetInt32()

INTEGER Integer Int32 GetInt32()

LONGVARBINARY LongVarBinary Byte[] GetBytes()

LONGVARCHAR LongVarChar Byte[] GetBytes()

MONEY Money Decimal GetDecimal()

NCHAR NChar String
Char[]

GetString()
GetChars()

NLONGVARCHAR NLongVarChar String
Char[]

GetString()
GetChars()

NUMERIC Decimal Decimal GetDecimal()

NUMERICSA DecimalSA Decimal GetDecimal()

NUMERICSTS DecimalSTS Decimal GetDecimal()

NVARCHAR NVarChar String
Char[]

GetString()
GetChars()

REAL Real Single GetSingle()

SMALLIDENTITY SmallIdentity Int16 GetInt16()

SMALLINT SmallInt Int16 GetInt16()

TIME Time Timespan
2

GetValue()

TIMESTAMP, TIMESTAMP2 Timestamp DateTime GetDateTime()

TINYINT TinyInt SByte GetByte()

UBIGINT UBigInt UInt64 GetUInt64()

UNIQUE_IDENTIFIER UniqueIdentifier
1

String GetString()

UINTEGER UInteger UInt32 GetUInt32()

USMALLINT USmallInt UInt16 GetUInt16()

UTINYINT UTinyInt Byte GetByte()

VARCHAR VarChar String
Char[]

GetString()
GetChars()

1 Supported in Zen 9.5 and higher

2 Depends on the setting of the timetype connect option.

Table 5 Mapping of Zen Data Types (Continued)

Zen Data Type PsqlDbType .NET Framework Type .NET Framework Typed Accessor

52

Mapping Parameter Data Types

The type of the parameter is specific to each data provider. Zen ADO.NET data providers must convert
the parameter value to a native format before sending it to the server. The best way for an application to
describe a parameter is to use the data provider-specific type enumeration.

In generic programming circumstances, the data provider-specific type may not be available. When no
provider-specific DB type has been specified, the data type will be inferred from either the
System.Data.DbType or from the .NET Framework type of the parameter’s value.

Zen ADO.NET data providers use the following order when inferring the data type of a parameter:

 The data provider uses the provider-specific data type if it has been specified.
 The data provider infers the data type from the System.Data.DbType if it has been specified, but the

provider-specific data type has not been specified.
 The data provider infers the data type from the .NET Framework type if neither the provider-

specific data type nor the System.Data.DbType have been specified.

Table 6 shows how the data provider infers its types if only the System.Data.DbType is specified.

Table 6 Mapping System.Data.DbTypes to PsqlDbTypes

System.Data.DbType PsqlDbType

AnsiString VarChar

AnsiStringFixedLength Char

Binary Binary

Boolean Integer

Byte Integer

Currency Currency

Date Date

DateTime DateTime
1

Decimal Decimal or Money

Double Double

Float Float

GUID UniqueIdentifier
*

Int16 SmallInt

Int32 Integer

Int64 BigInt

Int64 BigIdentity

Sbyte Integer

Single BFloat4

53

Table 7 shows the mapping that the data provider uses to infer a data type if neither the provider-specific
data type nor the System.Data.DbType are provided.

String NVarChar

StringFixedLength NChar

Time Time

Uint16 USmallInt

Uint32 UInteger

Uint64 UBigInt

VarNumeric Decimal

1 Supported in PSQL 9.5 and higher.

Table 7 Mapping .NET Framework Types to PsqlDbType

.NET Framework Type PsqlDbType

Boolean Integer

Byte Integer

Byte[] Binary

DateTime Timestamp

Decimal Decimal

Double Double

Int16 SmallInt

Int32 Integer

Int64 BigInt

Single BFloat4

String NVarChar

VarChar (if PvTranslate=Nothing)

Uint16 USmallInt

Uint32 UInteger

Uint64 UBigInt

Table 6 Mapping System.Data.DbTypes to PsqlDbTypes (Continued)

System.Data.DbType PsqlDbType

54

Data Types Supported with Stream Objects

Zen ADO.NET data providers support the use of streams as inputs to long data parameters with the data
types listed in Table 8.

See Using Streams as Input to Long Data Parameters for a discussion of using streams.

Table 8 Supported Stream Objects

Provider Data Type Stream Type Supported

LONGVARBINARY Stream

LONGVARCHAR TextReader

55

Using Streams as Input to Long Data Parameters

Allowing the use of noncontiguous memory to represent a very large binary or text value, such as a video
clip or a large document, improves performance, functionality, and scalability.

Stream objects used to read binary data are derived from the System.IO.Stream object and use the
Framework data type of byte[]:

 System.IO.BufferedStream
 System.IO.FileStream
 System.IO.MemoryStream
 System.Net.Sockets.NetworkStream
 System.Security.Cryptography.CryptoStream

Stream objects used to read text data are derived from the System.IO.TextReader object and use the
Framework data type of string:

 System.IO.StreamReader
 System.IO.StringReader

To enable the use of streams, you set the Value property of the PsqlParameter object to a specific instance
of the stream (see PsqlParameter Object). When the command is executed, the data provider reads from
the stream to extract the value.

The examples shipped with the data provider include a code example on inserting data into
LONGVARCHAR and LONGVARBINARY columns using randomly generated data. The example also
shows how to use streaming objects as inputs to LONGVARCHAR and LONGVARBINARY columns.

56

Parameter Markers

Parameter markers, including parameter markers for stored procedures, are specified in Zen ADO.NET
data providers by using the "?" symbol in SQL statements.
UPDATE emp SET job = ?, sal = ? WHERE empno = ?

Because parameters are not named, the bindings must occur in the order of the parameters in the
statement. This means that the calls to the Add() method on the PsqlParameterCollection object (adding
the Parameter objects to the collection) must occur in the order of the "?"s in the command text.

57

Parameter Arrays

Parameter array binding is typically used with INSERT statements to speed up the time needed to fill a
table. An application can specify rows of parameter values with a single execution of a command. The
values can then be sent to the database server in a single round trip (depending on the native capabilities
of the backend database).

Zen ADO.NET data providers support input parameter arrays for INSERT and UPDATE statements.

58

59

c h a p t e r

5Zen ADO.NET Core Data
Providers

Zen ADO.NET Core data providers support data access to any .NET-enabled application or application
server. It delivers high-performance point-to-point and n-tier access to industry-leading data stores
across the Internet and intranets. Because they are optimized for the .NET environment, Zen ADO.NET
Core data providers allow you to incorporate .NET Core technology and extend the functionality and
performance of your existing system.

The following topics cover features of Zen ADO.NET data providers:

 About Zen ADO.NET Core Data Providers
 Creating an Application in Visual Studio Using Zen ADO.Net Core DLL
 Creating a UWP Application in Visual Studio Using Zen ADO.Net Core Data Provider
 ADO.NET Data Provider Features Missing in Zen ADO.NET Core Data Provider

Note: See Zen ADO.NET Entity Framework Core Data Providers for information about using the data
provider with the ADO.NET Entity Framework Core.

60

About Zen ADO.NET Core Data Providers

Zen ADO.NET Core data providers are supported with:

 Both the ADO.NET 4.4 and 4.5 providers support Visual Studio 2017 and 2019.
 The ADO.NET 4.5 provider also supports Visual Studio 2022.
 For the integration of the Zen data tools into Visual Studio, see the ADO.NET SDK readme.
 Visual Studio code
 .NET Standard 2.0, which supports .Net Core 2.0 +

For a full support matrix of .NET Standard 2.0, see http://immo.landwerth.net/netstandard-
versions/#

 UWP applications

61

Creating an Application in Visual Studio Using Zen ADO.Net Core
DLL

Before using these steps, first download the latest SDK .zip archive and extract the NuGet package
Pervasive.Data.SqlClientStd for your version as listed under Zen ADO.NET Data Providers Available
with SDK Download.

 To create an application in Visual Studio using Zen ADO.Net Core DLL

1 In Visual Studio, on the File menu, point to New, and then click Project. The New Project window
appears.

2 In the left pane, in the Installed list, select the .Net Core template for Visual C#.

3 In the middle pane, select the required project type.

4 Enter the name and location for the project in the respective fields, then click OK.

5 Right-click the project, then click Properties.

6 In the Build pane, in the Platform target list select the required platform.

7 Add the downloaded NuGet package to the project.

To learn how to add the NuGet package locally, see
https://stackoverflow.com/questions/10240029/how-do-i-install-a-nuget-package-nupkg-file-
locally/38663739#38663739

62

Creating a UWP Application in Visual Studio Using Zen ADO.Net
Core Data Provider

Before using these steps, first download the latest SDK .zip archive and extract the NuGet package
Pervasive.Data.SqlClientStd for your version as listed under Zen ADO.NET Data Providers Available
with SDK Download.

Note: For a UWP application to use Zen ADO.Net Core DLL, the required Windows 10 operating
system version is 1709 (OS Build 16299) or later.

 To create a UWP application in Visual Studio using Zen ADO.Net Core data provider

1 In Visual Studio, on the File menu, point to New, and then click Project. The New Project window
appears.

2 In the left pane, in the Installed list for Visual C#, select Windows Universal, then in the middle
pane, select Blank App (Universal Windows).

3 Enter the name and location for the project in the respective fields; then click OK.

4 In the Minimum Version list, select Windows 10 Fall Creators Update (10.0; Build 16299).

63

5 In the MainPage.xaml file, add a button, and then rename the button to Connect to Actian Zen.

6 Double-click the button to open its implementation.

7 Add the following to the button implementation code:

8 Add the downloaded NuGet package to the project.

To learn how to add the NuGet package locally, see
https://stackoverflow.com/questions/10240029/how-do-i-install-a-nuget-package-nupkg-file-
locally/38663739#38663739

64

9 If the database is available in a remote machine, in the package.appxmanifest file on the Capabilities
tab, select the Private Networks (Client & Server) check box.

10 Build and run the application.

65

ADO.NET Data Provider Features Missing in Zen ADO.NET Core Data
Provider

The following ADO.NET data provider features are missing in Zen ADO.NET Core data providers:

 Performance Counters: As performance counters are not supported by ADO.Net Core, they also
are not supported by Zen ADO.Net Core data providers.

 Encoding: As Zen ADO.Net data providers were created only for Windows-based applications, they
use Windows-1252 encoding (identified by code page 1252) as the default encoding.

Since Zen ADO.Net Core data providers are a cross-platform, they use the default encoding of the
current operating system as its default encoding.

 CreatePermission in PervasiveFactory: As CreatePermission (PermissionState) method is not
supported by ADO.Net Core, it also is not supported by Zen ADO.Net Core data providers.

 Fill Schema: Zen ADO.Net data providers use Encoding.BodyName for Char, VarChar, and
LongVarChar columns while pushing the data to the user. Since Encoding.BodyName is not
supported by ADO.Net Core, Zen ADO.Net Core data providers use Encoding.WebName.

66

67

c h a p t e r

6Zen ADO.NET Entity
Framework Data Providers

Zen ADO.NET Entity Framework is an object-relational mapping (ORM) framework for the .NET
Framework. Developers can use it to create data access applications by programming against a
conceptual application model instead of directly against a relational storage schema. This model allows
developers to decrease the amount of code to be written and maintained in data-centric applications.

Zen ADO.NET Entity Framework data providers (formerly Pervasive ADO.NET Entity Framework data
providers) can be used with applications that use the ADO.NET Entity Framework.

Zen ADO.NET Entity Framework data providers are compatible with versions 6.1, 6.1.1, and 6.1.2 of the
Microsoft ADO.NET Entity Framework. They support the following programming features:

 Applications targeting the .NET Framework versions listed under Zen ADO.NET Data Providers
Available with SDK Download.

 Database First, Code First, and Model First workflows
 Enumerated type support in all workflows
 Code First migrations
 "Plain-old" CLR objects (POCO) entities
 DbContext class
 Multiple DBContext classes
 Code First mapping to Insert, Update, and Delete stored procedures
 Configurable migration history
 Connection resiliency
 Index Attribute for Code First Migrations
 Disable Transactions for Function Imports
 Enum.HasFlag Support
 Allow Migrations commands to use context from reference instead of project
 Interceptors in web/app.config and DatabaseLogger
 Support for identifiers starting with '_'
 Select concatenated string and numeric property

Zen ADO.NET Entity Framework data providers use ADO.NET data providers to communicate with
the ADO.NET database server. This means that the functionality defined by Zen ADO.NET data
providers applies to Zen ADO.NET Entity Framework data providers unless otherwise noted here.
Similarly, any performance configurations made to Zen ADO.NET data providers are realized by Zen
ADO.NET Entity Framework data providers.

Visual Studio 2017 or later is required when developing applications for the Zen ADO.NET Entity
Framework. If you have configured Microsoft ADO.NET Entity Framework 6.1 (EF 6.1) to use Visual
Studio 2017, you must install Entity Framework Tools 6.1.3 for Visual Studio 2017. However, once you
install it, all your Visual Studio 2017 applications that previously used Microsoft ADO.NET Entity
Framework 5.0 (EF5) must be upgraded to EF 6.1, after which you cannot revert to EF5.

68

About Zen ADO.NET Entity Framework Data Providers

Zen ADO.NET Entity Framework data providers are built with 100% managed code, so they can run and
connect to the database entirely within the common language runtime (CLR).

Code that runs in the native operating system, such as client libraries and COM components, is called
unmanaged code. You can mix managed and unmanaged code within a single application. However,
unmanaged code reaches outside the CLR, which means that it effectively raises complexity, reduces
performance, and opens possible security risks.

Namespace

The namespace for the Zen ADO.NET Entity Framework data providers is
Pervasive.Data.SqlClient.Entity.

Note: The Pervasive.Data.SqlClient.Entity namespace is common to Microsoft ADO.NET Entity
Framework versions 5.0 (EF 5) and 6.1 (EF 6.1).

Assembly Names

Zen ADO.NET Entity Framework data providers use the assembly name
Pervasive.Data.SqlClient.Entity.dll.

To refer to EF 6.1 using the 4.4 version of the provider, select:

%windir%\Microsoft.NET\assembly\GAC_MSIL\Pervasive.Data.SqlClient.Entity\v4.0_4.4.0.6__c84cd5

c63851e072

To refer to EF 6.1 using the 4.5 version of the provider, select:

%windir%\Microsoft.NET\assembly\GAC_MSIL\Pervasive.Data.SqlClient.Entity\v4.0_4.5.0.6__c84cd5

c63851e072

69

Configuring Entity Framework 6.1

The Zen ADO.NET Entity Framework data provider supports the Microsoft ADO.NET Entity
Framework versions 5.0 (EF5) and 6.1 (EF 6.1).

To use EF 6.1, you must first register it using one of the following methods:

 Configuration File Registration
 Code-Based Registration

Note: To register EF 6.1 while testing your applications locally, you can perform a code-based
registration during development. However, when you deploy your project, you must perform a
configuration file registration.

Configuration File Registration

 To configure EF 6.1 by updating the configuration file

1 Install the EntityFramework 6.1.2 NuGet package.

An app.config file is created.

2 Remove the defaultConnectionFactory registration section from the app.config file and replace it
with the following code according to the version of the provider you are using.

 For the 4.4 version:
<providers>

<provider invariantName="Pervasive.Data.SqlClient"

type="Pervasive.Data.SqlClient.Entity.PsqlProviderServices,
Pervasive.Data.SqlClient.Entity, Version=4.4.0.6, Culture=neutral,
PublicKeyToken=c84cd5c63851e072" />

</providers>

 For the 4.5 version:
<providers>

<provider invariantName="Pervasive.Data.SqlClient"

type="Pervasive.Data.SqlClient.Entity.PsqlProviderServices,
Pervasive.Data.SqlClient.Entity, Version=4.5.0.6, Culture=neutral,
PublicKeyToken=c84cd5c63851e072" />

</providers>

The EF 6.1 provider registration is added to Entity Framework section of the app.config file.

Code-Based Registration

 To configure EF 6.1 through a code-based registration

1 Add the following new DbConfiguration class to your test application:
public class MyConfiguration : DbConfiguration

{

public MyConfiguration()

70

{

SetProviderServices("PsqlProviderServices.ProviderInvariantName, new
PsqlProviderServices());

}

}

2 Add the following annotation on top of the DBContext class:
[DbConfigurationType(typeof(MyConfiguration))]

Using Multiple Entity Framework Versions Against the Same Database

A single database can use multiple versions of the Microsoft ADO.NET Entity Framework: 5.0 (EF5) and
6.1 (EF 6.1). However, when you switch between EF5 and EF6 applications against the same database,
you will receive an error when you try saving to the database.

The error occurs due to the difference between the structure of the "__MigrationHistory" table used by
EF5 and EF6.

To use EF5 and EF 6.1 applications against the same database without any errors, run the following
command in the database:
drop table "__MigrationHistory"

71

Using Connection Strings with the Zen ADO.NET Entity Framework
Data Provider

The Zen ADO.NET Entity Framework uses information contained in connection strings to connect to
the underlying ADO.NET data provider that supports the Entity Framework. The connection strings
also contain information about the required model and mapping files.

The data provider uses the connection string when accessing a model and mapping metadata and
connecting to the data source.

You can specify an existing connection in the Entity Framework Wizard, or can define a new connection.
Connection string options can be defined directly in a connection string, or set in the Advanced
Properties dialog box in Visual Studio (see Adding Connections in Server Explorer).

Defining Connection String Values in Server Explorer

See Adding Connections in Server Explorer for detailed information about using Visual Studio to add
and modify connections.

See Table 35 for a description of the supported connection string options.

Changes in Default Values for Connection String Options

Most default values of the connection string options used by the ADO.NET Entity Framework data
provider are the same as those used by the Zen ADO.NET data provider (see Table 35 for more
information). Table 9 lists the connection string options that have a different default value when used
with an ADO.NET Entity Framework application.

Table 9 Default Values of Connection String Options Used in an Application

Connection String Option Default Value in ADO.NET Entity Framework Application

Parameter Mode Not supported.

Statement Cache Mode ExplicitOnly is the only supported value.

72

Code First and Model First Support

Entity Framework 4.1 and later provide support for the Model First and Code First features.
Implementing support for these features requires changes to the data provider, such as the way that long
identifier names are handled. However, these changes do not require changes to your application.

Code First and Model First implementations require type mapping changes. See Mapping Data Types
and Functions for more information.

Handling Long Identifier Names

Most Zen identifiers have a maximum length of 20 bytes. The identifier name can exceed this size
because the names of the objects to be created on the server are taken from the class and property names.
In addition, constraint names are often created by concatenating several object names. In these cases, the
chances of exceeding the maximum identifier length are even greater.

The data provider shortens identifiers to database-allowed maximum identifier length, replacing the end
of the identifier with an integer hash-code, for example, the string ColumnMoreThanTwentyCharacters
is shortened to ColumnMor_2873286151. If you access or view the DB object using a DB tool, the names
of the created tables may differ from what you might expect based on the Plain Old CLR Object (POCO)
class names and property names (Code First), or the entity names and entity property names (Model
First).

Note that when two identifiers that have the same leading characters are shortened, the difference
between the identifiers is less obvious to a visual inspection. For example, assume that a table has two
supporting sequences, ColumnMoreThanTwentyCharacters and
ColumnMoreThanTwenty1Characters. When these sequences are shortened, they are renamed
ColumnMor_2873286151 and ColumnMor_672399971.

73

Using Code First Migrations with the ADO.NET Entity Framework

Entity Framework 4.3 and later support Code First Migrations, which enables you to update your
database schema to reflect POCO classes without having to drop and recreate them.

Migrations enable you to incrementally evolve your database schema as your model changes. Each set of
database changes is expressed in a code file, known as a migration. The migrations are ordered, typically
using a time stamp, and a table in the database keeps track of which migrations are applied.

Code First Migrations implementation requires type mapping changes. See Mapping Data Types and
Functions for more information.

To implement Code First Migrations using Progress DataDirect Connect for Zen ADO.NET data
provider, you must perform the following additional settings:

1 Add references to the Pervasive.Data.SQLClient.Entity assembly in the project.

2 Inherit the Configuration Class changes and register the SQL Generator in the constructor of the
Configuration Class. Do the following:

 Inherit the Configuration Class from PervasiveDbMigrationsConfiguration <TContext>. For
example:
internal sealed class Configuration:

PervasiveDbMigrationsConfiguration<%Context Name%>

 Register the Class Generator.

After you enable migrations using Package Manager Console, specify the Connection String either in the
app.config or configuration.cs file along with additional settings in the configuration.cs file. However, if
Connection String is specified in the app.config file, then ensure that the Connection String and the
context have the same name.

If the Connection String is specified in the app.config file, use the following syntax to register SQL
Generator in the app.config file according to the version of the provider you use:

 For the 4.4 version:
<providers>

<provider invariantName="Pervasive.Data.SqlClient"

type="Pervasive.Data.SqlClient.Entity.PsqlProviderServices,
Pervasive.Data.SqlClient.Entity, Version=4.4.0.6, Culture=neutral,
PublicKeyToken=c84cd5c63851e072" />

</providers>

 For the 4.5 version:
<providers>

<provider invariantName="Pervasive.Data.SqlClient"

type="Pervasive.Data.SqlClient.Entity.PsqlProviderServices,
Pervasive.Data.SqlClient.Entity, Version=4.5.0.6, Culture=neutral,
PublicKeyToken=c84cd5c63851e072" />

</providers>

To register SQL Generator in configuration.cs, use the following syntax:
SetSqlGenerator(PervasiveConnectionInfo.InvariantName, new

PervasiveEntityMigrationSqlGenerator());

74

Using Enumerations with the ADO.NET Entity Framework

The enum keyword is used to declare an enumeration, a distinct type consisting of a set of named
constants called the enumerator list. Every enumeration type has an underlying type. By default, every
underlying type of the enumeration element is mapped to type int32. By default, the first enumerator has
the value 0, and the value of each consecutive enumerator is incremented by 1. For example, you would
specify a days-of-the-week enum type as:
enum Days {MON, TUE, WED, THU, FRI, SAT, SUN};

In this enumeration, MON would be 0, TUE 1, WED 2, and so forth. Enumerators can have initializers to
override the default values. For example:
enum Days {MON=1, TUE, WED, THU, FRI, SAT, SUN};

In this enumeration, the sequence is forced to start at 1 instead of 0. The names of an enum type's fields
are in uppercase letters., by convention, bacause they are constants.

Microsoft ADO.NET Entity Framework 5.0 and later support Enumerations. To use the enumeration
feature, you must target .NET Framework 4.5 or later. Enumerations are supported in all three
workflows, namely, Model First, Code First, and Database First.

In Entity Framework, an enumeration can have the following underlying types:

 Byte
 Int16
 Int32
 Int64
 SByte

By default, the enumeration is of type Int32. Another integral numeric type can be specified using a
colon.
enum Days : byte{MON=1, TUE, WED, THU, FRI, SAT, SUN};

The underlying type specifies how much storage is allocated for each enumerator. However, an explicit
cast is needed to convert from enum type to an integral type. Enum implementations also support type
mapping changes. See Mapping Data Types and Functions for more information.

As part of Entity Framework, Entity Developer fully supports enum types by providing a new Enum
node in its Model Explorer window. You can use the Enum property just like any other scalar property,
such as in LINQ queries and updates.

75

Mapping Data Types and Functions

Developers can use the ADO.NET Entity Framework to create data access applications by programming
against a conceptual application model instead of programming directly against a relational storage
schema.

Type Mapping for Database First

In a Database First model, the data provider uses a store-centric type mapping scheme, in which the Zen
(store) type influences the EDM type used when the model is generated.

Mapping Zen Types to EDM Types shows Zen types are mapped to primitive types used in a Database
First model. Some Zen data types can map to several different EDM types; the default values are shown
in italics.

The columns are defined as follows:

 The Zen Type column refers to the native type name.
 The Store (SSDL) Type column refers to data types used by the store schema definition language

(SSDL) file. The storage metadata schema is a formal description of the database that persists data
for an application built on the EDM.

 The PrimitiveTypeKind column refers to the common data primitives used to specify the valid
content of properties of entities used in defining EDM applications.

Table 10 Mapping Zen Types to EDM Types

Zen Type Store (SSDL) Type PrimitiveTypeKind

AUTOTIMESTAMP DateTime DateTime

BFLOAT4 BFloat4 Single

BFLOAT8 BFloat8 Double

BIGIDENTITY Bigint Int64

BIGINT Bigint Int64

BINARY binary Byte[]

BIT Bit Boolean

CHAR Char String

CURRENCY Currency Decimal

DATE Date DateTime

DATETIME DateTime DateTime

DECIMAL Decimal Decimal

DOUBLE Double Double

FLOAT Float Float

IDENTITY Identity Int32

76

Type Mapping for Model First

Mapping EDM Types to Zen Types shows the model-centric type mapping, where the EDM Simple
Types influence the Zen (store) type used to create the database. The columns are defined as follows:

 The PrimitiveTypeKind column refers to the common data primitives used to specify the valid
content of properties of entities used in defining EDM applications.

 Property Values Affecting Type Mapping identifies any property value that can affect type mapping.
 The Store (SSDL) column refers to data types used by the store schema definition language (SSDL)

file. The storage metadata schema is a formal description of the database that persists data for an
application built on the EDM.

INTEGER Integer Int32

LONGVARBINARY LongVarBinary Byte[]

LONGVARCHAR LongVarChar String

MONEY Money Decimal

NCHAR NChar String

NLONGVARCHAR NLongVarChar String

NUMERIC Decimal Decimal

NUMERICSA DecimalSA Decimal

NUMERICSTS DecimalSTS Decimal

NVARCHAR NVarChar String

REAL Real Single

ROWID Rowid Binary

SMALLIDENTITY SmallIdentity Int16

SMALLINT Smallint Int16

TIME Time Time

TIMESTAMP, TIMESTAMP2 DateTime DateTime

TINYINT TinyInt SByte

UBIGINT UBigInt UInt64

UNIQUE_IDENTIFIER Guid Guid

UINTEGER UInteger UInt32

USMALLINT USmallInt UInt16

UTINYINT UTinyInt Byte

VARCHAR Varchar String

Table 10 Mapping Zen Types to EDM Types (Continued)

Zen Type Store (SSDL) Type PrimitiveTypeKind

77

 The Zen Type column refers to the native type name.

Table 11 Mapping EDM Types to Zen Types

PrimitiveTypeKind Property Values That Affect
Type Mapping

Store (SSDL) Type Zen Type

Binary Fixed Length: TRUE

Fixed Length: FALSE

Binary

LongVarBinary

Binary(n)

LongVarBinary

Boolean Boolean Bit

Byte Tinylint_as_byte TinyInt

DateTime DateTime DateTime

Decimal Decimal Decimal

Double Double Double

Guid Guid Guid

Single Float Float

SByte Smallint_as_Sbyte Smallint

Int16 SmallInt Smallint

Int32 Integer Integer

Int64 Bigint BigInt

78

Type Mapping for Code First

Mapping CLR Types to Zen Data Types in a Code First Model shows the model-centric type mapping,
where the CLR type influences the Zen (store) type used when the database is created. Some CLR types
can map to several different Zen types; the default values are shown in italics.

The columns are defined as follows:

 The CLR Type column refers to the common language runtime type name.
 The Zen Type column refers to the native type name.

String MaxLength= (1<=n<=8000)

Fixed Length=True

Unicode=False

Char Char(n)

MaxLength= (1<=n<=8000)

Fixed Length=False

Unicode=False

Varchar Varchar(n)

MaxLength= (>8000)

Fixed Length=False

Unicode=False

LongVarChar LongVarchar

MaxLength= (1<=n<=4000)

Fixed Length=True

Unicode=True

NChar NChar(n)

MaxLength= (1<=n<=4000)

Fixed Length=False

Unicode=True

NVarChar NVarChar(n)

MaxLength= (>4000)

Fixed Length=False

Unicode=True

NLongVarChar NLongVarChar

Time Time Time

DateTimeOffset DateTime DateTime

Table 12 Mapping CLR Types to Zen Data Types in a Code First Model

CLR Type Zen Data Type

Byte[] BINARY

Boolean BIT

Table 11 Mapping EDM Types to Zen Types (Continued)

PrimitiveTypeKind Property Values That Affect
Type Mapping

Store (SSDL) Type Zen Type

79

Mapping EDM Canonical Functions to Zen Functions

The ADO.NET Entity Framework translates the Entity Data Model (EDM) canonical functions to the
corresponding data source functionality for the ADO.NET Entity Framework data provider for Zen. The
function invocations are expressed in a common form across data sources.

Because these canonical functions are independent of data sources, argument and return types of
canonical functions are defined in terms of types in the EDM. When an Entity SQL query uses canonical
functions, the appropriate function is called at the data source.

Both null-input behavior and error conditions are explicitly specified for all canonical functions.
However, the ADO.NET Entity Framework does not enforce this behavior. Further details are available
at: http://msdn.microsoft.com/en-us/library/bb738626.aspx

Aggregate Canonical Functions

Table 13 describes the mapping of EDM aggregate canonical functions to Zen functions.

Byte TINYINT

DateTime DATETIME

Decimal DECIMAL

Double DOUBLE

Guid UNIQUEIDENTIFIER

BINARY

Single FLOAT

Sbyte SMALLINT

Int16 SMALLINT

Int32 INTEGER

Int64 BIGINT

String
1

NCHAR

NVARCHAR

NLONGVARCHAR

TimeSpan TIME

DateTimeOffset DateTime

1
 In the Code First workflow, if the length of the string field in an entity is not

specified, the data provider sets the default length to 2048 and 4096 bytes for
unicode and non-unicode types respectively. However, if the length of the string
field is set to a maximum allowed limit, that is 4000 bytes for unicode types and
8000 bytes for non-unicode types, the data provider resets it to 2048 bytes and
4096 bytes respectively. For all the other scenarios where the length of the string
field is specified, the data provider uses the specified length.

Table 12 Mapping CLR Types to Zen Data Types in a Code First Model (Continued)

CLR Type Zen Data Type

http://msdn.microsoft.com/en-us/library/bb738626.aspx

80

Math Canonical Functions

Table 14 describes the mapping of EDM math canonical functions to Zen functions used to process
columns that contain only decimal and integer values.

For more information, refer to the Numeric Functions.

Table 13 Mapping Aggregate Canonical Functions

Aggregate Canonical Function Zen functions

Avg(expression) avg(expression)

BigCount(expression) count(expression)

Count(expression) count(expression)

Max(expression) max(expression)

Min(expression) min(expression)

StDev(expression) stdev(expression)

StDevP(expression) stdevp(expression)

Sum(expression) sum(expression)

Var(expression) var(expression)

VarP(expression) varp(expression)

Table 14 Mapping Math Canonical Functions

Math Canonical Function Zen Function

Abs(value) abs(value)

Ceiling(value) ceiling(value)

Floor(value) floor(value)

Power(value, exponent) power(value, exponent)

Round(value) round(numeric_expression1, integer_expression2)

Round(value, digits) round(value, digits)

Truncate(value, digits) truncate(value, digits)

81

Date and Time Canonical Functions

Table 15 describes the mapping of EDM date and time canonical functions to Zen functions that
generate, process, and manipulate data that consists of data types such as DATE and TIME.
Table 15 Mapping Date and Time Canonical Functions

Date and Time Canonical Function Zen Functions

AddNanoseconds(expression,number) dateadd(millisecond,number/1000000)

AddMicroseconds(expression,number) dateadd(millisecond,number/1000)

AddMilliseconds(expression,number) dateadd(millisecond,number)

AddSeconds(expression,number) dateadd(second,number)

AddMinutes(expression,number) dateadd(minute,number)

AddHours(expression,number) dateadd(hour,number)

AddDays(expression,number) dateadd(day,number)

AddMonths(expression,number) dateadd(month,number)

AddYears(expression, number) dateadd(year,number)

CreateDateTime(year,month,day,hour,minute,second) datetimefromparts(year,month,day,hour,minute,second,0)

CreateDateTimeOffset(year,month,day,
hour,minute,second,tzoffset)

1 datetimeoffsetfromparts(year,month,day,hour,
minute,second,tzoffset)

CreateTime(hour,minute,second)
1

timefromparts(hour,minute,second,0,0)

CurrentDateTime() now()

CurrentDateTimeOffset() sysdatetimeoffset()

CurrentUtcDateTime() current_timestamp()

Day(expression) datepart(day,expression)

DayOfYear(startexpression,endexpression) dayofyear(expression)

DiffNanoSeconds(startexpression,endexpression) datediff(millisecond,startexpression,endexpression)*1000000

DiffMilliSeconds(startexpression,endexpression) datediff(millisecond,startexpression,endexpression)

DiffMicroSeconds(startexpression,endexpression) datediff(millisecond,startexpression,endexpression)*1000

DiffSeconds(startexpression,endexpression) datediff(second,startexpression,endexpression)

DiffMinutes(startexpression,endexpression) datediff(minute,startexpression,endexpression)

DiffHours(startexpression,endexpression) datediff(hour, startexpression,endexpression)

DiffDays(startexpression,endexpression) datediff(day, startexpression, endexpression)

DiffMonths(startexpression,endexpression) datediff(month,startexpression,endexpression)

DiffYears(startexpression,endexpression) datediff(year,startexpression,endexpression)

GetTotalOffsetMinutes(DateTime Offset) datepart(tzoffset,expression)

82

Bitwise Canonical Functions

Table 16 describes the mapping of EDM bitwise canonical functions to Zen functions.

String Canonical Functions

Table 17 describes the mapping of EDM string canonical functions to Zen functions.

Year(expression) datepart(year,expression)

Month(expression) datepart(month,expression)

Day(expression) datepart(day,expression)

Hour(expression) datepart(hour,expression)

Minute(expression) datepart(minute,expression)

Second(expression) datepart(second,expression)

Millisecond(expression) datepart(millisecond,expression)

TruncateTime(expression) convert(expression, SQL_DATE)

1
 Requires Zen v11.30 Update 4 (May 2013)

Table 16 Mapping Bitwise Canonical Functions

Bitwise Canonical Function Zen Functions

BitWiseAnd (value1, value2) bit_and (value1, value2)

BitWiseNot (value) bit_compliment

BitWiseOr (value1, value2) bit_or

BitWiseXor (value1, value2) bit_xor

Table 17 Mapping String Canonical Functions

String Canonical Function Zen Function

Concat(string1, string2) concat(string1, string2)

Contains(string, target) contains(string, target)

EndsWith(string, target) endswith(string, target)

IndexOf(target, string2) instr(target, string2)

Left(string1, length) left(string1, length)

Length(string) length(string)

LTrim(string) ltrim(string)

Trim(string) trim (BOTH FROM string)

Table 15 Mapping Date and Time Canonical Functions (Continued)

Date and Time Canonical Function Zen Functions

83

Other Canonical Functions

Table 18 describes the mapping of other canonical functions to Zen functions.

Replace(string1, string2, string3) replace(string1, string2, string3)

Reverse(string) reverse(string)

RTrim(string) rtrim(string)

StartsWith(string, target) startswith(string, target)

Substring(string, start, length) INCOMPLETE regexpr_substr(…)

ToLower(string) lower(string)

ToUpper(string) upper(string)

Table 18 Mapping Other Canonical Functions

Other Canonical Function Zen Function

NewGuid() newid()

Table 17 Mapping String Canonical Functions (Continued)

String Canonical Function Zen Function

84

Extending Entity Framework Functionality

The ADO.NET Entity Framework offers powerful productivity gains by masking many ADO.NET
features, simplifying application development. The ADO.NET Data Provider includes functionality
designed to optimize performance.

Applications that use the standard Logging Application Block (LAB) from the Microsoft Enterprise
Library 6.0 and the related design patterns can quickly display the SQL generated as part of the
ADO.NET Entity Framework data providers.

See Logging Application Blocks for more information.

85

Enhancing Entity Framework Performance

Although the Entity Framework offers powerful productivity gains, some developers believe that the
Entity Framework takes too much control of the features they need to optimize performance in their
applications.

Limiting the Size of XML Schema Files

Building large models with the Entity Data Model (EDM) can be very inefficient. For optimal results,
consider breaking up a model when it has reached 50 to 100 entities.

The size of the XML schema files is to some extent proportional to the number of tables, views, or stored
procedures in the database from which you generated the model. As the size of the schema files increase,
additional time is needed to parse and create an in-memory model for the metadata. This is a one-time
performance cost that is incurred for each ObjectContext instance.

This metadata is cached per application domain, based on the EntityConnection String. This means that
if you use the same EntityConnection string in multiple ObjectContext instances in a single application
domain, the application incurs the cost of loading metadata only once. However, the performance cost
could still be significant if the size of the model becomes large and the application is not a long-running
one.

86

Using Stored Procedures with the ADO.NET Entity Framework

Using stored procedures with the ADO.NET Entity Framework requires mapping functions. Calling
these stored procedures is complex and requires some coding.

Providing Functionality

The Connection object includes properties and methods that provide enhanced statistics functionality
that are standard in the ADO.NET data provider, but are not available at the ADO.NET Entity
Framework layer. Instead, you expose the same functionality through "pseudo" stored procedures.

This approach uses the Entity Data Model (EDM) to achieve results that correspond to the ADO.NET
results. This in effect provides entities and functions backed by pseudo stored procedures.

Table 19 lists the mapping of the data provider’s Connection properties to the corresponding pseudo
stored procedure.

Applications must use the ObjectContext to create a stored procedure command as shown in the
following C# code fragment:
using (MyContext context = new MyContext())
{
 EntityConnection entityConnection = (EntityConnection)context.Connection;

 // The EntityConnection exposes the underlying store connection
 DbConnection storeConnection = entityConnection.StoreConnection;
 DbCommand command = storeConnection.CreateCommand();
 command.CommandText = "Psql_Connection_EnableStatistics";
 command.CommandType = CommandType.StoredProcedure;
 command.Parameters.Add(new PsqlParameter("cid", 1));
}

//

bool openingConnection = command.Connection.State == ConnectionState.Closed;
if (openingConnection) { command.Connection.Open(); }
int result;
try
{
 result = command.ExecuteNonQuery();
}
finally

Table 19 Mapping to Pseudo Stored Procedure

Connection Property Pseudo Stored Procedure

StatisticsEnabled Psql_Connection_EnableStatistics

Psql_Connection_DisableStatistics

Connection Method Pseudo Stored Procedure

ResetStatistics Psql_Connection_ResetStatistics

RetrieveStatistics Psql_Connection_RetrieveStatistics

87

{
 if (openingConnection && command.Connection.State == ConnectionState.Open) {

command.Connection.Close(); }
}

Using Overloaded Stored Procedures

If you have multiple overloaded stored procedures, the Zen Entity Framework data provider appends an
identifier to each stored procedure name so you can distinguish between them in the SSDL. The data
provider removes the appended identifier before calling the stored procedure for your application.

88

Using .NET Objects

The ADO.NET Entity Framework data provider supports the .NET public objects, exposing them as
sealed objects.

For more information, see .NET Objects Supported.

The ADO.NET Entity Framework programming contexts inherently eliminate the need to use some
ADO.NET methods and properties. These properties and methods remain useful for standard
ADO.NET applications. The online help, which is integrated into Visual Studio, describes the public
methods and properties of each class.

Table 20 lists the properties and methods that are not required or are implemented differently when
using the data provider with an ADO.NET Entity application.

Table 20 Properties and Methods Differences with the ADO.NET Entity Data Provider

Property or Method Behavior

PsqlCommand

AddRowID Not supported. The ADO.NET Entity Framework does not process the additional data that is returned.

ArrayBindCount Not supported. The application cannot influence this bind count on top of the ADO.NET Entity
Framework.

ArrayBindStatus Not supported. The application cannot influence this bind count on top of the ADO.NET Entity
Framework.

BindByName Not supported. Instead, the data provider uses the ADO.NET Entity Framework programming contexts.

CommandTImeout Not supported. Instead, the data provider uses the ADO.NET Entity Framework programming contexts.

UpdatedRowSource Not supported. Instead, the data provider uses the ADO.NET Entity Framework programming contexts.

PsqlCommandBuilder

DeriveParameters Not supported. Instead, the data provider uses the ADO.NET Entity Framework programming contexts.

PsqlConnection

ConnectionTimeout Supported only in a connection string.

StatisticsEnabled Use the StatisticsEnabled or StatisticsDisabled stored procedure. See Using Stored Procedures with
the ADO.NET Entity Framework for information on using this functionality in an ADO.NET Entity
Framework application.

DataAdapter

UpdateBatchSize Not supported. Instead, the data provider uses the ADO.NET Entity Framework programming contexts.

Error

ErrorPosition Not supported. Instead, the data provider uses the ADO.NET Entity Framework programming contexts.

SQLState Not supported. Instead, the data provider uses the ADO.NET Entity Framework programming contexts.

89

Creating a Model

The Entity Framework creates a model of your data in Visual Studio.

Note Developing with the ADO.NET Entity Framework requires that you use Microsoft .NET
Framework Version 4.5.x, 4.6.x, 4.7.x, or 4.8 and Visual Studio 2017 or later with the 4.4 or 4.5
version of the Actian Zen ADO.NET Entity Framework data provider.

To create a model of your data in Visual Studio using the Entity Framework, you must first ensure that
you already have the database schema available.

 To use the Entity Framework for creating a model of your data in Visual Studio

1 Create a new .NET application, such as Windows Console, Windows Forms, in Visual Studio.

2 In the Solution Explorer, right-click the project and select Add > New Item.

3 Select ADO.NET Entity Data Model, then click Add.

4 The Entity Data Model Wizard appears. Based on whether you have configured Microsoft
ADO.NET Entity Framework 6.1 (EF 6.1), do one of the following:

90

 If you have not configured EF 6.1, select Generate from database and click Next.

 If you have configured EF 6.1, select EF Designer from database and click Next.

91

5 On the Choose your Data Connection page, click New Connection to create a new connection. If
you have an established connection, you can select it from the drop-down list.

6 The Connection Properties window appears. Provide the necessary connection information and
click OK.

7 The Wizard creates an Entity connection string.

a. If the radio buttons are selectable, select Yes, include the sensitive data in the connection
string to include the sensitive data in the connection string.

b. In the Save entity connection settings field, enter a name for the name of the main data access
class or accept the default.

c. Click Next.

8 Based on the configured Entity Framework version, do one of the following:

92

 If you have configured EF5 for the current project, on the Choose Your Version page, proceed
with the default Entity Framework 5.0 by clicking Next.

Note: To use the EF 6.1 with your current project, exit the wizard, configure EF 6.1, and then
rebuild the project. When you rebuild the project after configuring EF 6.1, the wizard does not
display the Choose Your Version page and you can directly proceed to the next step.

 If you have configured EF 6.1 for the current project, proceed to the next step.

9 Select the database objects that will be used in the model.

10 Click Finish. The model is generated and opened in the Model Browser.

93

94

Upgrading Entity Framework 5 Applications to Entity Framework 6.1

You can use Entity Framework Power Tools to regenerate Mapping Views with EF 6.1. For Entity
Framework Power Tools to work with Zen ADO.NET Entity Framework Provider, you must add a
Provider registration entry in the .NET Framework 4.0 machine.config file.

The steps given here upgrade an EF 5 application created using Zen ADO.NET Entity Framework
provider to an EF 6.1 application. This procedure is needed only to upgrade an EF 5 application to EF
6.1. After upgrading, we recommend undoing machine.config file edits to restore their previous content.

Note If the target database already contains objects created by the Entity Framework 5 code first
application, then you need to drop these objects before running the migrated Entity Framework 6.1
application. Entity Framework 5.0 generates the foreign key constraint name differently from Entity
Framework 6.1, which causes the application to fail with error "Table or view already exists."

 To edit machine.config files

1 Close all Visual Studio windows before continuing with these steps.

2 Open the machine.config file for .Net Framework 4 in the following location, and also in the second
one if you are using a 64-bit system:

 %windir%\Microsoft.NET\Framework\v4.0.30319\Config\machine.config
 %windir%\Microsoft.NET\Framework64\v4.0.30319\Config\machine.config

3 Under the <configSections></configSections> node, add the following entry:

<section name="entityFramework"

type="System.Data.Entity.Internal.ConfigFile.EntityFrameworkSection, EntityFramework,

Version=6.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"

requirePermission="false" />

4 Under the <configuration> </configuration> node after the </configSections> closure tag, add the
following entry:

<entityFramework>

<providers>

<provider invariantName="Pervasive.Data.SqlClient"

type="Pervasive.Data.SqlClient.Entity.PsqlProviderServices,

Pervasive.Data.SqlClient.Entity, Version=4.5.0.6, Culture=neutral,

PublicKeyToken=c84cd5c63851e072" />

</providers>

</entityFramework>

Note This version 4.5 example uses Version=4.5.0.6. For version 4.4, use Version=4.4.0.6.

5 Save and close the files you changed.

6 You must install EF version 6.1.2 to the corresponding project. To do so, you need to upgrade your
project to the new EF 6.1.x runtime. You can do this by one of two methods:

95

Method 1

a. Right-click your project and select Manage NuGet Packages.
b. In the Online tab, select EntityFramework and click Install.

Any previous version of the EntityFramework NuGet package is upgraded to EF 6.1.x.

Method 2

Run the following command from Package Manager Console for the corresponding project to install
EF 6.1.2 for that project:
Install-Package EntityFramework -Version 6.1.2

7 After using one of the methods, confirm removal of assembly references to System.Data.Entity.dll.

Installing the EF6 NuGet package should automatically remove any references to System.Data.Entity
from your project.

8 Change any Enterprise Framework Designer (EDMX) models to use EF 6.x code generation. If you
have any models created with the EF Designer, you will need to update the code generation
templates to generate EF6-compatible code.

Note For Visual Studio 2012 and later, only EF 6.x DbContext Generator templates are available.

a. Delete existing code-generation templates:
These files are typically named <edmx_file_name>.tt and <edmx_file_name>.Context.tt and
are nested under your .edmx file in Solution Explorer. You can select the templates in Solution
Explorer and use the delete key to remove them.

Note In website projects, the templates are not nested under your .edmx file, but alongside it in
Solution Explorer. In VB.NET projects you need to enable Show All Files to see the nested template
files.

b. Add the appropriate EF 6.x code generation template:
Open your model in the EF Designer, right-click the design surface, and select Add Code
Generation Item.
 If you are using the DbContext API (recommended), then EF 6.x DbContext Generator is

available under the Data tab.
Note that if you are using Visual Studio 2012, you need to install the EF 6 Tools to have this
template. For details, see Get Entity Framework at Microsoft,
https://msdn.microsoft.com/en-us/library/ee712906(v=vs.113).aspx.

 If you are using the ObjectContext API, then you need to select the Online tab and search
for EF 6.x EntityObject Generator.

c. If you applied any customizations to the code generation templates, you will need to reapply
them to the updated templates.

9 Update name spaces for any core EF types you are using.

The name spaces for DbContext and Code First types have not changed. This means that for many
applications that use EF 4.1 or later you will not need to change anything.

96

Types such as ObjectContext that were previously in System.Data.Entity.dll have been moved to new
name spaces. This means you may need to update your using or import directives to build against
EF6.

The general rule for namespace changes is that any type in System.Data.* is moved to
System.Data.Entity.Core.*. In other words, just insert Entity.Core. after System.Data. For example:

 System.Data.EntityException => System.Data.Entity.Core.EntityException
 System.Data.Objects.ObjectContext => System.Data.Entity.Core.Objects.ObjectContext
 System.Data.Objects.DataClasses.RelationshipManager =>

System.Data.Entity.Core.Objects.DataClasses.RelationshipManager

These types are in the Core name spaces because they are not used directly for most DbContext-
based applications. Some types that were part of System.Data.Entity.dll are still used commonly and
directly for DbContext-based applications and so have not been moved into the Core name spaces.
These are:

 System.Data.EntityState => System.Data.Entity.EntityState
 System.Data.Objects.DataClasses.EdmFunctionAttribute =>

System.Data.Entity.DbFunctionAttribute
Note: This class has been renamed. A class with the old name still exists and works but is now
marked as obsolete.

 System.Data.Objects.EntityFunctions => System.Data.Entity.DbFunctions
Note: This class has been renamed. A class with the old name still exists and works but is now
marked as obsolete.

10 Regenerate Mapping Views

If you have generated Mapping Views previously, delete the files and regenerate the Mapping View.
For more information about Mapping Views, see https://msdn.microsoft.com/en-
us/data/dn469601.

The EF 5 application built with the Zen ADO.NET data provider is now upgraded to EF 6.1.2.

Note Once all of your EF 5 applications are upgraded to EF 6.1.2, we recommend that you undo the
changes to Machine.config file and restore your earlier Machine.config file.

Entity Framework Power Tools provides an easier way to migrate EF 5.0 applications which use model
Views to EF 6.1 applications. During our testing we found the Entity Framework Power Tools working
fine with Zen Entity Framework Provider.

Note Entity Framework Power Tools is not a certified or supported tool with Zen ADO.NET Entity
Framework data providers.

97

For More Information

See the following sources for additional information about ADO.NET and the Entity Framework:

 Programming Entity Framework by Julie Lerman provides a comprehensive discussion of using the
ADO.NET Entity Framework.

 ADO.NET Entity Framework introduces the Entity Framework and provides links to numerous
detailed articles.

 Connection Strings (Entity Framework) describes how connection strings are used by the Entity
Framework. The connection strings contain information used to connect to the underlying
ADO.NET data provider as well as information about the required Entity Data Model mapping and
metadata.

 Entity Data Model Tools describes the tools that help you to build applications graphically with the
EDM: the Entity Data Model Wizard, the ADO.NET Entity Data Model Designer (Entity Designer),
and the Update Model Wizard. These tools work together to help you generate, edit, and update an
Entity Data Model.

 LINQ to Entities enables developers to write queries against the database from the same language
used to build the business logic.

http://msdn.microsoft.com/en-us/library/bb399572.aspx
http://msdn.microsoft.com/en-us/library/cc716756.aspx
http://msdn.microsoft.com/en-us/library/bb399249.aspx
http://msdn.microsoft.com/en-us/library/bb386964.aspx

98

99

c h a p t e r

7Zen ADO.NET Entity
Framework Core Data Providers

Zen ADO.NET Entity Framework (EF) Core is a lightweight and extensible object-relational mapper
(O/RM) for .NET that supports cross-platform development. It allows developers to work with the
database using .NET objects and helps them decrease the amount of code that needs to be written and
maintained in data-centric applications.

Zen ADO.NET Entity Framework Core data providers can be used with applications that use the
ADO.NET Entity Framework Core. They support the following:

 Microsoft ADO.NET Entity Framework Core 3.1
 All the platforms supported by .Net Standard 2.1. For details, see https://docs.microsoft.com/en-

us/dotnet/standard/net-standard.
 All the features supported by both Microsoft Entity Framework Core and Actian Zen database. For

details, see https://docs.microsoft.com/en-in/ef/core/what-is-new/.

Zen ADO.NET Entity Framework Core data providers use ADO.NET data providers to communicate
with ADO.NET database servers. This means that the functionality defined by Zen ADO.NET data
providers applies to Zen ADO.NET Entity Framework Core data providers unless otherwise noted here.
Similarly, any performance configurations made to Zen ADO.NET data providers are realized by the
Zen ADO.NET Entity Framework Core data providers.

Note: Visual Studio 2019 or later is required when developing applications for the Zen ADO.NET Entity
Framework Core.

https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-in/ef/core/what-is-new/

100

About Zen ADO.NET Entity Framework Core Data Providers

Zen ADO.NET Entity Framework Core data providers are built with 100% managed code, so they can
run and connect to the database entirely within the common language runtime (CLR).

Code that runs in the native operating system, such as client libraries and COM components, is called
unmanaged code. You can mix managed and unmanaged code within a single application. However,
unmanaged code reaches outside the CLR, which means that it effectively raises complexity, reduces
performance, and opens possible security risks.

Namespace

The namespace for the Zen ADO.NET Entity Framework Core data provider is
Actian.EntityFrameworkCore.Zen.

Assembly Names

The Zen ADO.NET Entity Framework Core data provider uses the assembly name
Actian.EntityFrameworkCore.Zen.dll.

To use it, download the latest SDK .zip archive and extract the NuGet package
Actian.EntityFrameworkCore.Zen for your version as listed under Zen ADO.NET Data Providers
Available with SDK Download. Then add the package to your project.

101

Configuring the Zen ADO.NET Entity Framework Core Data Provider

 To configure Zen ADO.NET Entity Framework Core Data Provider

1 Create an application that targets .Net Standard 2.1. For details, see https://docs.microsoft.com/en-
us/dotnet/standard/net-standard.

2 Install the following NuGet package: Actian.EntityFrameworkCore.Zen.

3 Add a new context class to your application and override the OnConfiguring method using the
following code:
public class MyContext : DbContext

 {

protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)

=> optionsBuilder.UseZen(connection string);

 }

https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.microsoft.com/en-us/dotnet/standard/net-standard

102

Using Connection Strings with the Zen ADO.NET Entity Framework
Core Data Provider

The Zen ADO.NET Entity Framework Core data provider uses information contained in connection
strings to connect to the underlying Zen ADO.NET data provider that supports the Entity Framework
Core.

Changes in Default Values for Connection String Options

Most default values of the connection string options used by the Zen ADO.NET Entity Framework Core
data provider are the same as those used by the Zen ADO.NET data provider (see Table 35 for more
information). Table 21 lists the connection string options that have a different default value when used
with an ADO.NET Entity Framework Core application.

Table 21 Default Values of Connection String Options Used in an ADO.NET Entity Framework Core
Application

Connection String Option Default Value in ADO.NET Entity Framework Core Application

Parameter Mode Not supported.

Statement Cache Mode ExplicitOnly is the only supported value.

DB File Directory Path Environment.SpecialFolder.CommonApplicationData. To know more
about the Environment.SpecialFolder enum and the supported fields,
see https://docs.microsoft.com/en-
us/dotnet/api/system.environment.specialfolder?view=netcore-3.1

https://docs.microsoft.com/en-us/dotnet/api/system.environment.specialfolder?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.environment.specialfolder?view=netcore-3.1

103

Code First Support

Entity Framework Core supports Code First features. Implementing support for these features requires
changes to the data provider, including those required to handle long identifier names. However, it does
not need any changes to your application.

Code First implementations require type mapping changes. See Type Mapping for Code First for more
information.

Handling Long Identifier Names

Most Zen identifiers have a maximum length of 20 bytes. The identifier name can exceed this size
because the names of the objects to be created on the server are taken from the class and property names.
In addition, constraint names are often created by concatenating several object names. In these cases, the
chances of exceeding the maximum identifier length are even greater.

For columns, the data provider shortens identifiers to the maximum identifier length allowed by the
database, replacing the end of the identifier with a tilde character ~. For example, the string
ColumnMoreThanTwentyCharacters is shortened to ColumnMoreThanTwent~.

For tables, the data provider shortens identifiers to the maximum identifier length allowed by the
database, replacing the end of the identifier with an integer hash-code. For example, the string
ATableWithAVeryLongTableName is shortened to ATableWit_1738385675.

If you access or view the DB object using a DB tool, the names of the created tables may differ from what
you might expect based on model class names and property names.

104

Using Code First Migrations with the ADO.NET Entity Framework
Core

Entity Framework Core supports the Code First Migrations feature, which enables you to update your
database schema to reflect model classes without having to drop and recreate them.

Migrations enable you to incrementally evolve your database schema as your model changes. Each set of
changes to the database is expressed in a code file, known as a migration. The migrations are ordered,
typically using a time stamp, and a table in the database keeps track of which migrations are applied to
the database.

Code First Migrations requires type mapping changes. See Type Mapping for Code First for more
information.

To implement Code First Migrations, once you have configured the Zen ADO.NET Entity Framework
Core data provider, install the following NuGet package: Microsoft.EntityFrameworkCore.Tools
(version 3.1)

105

Using Reverse Engineering (Scaffolding)

The process of scaffolding entity type classes and a DbContext class based on a database schema is called
reverse engineering. You can perform it using either the Scaffold-DbContext command of the EF Core
Package Manager Console (PMC) tools or the dotnet ef dbcontext scaffold command of the .NET
command-line interface (CLI) tools.

To use reverse engineering with the ADO.NET Actian Zen Entity Framework Core data provider,
perform the following steps after you have configured the data provider:

1 Install the following NuGet package: Microsoft.EntityFrameworkCore.Tools (version 3.1).

2 Run the following Scaffold-DbContext PowerShell command:

Scaffold-DbContext 'connection string' Actian.EntityFrameworkCore.Zen

You can add more parameters to the Scaffold-DbContext PowerShell command, if required. To know
more about it, see https://docs.microsoft.com/en-in/ef/core/managing-schemas/scaffolding?tabs=vs.

To use reverse engineering in .Net Core CLI environment, see https://docs.microsoft.com/en-
in/ef/core/managing-schemas/scaffolding?tabs=dotnet-core-cli.

https://docs.microsoft.com/en-in/ef/core/managing-schemas/scaffolding?tabs=vs
https://docs.microsoft.com/en-in/ef/core/managing-schemas/scaffolding?tabs=dotnet-core-cli
https://docs.microsoft.com/en-in/ef/core/managing-schemas/scaffolding?tabs=dotnet-core-cli

106

Type Mapping for Code First

Mapping CLR Types to Actian Zen Data Types in a Code First Model shows the model-centric type
mapping, where the CLR type influences the Zen (store) type used when the database is created. Some
CLR types can map to several different Zen types.

The columns are defined as follows:

 The CLR Type column refers to the common language runtime type name.
 Property Values Affecting Type Mapping identifies any property value that can affect type mapping.
 The Zen Type column refers to the native type name.

Table 22 Mapping CLR Types to Actian Zen Data Types in a Code First Model

CLR Type Property Values That Affect
Type Mapping

Actian Zen Data Type

Bool BIT

Byte UTINYINT

Byte[] BINARY

LONGVARBINARY
1

DateTime AUTOTIMESTAMP

DATE

TIMESTAMP

TIMESTAMP2
2

DateTimeOffset DATETIME

Decimal CURRENCY

DECIMAL
2

NUMERIC

NUMERICSA

NUMERICSTS

UBIGINT

Double BFLOAT8

DOUBLE
2

Float FLOAT
2

REAL

BFLOAT4

Guid UNIQUEIDENTIFIER

107

Mapping EDM Canonical Functions to Zen Functions

The ADO.NET Entity Framework Core translates the Entity Data Model (EDM) canonical functions to
the corresponding data source functionality for the Zen ADO.NET Entity Framework Core data
provider. The function invocations are expressed in a common form across data sources.

Int INTEGER
2

IDENTITY

USMALLINT

Long BIGINT
2

BIGIDENTITY

UINTEGER

SByte TINYINT

Short SMALLINT
2

SMALLIDENTITY

String NLONGVARCHAR
2

Unicode=False LONGVARCHAR

MaxLength= (1<=n<=8000)

Fixed Length=False

Unicode=True

NVARCHAR

MaxLength= (1<=n<=8000)

Fixed Length=False

Unicode=False

VARCHAR

MaxLength= (1<=n<=8000)

Fixed Length=True

Unicode=True

NCHAR

MaxLength= (1<=n<=8000)

Fixed Length=True

Unicode=False

CHAR

TimeSpan TIME

1. Maps to this type if no value is specified for MaxLength.
2. By default, maps to this type.

Table 22 Mapping CLR Types to Actian Zen Data Types in a Code First Model (Continued)

CLR Type Property Values That Affect
Type Mapping

Actian Zen Data Type

108

Because these canonical functions are independent of data sources, argument and return types of
canonical functions are defined in terms of types in the EDM. When an Entity SQL query uses canonical
functions, the appropriate function is called at the data source.

Both null-input behavior and error conditions are explicitly specified for all canonical functions.
However, the ADO.NET Entity Framework Core does not enforce this behavior.

Aggregate Canonical Functions

Table 23 describes the mapping of EDM aggregate canonical functions to Zen functions, and also the
CLR types to which these functions apply.

Math Canonical Functions

Table 24 describes the mapping of EDM math canonical functions to Zen functions, and also the CLR
types to which these functions apply.

Table 23 Mapping Aggregate Canonical Functions

Aggregate Canonical Function Actian Zen functions CLR Type

BigCount(expression) COUNT_BIG(expression) Long

Count(expression) COUNT(expression) Int

Table 24 Mapping Math Canonical Functions

Math Canonical Function Actian Zen Function CLR Type

Abs(expression) ABS(expression) Decimal, Double, Float, Int, Long,
SByte, Short

Ceiling(expression) CEILING(expression) Decimal, Double

Floor(expression) FLOOR(expression) Decimal, Double

Pow(base, power) POWER(base, power) Double

Exp(expression) EXP(expression) Double

Log10(expression) LOG10(expression) Double

Log(expression) LOG(expression) Double

Sqrt(expression) SQRT(expression) Double

Acos(expression) ACOS(expression) Double

Asin(expression) ASIN(expression) Double

Atan(expression) ATAN(expression) Double

Atan2(expression1,
expression2)

ATAN2(expression1, expression2) Double

Cos(expression) COS(expression) Double

Sin(expression) SIN(expression) Double

109

Date and Time Canonical Functions

Table 25 describes the mapping of EDM date and time canonical functions to Zen functions that
generate, process, and manipulate types that work with data time data, and also the CLR types to which
these functions apply.

Tan(expression) TAN(expression) Double

Sign(expression) SIGN(expression) Decimal, Double, Float, Int, Long,
SByte, Short

Table 25 Mapping Date and Time Canonical Functions

Date and Time Canonical Function Actian Zen Functions CLR Type

DateTime.Now SYSDATETIME() DateTime

DateTime.Now SYSDATETIMEOFFSET () DateTimeOffset

DateTime.UtcNow SYSUTCDATETIME() DateTime

DateTimeOffset

DateTime.Today CURDATE() DateTime

DateTimeOffset

AddYears(expression) DATEADD(year, expression,
column)

DateTime

DateTimeOffset

AddMonths(expression) DATEADD(month, expression,
column)

DateTime

DateTimeOffset

AddDays(expression) DATEADD(day, expression,
column)

DateTime

DateTimeOffset

AddHours(expression) DATEADD(hour, expression,
column)

DateTime

DateTimeOffset

AddMinutes(expression) DATEADD(minute, expression,
column)

DateTime

DateTimeOffset

AddSeconds(expression) DATEADD(second, expression,
column)

DateTime

DateTimeOffset

AddMilliSeconds(expression) DATEADD(millisecond,
expression, column)

DateTime

DateTimeOffset

EF.Functions.DateDiffYear(column,
expression)

DATEDIFF(year, column,
expression)

DateTime

DateTimeOffset

Table 24 Mapping Math Canonical Functions (Continued)

Math Canonical Function Actian Zen Function CLR Type

110

String Canonical Functions

Table 27 describes the mapping of EDM string canonical functions to Zen functions, and also the CLR
types to which these functions apply.

EF.Functions.DateDiffMonth(column,
expression)

DATEDIFF(month, column,
expression)

DateTime

DateTimeOffset

EF.Functions.DateDiffDay(column,
expression)

DATEDIFF(day, column,
expression)

DateTime

DateTimeOffset

EF.Functions.DateDiffHour(column,
expression)

DATEDIFF(hour, column,
expression)

DateTime

DateTimeOffset

TimeSpan

EF.Functions.DateDiffMinute(column,
expression)

DATEDIFF(minute, column,
expression)

DateTime

DateTimeOffset

TimeSpan

EF.Functions.DateDiffSecond(column,
expression)

DATEDIFF(second, column,
expression)

DateTime

DateTimeOffset

TimeSpan

EF.Functions.DateDiffMilliSecond(colu
mn, expression)

DATEDIFF(millisecond,
column, expression)

DateTime

DateTimeOffset

TimeSpan

Table 26 Mapping String Canonical Functions

String Canonical Function Actian Zen Functions CLR Type

IndexOf(expression) POSITION(expression, column) String

Replace(toReplace, replaceWith) REPLACE(toReplace, column,
replaceWith)

String

ToLower() LOWER(column) String

ToUpper() UPPER(column) String

SubString(start, length) SUBSTRING(column, start,
length)

String

IsNullOrWhiteSpace() A combination of LTRIM and
RTRIM with a null check on the
column

String

TrimStart() LTRIM(column) String

TrimEnd() RTRIM(column) String

Table 25 Mapping Date and Time Canonical Functions (Continued)

Date and Time Canonical Function Actian Zen Functions CLR Type

111

Other Canonical Functions

Table 27 describes the mapping of other canonical functions to Zen functions, and also the CLR types
to which these functions apply.

Note: Column is the property to which the function is applied.

TRIM() A combination of LTRIM and
RTRIM on the column

String

Contains(expression) POSITION(expression, column) String

StartsWith(expression) A combination of LEFT and
LENGTH on the column

String

EndsWith(expression) A combination of RIGHT and
LENGTH on the column

String

Length() LENGTH(column) String

EF.Functions.Position(column,
expression)

POSITION(expression, column) String

Table 27 Mapping Other Canonical Functions

Canonical Function Actian Zen Function CLR Type

ToString() CONVERT(column, SQL_CHAR) All types

NewGuid() NEWID() Guid

Table 26 Mapping String Canonical Functions

String Canonical Function Actian Zen Functions CLR Type

112

Extending Entity Framework Functionality

The ADO.NET Entity Framework Core and Actian Zen Entity Framework Core data provider are
designed to be extended easily. The following examples demonstrate how to extend Entity Framework
Core:

 https://docs.microsoft.com/en-in/ef/core/managing-schemas/migrations/history-table
 https://docs.microsoft.com/en-in/ef/core/modeling/dynamic-model

https://docs.microsoft.com/en-in/ef/core/managing-schemas/migrations/history-table
https://docs.microsoft.com/en-in/ef/core/modeling/dynamic-model

113

Using Stored Procedures with the ADO.NET Entity Framework Core

In Entity Framework Core, stored procedures can be executed using raw SQL queries. For more
information, see https://docs.microsoft.com/en-in/ef/core/querying/raw-sql.

https://docs.microsoft.com/en-in/ef/core/querying/raw-sql

114

Upgrading an Application from Entity Framework 6.x to Entity
Framework Core

To upgrade your application from Entity Framework 6.x to Entity Framework Core, see
https://docs.microsoft.com/en-us/ef/efcore-and-ef6/porting/.

https://docs.microsoft.com/en-us/ef/efcore-and-ef6/porting/

115

Limitations

The Actian Zen ADO.NET Entity Framework Core data provider has the following limitations:

 The Entity Framework Core has some limitations related to the reverse engineering (scaffolding)
feature. They all apply to the Actian Zen Entity Framework Core data provider as well. For more
information on these limitations, see https://docs.microsoft.com/en-in/ef/core/managing-
schemas/scaffolding?tabs=dotnet-core-cli.

 The Actian Zen Entity Framework Core data provider does not support the concurrency feature of
reverse engineering (scaffolding).

For More Information

Refer to the following sources for additional information about ADO.NET and the Entity Framework
Core.

 ADO.NET Entity Framework Core introduces the Entity Framework Core and provides links to
numerous detailed articles.

 Feature Comparison compares the features available in Entity Framework Core and Entity
Framework 6.X.

ASP.NET Core shows how to use Entity Framework Core in an ASP.NET Core Razor Pages app.

https://docs.microsoft.com/en-in/ef/core/managing-schemas/scaffolding?tabs=dotnet-core-cli
https://docs.microsoft.com/en-in/ef/core/managing-schemas/scaffolding?tabs=dotnet-core-cli
https://docs.microsoft.com/en-in/ef/core/get-started/?tabs=visual-studio
https://docs.microsoft.com/en-us/ef/efcore-and-ef6/
https://docs.microsoft.com/en-in/aspnet/core/data/ef-rp/intro?view=aspnetcore-3.1&tabs=visual-studio

116

117

c h a p t e r

8Using Zen Data Providers in
Visual Studio

Zen data providers support integration into Visual Studio. This means that developers can use the
graphical user interface of Microsoft Visual Studio to perform a variety of tasks.

The following topics describe how the features of the Zen data providers are integrated into Visual
Studio:

 Adding Connections
 Using the Zen Performance Tuning Wizard
 Using Provider-Specific Templates
 Using the Zen Visual Studio Wizards
 Adding Components from the Toolbox
 Data Provider Integration Scenario

118

Adding Connections

You can add connections in several ways in Visual Studio:

 Adding Connections in Server Explorer
 Adding Connections with the Data Source Configuration Wizard

Adding Connections in Server Explorer

 To add a connection

1 Right-click the Data Connections node in the Server Explorer and select Add Connection.

The Add Connection window appears.

2 If the Zen data provider is displayed in the Data source field, skip to Step 4. Otherwise, click
Change.

119

3 The Change Data Source window appears.

a. In the Data source list box, select Actian Zen Database.
b. In the Data provider list, select Actian Zen ADO.NET Data Provider.
c. If you want to use these selections for other connections, select the Always use this selection

check box.
d. Click OK to return to the Add Connection window.

4 In the Add Connection window, do the following steps:

a. Enter the Host name.
b. Enter the User ID and password. These values are required for authentication.
c. (Optional) If you want to save the password for the lifetime of connection instance defined in

Server Explorer, select the Save my password check box.
d. (Optional) In the Database entry field, enter the name of the database to which you want to

connect.

5 Click the Advanced button to specify additional provider-specific property values.

120

To change a value in the Advanced Properties dialog box, select or type the new value into the field
and press ENTER. The value is added to the connection string that appears in the field below the
description of the property. If you accept the default values, the connection string field remains
unchanged. When you have made the necessary changes, click OK to return to the Add Connection
window.

Advanced

EnableIPv6: Provides backward compatibility for connecting to a Zen server using an IPv4 address.

If set to True, a client with IPv6 protocol installed can connect to the server using either an IPv4
address or an IPv6 address.

If set to False, the clients run in the backward compatibility mode. The client always connects to the
server using an IPv4 address.

The default value for 4.0 is set to True.

For more information about IPv6 formats, see IPv6 in Getting Started with Zen.

Encoding: Type the ANSI name or Windows code page to be used for translating string data stored
in the database. By default, the Windows code page is used.

Initial Command Timeout: Specifies the default wait time (timeout in seconds) before the data
provider terminates the attempt to execute the command and generates an error. This option
provides the same functionality as the PsqlCommand object’s CommandTimeout property without
the need to make changes to the application code. Subsequently, an application can use the
CommandTimeout property to override the Initial Command Timeout connection string option.

The initial default value is 30 seconds.

Note: Set the Initial Command Timeout option to a value that is greater than the largest default
deadlock detection and timeout value on the server. This ensures that the application receives a
more meaningful reply in case of a timeout.

Initialization String: Type one statement that will be issued immediately after connecting to the
database to manage session settings.

Example: To handle CHAR columns that are padded with NULLs, set the value to:
Initialization String=SET ANSI_PADDING ON

Note: If the statement fails to execute for any reason, the connection to the server fails. The data
provider throws an exception that contains the errors returned from the server.

Parameter Mode: Select the behavior of native parameter markers and binding. This allows
applications to reuse provider-specific SQL code and simplifies migration to Zen data providers.
Note that this option does not apply to Zen ADO.NET Entity Framework data providers.

If set to ANSI (the default), the ? character is processed as a parameter marker and bound as ordinal.

If set to BindByOrdinal, native parameter markers are used and are bound as ordinal.

If set to BindByName, native parameter markers are used and are bound by name.

PVTranslate: Select whether the client should negotiate a compatible encoding with the server.

If set to Auto, then the data provider will set the Encoding connection property to the database code
page. In addition, SQL query text will be sent to the engine using UTF-8 encoding instead of the data
encoding. This preserves NCHAR string literals in the query text.

121

If set to Nothing (the default), the setting for the Encoding connection property is used.

Timestamp: Select whether Zen time stamps are stored and retrieved as strings.

If set to DateTime (the initial default), the data provider maps time stamps to DateTime. This setting
may be appropriate when native precision is required, for example, when using the
CommandBuilder with a time stamp.

If set to String, the data provider maps Zen time stamps as strings.

TimeType: Select whether Zen times are retrieved as Timespan or DateTime in Zen ADO.NET data
providers.

If set to As DateTime, the data provider maps the SQL type TIME to the .NET type
System.DateTime.

If set to As TimeSpan, the data provider maps the SQL type TIME to the .NET type
System.DateTimespan.

Connection Pooling

Connection Reset: Select whether a connection that is removed from the connection pool for reuse
by an application will have its state reset to the initial configuration settings of the connection.

If set to False (the initial default), the data provider does not reset the state of the connection.

Connection Pool Behavior: Select the order in which a connection is removed from the connection
pool for reuse, based on how frequently or how recently the connection has been used.

If set to MostRecentlyUsed, the data provider uses a Last In First Out (LIFO) approach to return the
connection that was returned to the pool most recently.

If set to LeastRecentlyUsed, the data provider uses a First In First Out (FIFO) approach to return the
connection with the lowest use count. This value ensures a balanced use of connections in the pool.

If set to MostFrequentlyUsed, the data provider returns the connection with the highest use count.
This value enables applications to give preference to the most seasoned connection.

If set to LeastFrequentlyUsed, the data provider returns the connection with the lowest use count.
This value ensures a balanced use of connections in the pool.

Connection Timeout: Type the number of seconds after which the attempted connection to the
server will fail if not yet connected. If connection failover is enabled, this option applies to each
connection attempt.

If set to 0, the data provider never times out on a connection attempt.

The initial default is 15 seconds.

Load Balance Timeout: Type the number of seconds to keep connections in a connection pool. The
pool manager periodically checks all pools, and closes and removes any connection that exceeds this
value. The Min Pool Size option can cause some connections to ignore the value specified for the
Load Balance Timeout option.

The value can be any integer from 0 to 65535.

If set to 0 (the initial default), the connections have the maximum timeout.

See Removing Connections from a Pool for a discussion of connection lifetimes.

122

Max Pool Size: Type the maximum number of connections within a single pool. When the
maximum number is reached, no additional connections can be added to the connection pool.

The value can be any integer from 1 to 65535.

The initial default is 100.

Max Pool Size Behavior: Select whether the data provider can exceed the number of connections
specified by the Max Pool Size option when all connections in the connection pool are in use.

If set to SoftCap, when all connections are in use and another connection is requested, a new
connection is created, even when the connection pool exceeds the number set by the MaxPoolSize
option. If a connection is returned and the pool is full of idle connections, the pooling mechanism
selects a connection to be discarded so the connection pool never exceeds the Max Pool Size.

If set to HardCap, when the maximum number of connections allowed in the pool are in use, any
new connection requests wait for an available connection until the Connection Timeout is reached.

Min Pool Size: Type the minimum number of connections that are opened and placed in a
connection pool when it is created. The connection pool retains this number of connections, even
when some connections exceed their Load Balance Timeout value.

The value can be any integer from 0 to 65535.

If set to 0 (the initial default), no additional connections are placed in the connection pool when it
is created.

Pooling: Select True (the initial default) to enable connection pooling.

Failover

Alternate Servers: Type a list of alternate database servers to which the data provider will try to
connect if the primary database server is unavailable. Specifying a value for this property enables
connection failover for the data provider.

For example, the following Alternate Servers value defines two alternate servers for connection
failover:
Alternate Servers="Host=AcctServer;Port=1584,

Host=123.456.78.90;Port=1584"

Connection Retry Count: Type the number of times the data provider tries to connect to the
primary server, and, if specified, the alternate servers after the initial unsuccessful attempt.

The value can be any integer from 0 to 65535.

If set to 0 (the initial default), there is no limit to the number of attempts to reconnect.

Connection Retry Delay: Type the number of seconds the data provider waits after the initial
unsuccessful connection attempt before retrying a connection to the primary server, and, if
specified, the alternate servers.

The initial default is 3.

This property has no effect unless the Connection Retry Count property is set to an integer value
greater than 0.

Load Balancing: Select True or False to determine whether the data provider uses client load
balancing in its attempts to connect to primary and alternate database servers.

123

If set to False (the initial default), the data provider does not use client load balancing.

Performance

Enlist: Select True or False to determine whether the data provider automatically attempts to enlist
the connection in creating the thread’s current transaction context.

Note: Because Zen does not support distributed transactions, any attempt to enlist the connection
in the thread’s current transaction context will fail.

If set to False (the initial default), the data provider does not automatically attempt to enlist the
connection.

If set to True, the data provider returns an error on the connection if a current transaction context
exists. If a current transaction context does not exist, the data provider raises a warning.

Max Statement Cache Size: Type the maximum number of statements generated by the application
that can be held in the statement cache for this connection.

The value can be 0, or any integer greater than 1.

If set to 0, statement caching is disabled.

If set to an integer greater than 1, the value determines the number of statements that can be held in
the statement cache.

The initial default is 10.

Statement Cache Mode: Select the statement caching mode for the lifetime of the connection. See
Using Statement Caching for more information.

If set to Auto, statement caching is enabled. Statements marked as Implicit by the Command
property StatementCacheBehavior are cached. These commands have a lower priority than that of
explicitly marked commands, that is, if the statement pool reaches its maximum number of
statements, the statements marked implicit are removed from the statement pool first to make room
for statements marked Cache.

If set to ExplicitOnly (the initial default), only commands that are marked Cache by the
StatementCacheBehavior property are cached. Note that this is the only valid value for Zen
ADO.NET Entity Framework data providers.

Schema Information

Schema Collection Timeout: Type the number of seconds after which an attempted schema
collection operation fails if it is not yet completed.

The initial default is 120.

Schema Options: Specifies additional database metadata that can be returned. By default, the data
provider prevents the return of some performance-expensive database metadata to optimize
performance. If your application needs this database metadata, specify the name or hexadecimal
value of the metadata.

This option can affect performance.

If set to ShowColumnDefaults or 0x04, column defaults are returned.

If set to ShowParameterDefaults or 0x08, column defaults are returned.

124

If set to FixProcedureParamDirection or 0x10, procedure definitions are returned.

If set to ShowProcedureDefinitions or 0x20, procedure definitions are returned.

If set to ShowViewDefinitions or 0x40, view definitions are returned.

If set to ShowAll or 0xFFFFFFFF, all database metadata is returned.

For example, to return descriptions of procedure definitions, specify Schema
Options=ShowProcedureDefinitions or Schema Options=0x20.

To show more than one piece of the omitted database metadata, specify either a comma-separated
list of the names, or the sum of the hexadecimal values of the column collections that you want to
restrict.

See Table 36 for the name and hexadecimal value of the database metadata that the data provider can
add.

Use Current Schema: This connection string option is not supported. Setting it will cause the data
provider to throw an exception.

Security

Encrypt: Select whether the data provider uses Encrypted Network Communications, also known
as wire encryption.

If set to IfNeeded (the initial default), the data provider reflects the server's setting.

If set to Always, the data provider uses encryption, or, if the server does not allow wire encryption,
returns an error.

If set to Never, the data provider does not use encryption and returns an error if wire encryption is
required by the server.

Encryption: Select the minimum level of encryption allowed by the data provider. The meaning of
these values depends on the encryption module used. With the default encryption module, the
values Low, Medium, and High correspond to 40-, 56-, and 128-bit encryption, respectively.

The initial default is Medium.

Password: Type a case-insensitive password used to connect to your Zen database. A password is
required only if security is enabled on your database. If so, contact your system administrator to get
your password.

Persist Security Info: Select whether to display secure information in clear text in the
ConnectionString property.

If set to True, the value of the password connection string option is displayed in clear text.

If set to False (the initial default), the data provider does not display secure information in clear text.

User ID: Type the default Zen user name used to connect to your Zen database.

Standard Connection

Database Name: Type a string that identifies the internal name of the database to which you want
to connect.

If you enter a value for this field, the Server DSN field is not available.

125

Host: Type the name or the IP address of the Zen server to which you want to connect. For example,
you can specify a server name such as accountingserver. Or, you can specify an IPv4 address such as
199.262.22.34 or an IPv6 address such as 2001:DB8:0000:0000:8:800:200C:417A.

Port: Type the TCP port number of the listener running on the Zen database.

The default port number is 1583.

Server DSN: The name of the data source on the server, such as DEMODATA.

If you enter a value for this field, the Database Name field is not available.

Tracing

Enable Trace: Type a value of 1 or higher to enable tracing. If set to 0 (the default), tracing is not
enabled.

Trace File: Type the path and name of the trace file. If the specified trace file does not exist, the data
provider creates it. The default is an empty string.

6 Click Test Connection. At any point during the configuration process, you can click Test
Connection to attempt to connect to the data source using the connection properties specified in
the Add Connection window.

 If the data provider can connect, it releases the connection and displays a Connection
Established message. Click OK.

 If the data provider cannot connect because of an incorrect environment or incorrect
connection value, it displays an appropriate error message.

Click OK.

Note: If you are configuring alternate servers for use with the connection failover feature, be aware
that the Test Connection button tests only the primary server, not the alternate servers.

7 Click OK or Cancel. If you click OK, the values you have specified become the defaults when you
connect to the data source. You can change these defaults by using this procedure to reconfigure
your data source. You can override these defaults by connecting to the data source using a
connection string with alternate values.

126

Adding Connections with the Data Source Configuration Wizard

You can add a new connection to your application using the Data Configuration Wizard.

 To add a connection

1 In the Data Sources window in Visual Studio, select Add New Data Source. To open the Data
Sources window, select View from the main menu and then select Other Windows > Data Sources.

The Data Source Configuration Wizard appears.

127

2 Select Database and then click Next. The Choose Your Data Connection window appears.

3 Click New Connection The Add Connection window is displayed. Continue from Step in Adding
Connections in Server Explorer.

128

Using the Zen Performance Tuning Wizard

The Zen Performance Tuning Wizard leads you step-by-step through a series of questions about your
application. Based on your answers, the wizard provides the optimal settings for performance-related
connection string options for your Zen data provider.

When you launch the Zen Performance Tuning Wizard from Visual Studio, you can:

 Generate the values for connection string options that are related to performance. These values can
be copied into a connection string.

 Modify an existing connection.
 Generate a new application preconfigured with a connection string optimized for your

environment. The Performance Tuning Wizard provides options to select the type of application and
the version of ADO.NET code that you want to use.

 To use the Zen Performance Tuning Wizard in Visual Studio

1 Do one of the following steps to start the Performance Tuning Wizard:

 To create a new connection, select Tools > Actian Zen > Run Zen Performance Tuning
Wizard. When the Performance Tuning Wizard Welcome dialog appears, click Next. Continue
at Step 2.

 To modify an existing connection, in Server Explorer, right-click a data connection, and then
select Run Zen Performance Tuning Wizard. When the Performance Tuning Wizard Welcome
dialog appears, click Next. Continue at Step 2.

2 The wizard presents a series of questions about your environment. Accept the default or change the
answers as required and then, click Next to proceed, until you reach the Result page.

The following screen shot shows an example of one of the questions you may be asked.

3 When you have answered all questions for a data provider, the Result dialog appears, and a
connection string is displayed.

129

The following screen shot shows the connection string options related to performance that the Zen
Performance Tuning Wizard generated.

4 Select one of the following:

 To make the connection string available to other applications (the initial default), select Copy
the connection string to clipboard. You can use the connection string in other applications.

 Based on whether you have used a new connection or an existing connection to launch the
wizard, select one of the following options:
 Create a new connection with the Performance Tuning Wizard connection string

options

When you select this option and click Finish, the Modify Connection dialog box appears,
where you must specify the connection information, such as a host, password, user ID, and
other information.

 Reconfigure the connection with the additional Performance Tuning Wizard
connection string options.

 To create a new application, select Generate a new application preconfigured with these
connection settings.

When you select this option and click Finish, a Zen application is generated using the Zen
Project template. See Creating a New Project for more information about the provider-
specific templates.

5 Define additional information for the new application:

 Select Using data provider-specific interfaces to create an application compatible with the
ADO.NET 2.0 specification.

 Select Using common programming interfaces to create an application that uses the
ADO.NET common programming model.

 Type the location for the project, or click Browse to select the location.
 Select the project type. By default, the Wizard creates a C# application.

6 Click Finish to exit the Zen Performance Tuning Wizard.

130

Using Provider-Specific Templates

Visual Studio offers a set of templates to help you build applications that automatically include features
such as SQL leveling.

Creating a New Project

When you create a new project in Visual Studio, you can use a template specific to the Zen data provider,
or a template that creates an application with generic code.

In the following example, we create a new project in Visual Studio using the template for the Zen data
provider.

1 Select File > New > Project The New Project dialog appears.

2 In the Installed List, select Visual C# > Actian Zen.

3 Select Zen Project in the middle pane.

4 Make changes to the other fields if required, and click OK.

5 The new project appears in the Solution Explorer. The namespace for the Zen ADO.NET data
provider is automatically added to the project.

131

Note: If you are using the ADO.NET 2.0 common programming model, select the Zen Generic Provider
Project template. In this case, the project does not require a specific reference to an assembly.

Adding a Template to an Existing Project

 To add a Zen template to an existing project

1 In Solution Explorer, right-click the project and select Add > New Item.

2 In the Add New Item dialog, select the Zen class.

3 Click Add. The class for the Zen data provider is added to the project.

132

Using the Zen Visual Studio Wizards

Wizards simplify typical tasks that you perform when you create an application:

 Creating Tables with the Add Table Wizard
 Creating Views with the Add View Wizard

Before beginning this procedure, create a project using a Zen template, as described in Creating a New
Project, and add a data connection.

Creating Tables with the Add Table Wizard

You can quickly and easily define new tables in Visual Studio using the Zen ADO.NET Add Table
Wizard.

1 Select View > Server Explorer.

2 Double-click a data source connection to expose the nodes below it.

3 Right-click the Tables node, and select Add New Table. The Zen ADO.NET Add Table Wizard
appears.

4 Click Next. The Specify Table Name dialog appears.

5 In the Table Name field, type a name for the table.

6 Click Next. The Specify Column(s) dialog appears.

133

7 Define the columns for the new table. Your choices may cause additional fields to appear in the Data
Type Options pane.

 Click Add to add a column to the table. The Column Name and Data Type fields become
editable.

 Type a name in the Column Name field.
 Select the data type for the column, and, if required, supply any additional information:

 If you select a character data type, the Length field appears in the Data Type Options pane.
Type the maximum size of the column (in bytes).

 If you select Number, the Precision and Scale fields appear in the Data Type Options pane.
 If the column can have a Null value, select the Allow Null check box.
 To remove a column from the table, select the column name and then click Remove.

8 Click Next. The Specify Primary Key dialog appears.

9 Do one of the following:

 If you do not want to specify a primary key for the table, select No Primary Key, and then click
Next. The Specify Unique Key(s) dialog appears. Continue at Step 12.

 If you want to specify a primary key for the table, select Create Primary Key, and then continue
at Step 10.

10 Complete the fields on the Specify Primary Key dialog:

 In the Primary Key Name field, type the name for the primary key, or accept the default name.
 Select a column from the Available Columns field and move it to the Selected Columns field.

11 Click Next. The Specify Unique Key(s) dialog appears.

134

12 Do one of the following:

 If you do not want to specify unique keys for the table, click Next. The Specify Foreign Key(s)
dialog appears. Continue at Step 15.

 If you want to specify one or more unique keys for the table, continue at Step 13.

13 Click Add. The fields on the dialog become selectable:

 In the Unique Keys drop-down list, select a unique key.
 In the Unique Key Name field, edit the name or accept the default name.
 In the Available Columns list box, select one or more columns to be used to specify the

unique key, and move them to the Selected Columns list box.

14 Click Next. The Specify Foreign Key(s) dialog appears.

15 Do one of the following:

 If you do not want to specify foreign keys for the table, click Next. The Review SQL dialog
appears. Continue at Step 18.

 If you want to specify one or more foreign keys for the table, continue at Step 16.

16 Click Add. The fields on the dialog become selectable:

 In the Foreign Keys drop-down list, select a foreign key.
 In the Foreign Key Name field, edit the name or accept the default name.
 In the Table Schema list, select a table schema.
 In the Table Name list, select a table schema.

135

 In the Foreign Key Column list, select one or more columns to be used to specify the foreign
key.

 In the Parent Table Column list, select the corresponding column from the parent table.

17 Click Next. The Review SQL dialog appears.

18 Review the SQL statement that has been generated by your choices.

 If you are satisfied with the SQL statement, click Finish. The table that you created appears in
Server Explorer under the Tables node for the connection.

 If you want to supplement the SQL statement, for example, add a view or specific keywords,
continue at Step 19.

19 Select the Edit SQL check box. The text in the Generated SQL field becomes editable.

Note: When you select the Edit SQL check box, the Back button is disabled.

20 When you are satisfied with your changes to the SQL statement, click Finish. The table that you
created appears in Server Explorer under the Tables node for the connection.

Creating Views with the Add View Wizard

You can quickly and easily define new views in Visual Studio using the Zen Add View Wizard.

1 Select View > Server Explorer if it is not already open.

2 Double-click a data source connection to expose the nodes under it.

3 Right-click the Views node, and select Add New View. The Zen Add View Wizard welcome dialog
appears.

4 Click Next. The Specify View Name dialog appears.

136

5 Type a name for the view in the View Name field.

6 Click Next. The Select Table(s) and/or Column(s) dialog appears.

7 In the List of Tables and columns list box, select the tables or columns that will make up the view,
and move them to the Selected Columns column.

8 Click Next. The Review SQL dialog appears.

9 Review the SQL statement that has been generated by your choices.

 If you are satisfied with the SQL statement, click Finish. The view that you created appears in
Server Explorer under the Views node for the connection.

 If you want to supplement the SQL statement, for example, add a view or specific keywords,
continue at Step 11.

10 Select the Edit SQL check box. The text in the Generated SQL field becomes editable.

137

Note: When you select the Edit SQL check box, the Back button is disabled.

11 When you are satisfied with your changes to the SQL statement, click Finish. The view that you
created appears in Server Explorer under the Views node for the connection.

138

Adding Components from the Toolbox

You can add components from the Visual Studio Toolbox to a Windows Forms application. For
information about creating Windows Forms applications, refer to the Visual Studio online Help.

Before beginning this procedure, create a Windows Forms application and add a data connection.

 To add Zen data provider components to a Windows Forms application

1 Select View > Toolbox. Scroll down the Toolbox until the Zen ADO.NET Provider section appears.

2 Select the PsqlCommand widget and drag it onto the Windows Forms application.

3 Continue adding widgets to the application as needed.

139

Data Provider Integration Scenario

Because the Zen data provider is integrated into Visual Studio, many typical data access tasks can be
simplified. For example, after making the connection to the database, you can create queries using Query
Builder.

The Query Builder can help you graphically design database queries.

 To create a simple query

1 Establish a data source connection (see Using the Zen Visual Studio Wizards).

2 Select the data source in Server Explorer.

3 Right-click Tables and select New Query.

4 The Add Table window appears. Select the table that contains the data that you want to use; then,
click Add.

5 Click Close to close the Add Table window.

140

6 Select the columns that you want returned. In this example, we select the id, name, and salary
columns of the employee table.

7 Click the Execute SQL button on the toolbar.

8 Examine the results displayed.

141

c h a p t e r

9Using the Microsoft Enterprise
Libraries

Using the Data Access Application Blocks in Applications

Using the Microsoft Enterprise Libraries can simplify application development by wrapping common
tasks, such as data access, into portable code that makes it easier to move your application from one
DBMS to another.

The Zen data providers support the Data Access Application Blocks (DAAB) and Logging Application
Blocks (LAB). The classes in the DAABs provide access to the most frequently used features of
ADO.NET. Applications can use the DAABs for tasks such as passing data through application layers
and returning changed data back to the database. Using DAABs eliminates the need to keep writing the
same data access tasks for each new or revised application, so you can spend your time more
productively

Applications that use the standard Logging Application Block and design patterns can quickly display
the SQL that is generated as part of Zen ADO.NET Entity Framework data providers.

To use features of the Enterprise Library with your data provider, download Microsoft Enterprise
Library 6.0 from https://docs.microsoft.com/en-us/previous-versions/msp-n-
p/dn169621(v=pandp.10). You can also download the Enterprise Library documentation, which
contains detailed information about using the application blocks.

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/dn169621(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/dn169621(v=pandp.10)

142

Data Access Application Blocks

The Data Access Application Block (DAAB) is designed to allow developers to replace ADO.NET boiler-
plate code with standardized code for everyday database tasks. The overloaded methods in the Database
class can:

 Return Scalar values or XmlReaders
 Determine which parameters it needs and create them
 Involve commands in a transaction

If your application needs to address specific DBMS functionality, you can use the ADO.NET Data
Provider.

When Should You Use the DAAB?

The DAAB includes a small number of methods that simplify the most common methods of accessing
a database. Each method encapsulates the logic required to retrieve the data and manage the connection
to the database. You should consider using the application block if your application uses standard data
access techniques.

The DAAB is used with ADO.NET, increasing efficiency and productivity when creating applications
for ADO.NET. The abstract Database class provides a number of methods, such as ExecuteNonQuery,
ExecuteReader, and ExecuteScalar, that are the same as the methods used by the DbCommand class, or,
if you are using database-specific code, a data provider-specific class such as PsqlCommand.

Although using the default DAAB during development is convenient, the resulting application lacks
portability. When you use the provider-specific Zen DAAB implementation, the application includes the
ADO.NET Data Provider’s SQL leveling capabilities. You have more flexibility, whether your application
needs to access multiple databases, or whether you anticipate a change in your target data source.

Should You Use Generic or Database-specific Classes?

The application block supplements the code in ADO.NET that allows you to use the same code with
different database types. You have two choices when using the DAAB with the ADO.NET data provider:

 The GenericDatabase class
 The provider-specific Zen DAAB implementation

The GenericDatabase class option is less suited to applications that need specific control of database
behaviors. For portability, the provider-specific solution is the optimal approach.

If your application needs to retrieve data in specialized way, or if your code needs customization to take
advantage of features specific to Zen, using the ADO.NET Data Provider might suit your needs better.

Configuring the DAAB

Before you can configure the DAAB for use with your application, you must set up the environment:

1 Download and install Microsoft Enterprise Library 6.0 from https://docs.microsoft.com/en-
us/previous-versions/msp-n-p/dn169621(v=pandp.10).

2 Open the Zen DAAB project for your data provider, located in
install_dir\Enterprise Library\Src\CS\Actian Zen.

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/dn169621(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/dn169621(v=pandp.10)

143

3 Then, compile the project and note the output directory.

Configuring the Data Access Application Block consists of two procedures:

 Adding a New DAAB Entry
 Adding the Data Access Application Block to Your Application

Adding a New DAAB Entry

Now, use the Enterprise Library Configuration Tool to add a new DAAB entry:

1 Right-click Enterprise Library Configuration, and select New Application.

2 Right-click Application Configuration, then select New > Data Access Application Block. The
Enterprise Library Configuration window appears.

3 In the Name field, type a name for the DAAB connection string.

4 In the ConnectionString field, enter a connection string.

5 Right-click the field, and select the data provider. For example, select Pervasive.Data.SqlClient.

6 Right-click Custom Provider Mappings and select New > Provider Mappings.

7 In the Name field, select the data provider name you specified in Step 5.

8 Select the TypeName field, and then choose the Browse button to navigate to the Debug output
directory of the Zen DAAB that you want to build. Then select the TypeName. For example, the Zen
TypeName is Pervasive.EnterpriseLibrary.Data.Pervasive.dll.

9 Leave the Enterprise Library Configuration window open for now and do not save this
configuration until you complete the following section.

Adding the Data Access Application Block to Your Application

To add the DAAB to a new or existing application, perform these steps:

1 Add two additional References to your Visual Studio solution:

 Enterprise Library Shared Library
 Enterprise Library Data Access Application Block

2 Add the following directive to your C# source code:
using Microsoft.Practices.EnterpriseLibrary.Data;

using System.Data;

3 Rebuild the solution to ensure that the new dependencies are functional.

4 Determine the output Debug or Release path location of your current solution, and switch back to
the Enterprise Library Configuration window (see Adding a New DAAB Entry).

5 Right-click the connection string under the Application Configuration node and select Save
Application.

6 Navigate to the Debug or Release output directories of your current solution, and locate the .exe file
of the current solution.

7 Click the file name once, and add .config to the name, for example MyApp.config.

8 Ensure that the Save as type All Files is selected, and click Save.

144

9 Using File Explorer, copy the Pervasive.EnterpriseLibrary.Data.Pervasive.dll from the Zen DAAB
directory.

10 Place the copy of this DLL into either the Debug or Release output directory of your current solution.

Using the DAAB in Application Code

Now that you have configured the DAAB, you can build applications on top of this DAAB.

In the example below, we use the DAAB MyApp and the DatabaseFactory to generate an instance of a
Database object backed by a Zen data source.
using System;
using System.Collections.Generic;
using System.Text;
using Microsoft.Practices.EnterpriseLibrary.Data;
using System.Data;

namespace DAAB_Test_App_1
{
 class Program
 {
 static void Main(string[] args)

 {
 Database database = DatabaseFactory.CreateDatabase("MyApp");
 DataSet ds = database.ExecuteDataSet(CommandType.TableDirect,

"SQLCOMMANDTEST_NC_2003SERVER_1");

 }
 }
}

The Microsoft Enterprise Library DAAB coding patterns are now at your disposal.

145

Logging Application Blocks

Using the Enterprise Library Logging Application Block (LAB) makes it easier to implement common
logging functions. Zen ADO.NET Entity Framework data providers use the standard Logging
Application Block and design patterns, and offer LAB customizations for additional functionality.

When Should You Use the LAB?

If your applications have a requirement to log information to a database, a message queue, the Windows
Event Log, or Windows Management Instrumentation (WMI), the LAB provides this functionality. In
particular, the LAB is useful if you need to filter logging messages based on category or priority, if you
need to format the messages, or if you need to change the destination of the message without changing
the application code.

Configuring the LAB

A logging capability can be added to an application by adding an entry to an applications configuration
file (either app.config or web.config) using the Enterprise Library configuration tool. This tool contains
specific instructions in order to enable the Logging Application Block .config file. The tool also contains
the necessary AppSetting to enable the LAB.

To enable the Logging Application Block output, set the environment property
Psql_Enable_Logging_Application_Block_Trace to true. Alternatively, in the app.config file, set the
AppSetting property Psql.EnableLoggingApplicationBlock to true.

A following C# code snippet shows the loggingConfiguration property of the app.config file.
<loggingConfiguration name="Logging Application Block" tracingEnabled="true"

defaultCategory="General" logWarningsWhenNoCategoriesMatch="true">

Setting either of these properties to false disables the logging block.

If enabled, the data provider must establish a new LogEntry entry instance for each SQL statement
generated by the ADO.NET Entity Framework canonical query tree.

The SQL logged to the Logging Block must be the SQL that is ultimately transmitted to over the wire.

 To configure the Logging Application Block

1 Select Start > Programs > Microsoft patterns and practices > Enterprise Library 6.0 > Enterprise
Library Configuration. The Enterprise Library Configuration window appears.

2 Select File > New Application.

3 Right-click the Application Configuration node and select New > Logging Application Block.

4 Right-click Category Sources, and select New > Category.

5 In the Name pane, select Name. Type the name of the new category, and then press Enter.

6 From the SourceLevels list, set the logging level for the new category. By default, all logging levels
are enabled.

7 Right-click the new category and select New > TraceListener Reference. A Formatted EventLog
TraceListener node is added. From the ReferencedTraceListener list, select Formatted EventLog
TraceListener.

146

8 Repeat steps 4 through 7 to create the following categories:

 Zen Information: Information not related to errors
 Zen Command: Enables SQL, Parameter, and DbCommandTree logging

9 Select File > Save Application, and enter a name for your configuration file. By default, the file is
saved to C:\Program Files\Microsoft Enterprise Library\Bin\filename.exe.config, where filename is
the name you entered.

Adding a New Logging Application Block Entry

Now, use the Enterprise Library Configuration Tool to add a new Logging Application Block entry:

1 Start Enterprise Library Configuration, and select File > New Application.

2 Right-click Application Configuration, then select New > Logging Application Block. The
Configuration section appears in the right pane.

3 In the TracingEnabled field, enter True.

4 Save the Logging application block.

Using the LAB in Application Code

The LAB that you configured must be added to the app.config or web.config file for your application.

The following settings can be used to enable and configure data provider interaction with the LAB.

 EnableLoggingApplicationBlock: Enables the Logging Application Block.
 LABAssemblyName: Specifies the assembly name to which the Logging Application Block applies.

Note: If you use any version of the LAB other than the Microsoft Enterprise Library 4.1 binary
release, you must set the LABAssemblyName. For example, if you use an older or newer version of
the LAB, or a version that you have customized, you must specify a value for LABAssemblyName.

 LABLoggerTypeName: Specifies the type name for the Logging Application Block.
 LABLogEntryTypeName: Specifies the type name for the LogEntry object.

The following code fragment provides an example of a Logging Application Block that could be added
to a Zen data access application.
<loggingConfiguration name="Logging Application Block"
 tracingEnabled="true"
 defaultCategory="" logWarningsWhenNoCategoriesMatch="true">
 <listeners>
 <add fileName="rolling.log"
 footer="--"
 header="--"
 rollFileExistsBehavior="Overwrite"
 rollInterval="None" rollSizeKB="0"
 timeStampPattern="yyyy-MM-dd"

listenerDataType="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.Ro
llingFlatFileTraceListenerData, Microsoft.Practices.EnterpriseLibrary.Logging,
Version=6.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"

 traceOutputOptions="None" filter="All"
type="Microsoft.Practices.EnterpriseLibrary.Logging.TraceListeners.RollingFlatFi
leTraceListener, Microsoft.Practices.EnterpriseLibrary.Logging, Version=6.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35"

147

 name="Rolling Flat File Trace Listener" />
 </listeners>
 <formatters>
 <add template="Message: {message}
Category:

{category}
Priority: {priority}
EventId:
{eventid}
Severity:
{severity}
Title:{title}

"

type="Microsoft.Practices.EnterpriseLibrary.Logging.Formatters.TextFormatter,
Microsoft.Practices.EnterpriseLibrary.Logging, Version=6.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"

 name="Text Formatter" />
 </formatters>
 <categorySources>
 <add switchValue="All" name="Psql">
 <listeners>
 <add name="Rolling Flat File Trace Listener" />
 </listeners>
 </add>
 </categorySources>
 <specialSources>
 <allEvents switchValue="All" name="All Events" />
 <notProcessed switchValue="All" name="Unprocessed Category" />
 <errors switchValue="All" name="Logging Errors & Warnings">
 <listeners>
 <add name="Rolling Flat File Trace Listener" />
 </listeners>
 </errors>
 </specialSources>
 </loggingConfiguration>

148

Additional Resources

The following sources provide additional information about using Application Blocks:

 The Microsoft patterns & practices Developer Center includes a topic on Application Blocks.
 See "Introduction to the Data Access Application Block" for an overview of tasks and applications

using data access application blocks.
 See Microsoft patterns & practices Enterprise Library topics on using logging application blocks.

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff649828(v=pandp.10)?redirectedfrom=MSDN
http://msdn2.microsoft.com/en-us/library/aa480458.aspx

149

a p p e n d i x

A.NET Objects Supported

Using the .NET Objects

ADO.NET 2.0 introduced a new set of classes that provided an additional, more generic interface
between applications and data sources.

Predecessors of ADO.NET 2.0 opted for a tighter factoring of data providers into each specific instance
of the data provider used by an application. In contrast, ADO.NET 2.0 and higher deliver a set of base
classes that permit applications to handle a heterogeneous set of data sources with a single API, much
like is done with ODBC and JDBC today. This means that in ADO.NET 2.0 and higher, all data classes
derive from base classes, and exist in a specific dedicated namespace, System.Data.Common.

The data provider supports:

 .NET Base Classes
 Data Provider-Specific Classes
 Zen Common Assembly Classes

150

.NET Base Classes

The interfaces on which ADO.NET 1.0 and ADO.NET 1.1 data providers were built were retained for
application compatibility. The base classes of ADO.NET 2.0 and higher provide additional functionality:

 DbCommand
 DbCommandBuilder
 DbConnection
 DbDataAdaptor
 DbDataReader
 DBDataPermission
 DbParameter
 DbParameterCollection
 DbConnectionStringBuilder
 DbTransaction

From a day-to-day programming perspective, these classes are provided as abstract implementation.
This means they cannot be instantiated directly, but must be used with Provider factories. Each data
provider must supply a Factory class, such as PsqlFactory, that derives from the DbFactory class, which
contains a set of static methods. Each of these static methods is a factory method for producing an
instance of the base classes.

When a data provider is installed, it is registered with the .NET Framework. This allows the common
.NET Framework DbFactory to locate any registered data provider that an application requires and
provide a common mechanism to establish a connection to a data source. Ultimately, the .NET
Framework provides a fully fledged common programming API for ADO.NET data sources.

151

Data Provider-Specific Classes

The ADO.NET Data Provider supports all of the .NET public objects. The ADO.NET Data Provider
attaches the provider-specific prefix Psql to the public .NET objects, for example, PsqlCommand.

The following objects are described:

 PsqlBulkCopy
 PsqlBulkCopyColumnMapping
 PsqlBulkCopyColumnMappingCollection
 PsqlCommand Object
 PsqlCommandBuilder Object
 PsqlConnection Object
 PsqlConnectionStringBuilder Object
 PsqlCredential Object
 PsqlDataAdapter Object
 PsqlDataReader Object
 PsqlError Object
 PsqlErrorCollection Object
 PsqlException Object
 PsqlFactory Object
 PsqlInfoMessageEventArgs Object
 PsqlParameter Object
 PsqlParameterCollection Object
 PsqlTrace Object
 PsqlTransaction Object

For more information on public objects, refer to the Microsoft .NET Framework Version 2.0 SDK
documentation.

PsqlBulkCopy

The PsqlBulkCopy object uses an API pattern similar to the ADO.NET Bulk API patterns, and has no
provider-specific properties or methods. For information about the properties and methods supported,
see the data provider online help and the Microsoft .NET Framework SDK documentation.

PsqlBulkCopyColumnMapping

The PsqlBulkCopyColumnMapping object uses an API pattern similar to the ADO.NET Bulk API
patterns, and has no provider-specific properties or methods. For information about the properties and
methods supported, refer to the data provider’s online help and the Microsoft .NET Framework SDK
documentation.

PsqlBulkCopyColumnMappingCollection

The PsqlBulkCopyColumnMappingCollection object follows an API pattern similar to the Microsoft
SqlBulkCopyColumnMappingCollection class, and has no provider-specific properties or methods. For

152

information about the properties and methods supported, refer to the data provider’s online help and the
Microsoft .NET Framework SDK documentation.

PsqlCommand Object

Table 28 describes the public properties of the PsqlCommand object.

Table 28 Public Properties of the PsqlCommand Object

Property Description

AddRowID Adds the ROWID as part of the Select list of a SQL statement.

If set to true, the values returned in the ROWID column are used to generate more efficient Insert,
Delete, and Update commands when using the PsqlCommandBuilder.

If set to false (the initial default), the data provider does not add the ROWID column to the Select
list.

ArrayBindCount Specifies the number of rows of parameters that will be used. The application must set this
property before executing a command that uses parameter array binding. The count must equal
the length of each of the arrays that is set for each parameter value.

The initial default value is 0. The application does not use parameter array binding.

ArrayBindStatus Returns an array of row status values. This property enables the application to inspect the per row
status after executing a command that uses parameter array binding. The property's type is an
array of PsqlRowStatus.

Parameter array binding is performed as a single atomic operation. This means that if the
operation succeeds, every entry will be set to OK; if the operation fails, none of the entries will be
set to OK.

The PsqlRowStatus enumeration has the following possible values:

• OK. The operation succeeded. All entries are marked as OK.

• Failed. The operation failed. The data provider assigns this value to all status entries except
for the row that caused the failure.

• SchemaViolation. When an operation fails, the data provider assigns this value to the row that
caused the failure.

BindByName Specifies how the data provider processes named parameters when executing a stored
procedure. The application can use named parameters or use default values for parameters to the
stored procedure.

If set to true, the data provider uses the names of parameters supplied in the PsqlParameter
objects for the parameter bindings to the Zen server. See example for CommandText.

Alternatively, the user can specify a default value for a named parameter using either of the
following methods:

• The application binds the parameters using named parameters, but does not add a
PsqlParameter object to the PsqlParameterCollection for the parameters for which the
application wants to use the default value.

• The application sets the Value property of the PsqlParameter object to null. The data provider
does not send this parameter to the server and uses the parameter’s default value when
executing the stored procedure.

When BindByName is set to true and the Parameter Mode connection string option is defined as
BindByName or BindByOrdinal, those values defined in the connection string are overridden for
the lifetime of the Command object.

If set to false (the initial default), the data provider ignores the names for the parameters supplied
in the PsqlParameter objects, and assumes that the parameters are in the same order as they
were specified in the Create Procedure statement.

153

CommandText Gets or sets the text command to run against the data source.

When using stored procedures, set CommandText to the name of the stored procedure, for
example:

cmd.CommandType = System.Data.CommandType.StoredProcedure;

cmd.CommandText = "call EnrollStudent(!!Stud_id!!,!!Class_Id!!, !!GPA!!)";

cmd.BindByName = true;

PsqlParameter Class_Id = new PsqlParameter();

Class_Id.Value = 999;

Class_Id.ParameterName = "!!Class_Id!!";

PsqlParameter Stud_id = new PsqlParameter();

Stud_id.Value = 1234567890;

Stud_id.ParameterName = "!!Stud_id!!";

PsqlParameter GPA = new PsqlParameter();

GPA.Value = 3.2;

GPA.ParameterName = "!!GPA!!";

cmd.Parameters.Add(Class_Id);

cmd.Parameters.Add(Stud_id);

cmd.Parameters.Add(GPA);

CommandTimeout Gets or sets the wait time before terminating the attempt to execute a command and generating
an error.

The initial default is 30 seconds.

We recommend that the application sets the CommandTimeout property to a value that is greater
than the largest default timeout value on the server. This ensures that the application gets a more
meaningful reply in case of a timeout.

CommandType Indicates or specifies how the CommandText property is interpreted.

To use stored procedures, set CommandType to StoredProcedure.

Connection Gets or sets the IDbConnection used by this instance of the IDbCommand.

Parameters Gets the PsqlParameterCollection.

RowSetSize Limits the number of rows returned by any query executed on this Command object to the value
specified at execute time. The data type for the Read-Write property is signed integer.

Valid values are 0 to 2147483647.

If set to 0 (the initial default), the data provider does not limit the number of rows returned.

Table 28 Public Properties of the PsqlCommand Object (Continued)

Property Description

154

Table 29 describes the public methods supported by the PsqlCommand object.

PsqlCommandBuilder Object

Using a PsqlCommandBuilder object can have a negative effect on performance. Because of concurrency
restrictions, the PsqlCommandBuilder can generate highly inefficient SQL statements. The end user can
often write more efficient update and delete statements than those that the PsqlCommandBuilder
generates.

Table 30 describes the public properties supported by the PsqlCommandBuilder object.

StatementCacheBehavior Retrieves the statement cache behavior or sets the statement cache behavior to one of the values
in the PsqlStatementCacheBehavior enumeration. See Enabling Statement Caching for more
information.

If set to Implicit (the default) and the Statement Cache Mode connection string option is set to
Auto, statement caching occurs implicitly.

If set to Cache and the Statement Cache Mode connection string option is set to ExplicitOnly,
statements identified as Cache are cached.

If set to DoNotCache, statement caching does not occur.

Transaction Gets or sets the transaction in which the PsqlCommand object executes.

UpdatedRowSource Gets or sets how command results are applied to the DataRow, when used by the Update method
of a DataAdapter.

When the UpdateBatchSize property is set to a value other than 1, the UpdatedRowSource
property for UpdateCommand, DeleteCommand, and InsertCommand must be set to None or
OutputParameters.

If set to None, any returned parameters or rows are ignored.

If set to OutputParameters, output parameters are mapped to the changed row in the DataSet.

Table 29 Public Methods of the PsqlCommand Object

Method Description

Cancel Attempts to cancel the execution of an IDbCommand.

CreateParameter Creates a new instance of an IDbDataParameter object.

Dispose Releases the resources used by the component. Overloaded.

ExecuteNonQuery Executes a SQL statement against the PsqlConnection object, and returns the number of rows affected.
This method is intended for commands that do not return results.

ExecuteReader Executes the CommandText against the connection and builds an IDataReader.

ExecuteScalar Executes the query, and returns the first row of the resultset that the query returns. Any additional rows
or columns are ignored.

Prepare Creates a prepared version of the command on an instance of Zen.

Note: The Prepare method has no effect in this release of the data provider.

Table 28 Public Properties of the PsqlCommand Object (Continued)

Property Description

155

Table 31 provides the public methods supported for the PsqlCommandBuilder object.

PsqlConnection Object

The PsqlConnection object supports the public constructors described in Table 32.

The PsqlConnection object supports the public properties described in Table 33. Some properties return
the values specified for the corresponding connection string option. Unlike the connection string
options, the PsqlConnection property names do not include a space.

Table 30 Public Properties of the PsqlCommandBuilder Object

Property Description

DataAdapter Gets or sets the PsqlDataAdapter object associated with this PsqlCommandBuilder.

Table 31 Public Methods of the PsqlCommandBuilder Object

Method Description

DeriveParameters Populates the specified PsqlCommand object's Parameters collection with parameter information for
a stored procedure specified in the PsqlCommand.

GetDeleteCommand Gets the automatically generated PsqlCommand object required to perform deletions on the database
when an application calls Delete on the PsqlDataAdapter.

GetInsertCommand Gets the automatically generated PsqlCommand object required to perform inserts on the database
when an application calls Insert on the PsqlDataAdapter.

GetUpdateCommand Gets the automatically generated PsqlCommand object required to perform updates on the database
when an application calls Update on the PsqlDataAdapter.

QuoteIdentifier Given an unquoted identifier in the correct catalog case, returns the correct quoted form of that
identifier, including properly escaping any embedded quotes in the identifier.

UnquoteIdentifier Given a quoted identifier, returns the correct unquoted form of that identifier, including properly un-
escaping any embedded quotes in the identifier.

Table 32 Public Constructors of the PsqlConnection Object

Property Description

PsqlConnection() Initializes a new instance of the PsqlConnection class.

PsqlConnection(string
connectionString)

Initializes a new instance of the PsqlConnection class when given a string that contains the
connection string.

PsqlConnection(string
connectionString,
PsqlCredential credential)

Initializes a new instance of the PsqlConnection class given a connection string and a
PsqlCredential object that contains the user ID and password.

156

Table 34 describes the public methods of PsqlConnection.

Table 33 Public Properties of the PsqlConnection Object

Property Description

ConnectionString Gets or sets the string used to open a database. See Table 35 for a description of the values you can set.

ConnectionTimeout Gets the time to wait while trying to establish a connection before the data provider terminates the
attempt and generates an error.

You can set the amount of time a connection waits to time out by using the ConnectTimeout property or
the Connection Timeout connection string option.

If connection failover is enabled (the AlternateServers property defines one or more alternate database
servers), this property applies to each attempt to connect to an alternate server. If connection retry is
also enabled (the Connection Retry Count connection string option is set to an integer greater than 0),
the ConnectionTimeout property applies to each retry attempt.

Credential Provides a more secure way to specify the password for connecting to a Zen server. PsqlCredential is
comprised of a user ID and a password that will be used for connecting to a Zen server. The
SecureString object which holds the password should be marked read-only.

Database Gets the name of the current database or the database to be used when a connection is open.

Host Returns the value specified for the Host connection string option. Read-only.

Port Returns the value specified for the Port connection string option. Read-only.

ServerDSN Returns the value specified for the Server DSN connection string option. Read-only.

ServerName Returns the value specified for the Server Name connection string option. Read-only.

ServerVersion Returns a string containing the version of the Zen server to which this object is currently connected.

If the PsqlConnection object is not currently connected, the data provider generates an InvalidOperation
exception.

State Gets the current state of the connection.

StatisticsEnabled Enables statistics gathering.

If set to True, enables statistics gathering for the current connection.

Table 34 Public Methods of the PsqlConnection Object

Method Description

BeginTransaction Begins a database transaction.

When using the overloaded BeginTransaction(IsolationLevel) method, the data provider supports isolation
levels ReadCommitted and Serializable. See Isolation Levels for more information.

ChangeDatabase Changes the current database for an open Connection object.

ClearAllPools Empties the connection pools for the data provider.

ClearPool Clears the connection pool that is associated with connection.

If additional connections associated with the connection pool are in use at the time of the call, they are
marked appropriately and are discarded when Close is called on them.

157

You can use the InfoMessage event of the PsqlConnection object to retrieve warnings and informational
messages from the database. If the database returns an error, an exception is thrown. Clients that want
to process warnings and informational messages sent by the database server should create a
PsqlInfoMessageEventHandler delegate to register for this event.

The InfoMessage event receives an argument of type PsqlInfoMessageEventArgs containing data
relevant to this event.

PsqlConnectionStringBuilder Object

PsqlConnectionStringBuilder property names are the same as the connection string option names of the
PsqlConnection.ConnectionString property. However, the connection string option name can have
spaces between the words. For example, the connection string option name Min Pool Size is equivalent
to the property name MinPoolSize.

The basic format of a connection string includes a series of keyword/value pairs separated by
semicolons. The following example shows the keywords and values for a simple connection string for
the ADO.NET Data Provider:
"Server DSN=SERVERDEMO;Host=localhost"

Table 35 lists the properties that correspond to the connection string options supported by the Zen data
providers, and describes each property.

Close Closes the connection to the database.

CreateCommand Creates and returns a PsqlCommand object associated with the PsqlConnection.

Dispose Releases the resources used by the PsqlConnection object.

Open Opens a database connection with the settings specified by the ConnectionString property of the
PsqlConnection object.

ResetStatistics Resets all values to zero in the current statistics gathering session on the connection.

When the connection is closed and returned to the connection pool, statistics gathering is switched off and
the counts are reset.

RetrieveStatistics Retrieves a set of statistics for a connection that is enabled for statistics gathering (see the
StatisticsEnabled property). The set of name=value pairs returned forms a "snapshot in time" of the state
of the connection when the method is called.

Table 34 Public Methods of the PsqlConnection Object (Continued)

Method Description

158

Table 35 Connection String Properties

Property Description

AlternateServers Specifies a list of alternate database servers to which the data provider will try to connect if the
primary database server is unavailable. Specifying a value for this connection string option
enables connection failover for the data provider.

The value you specify must be in the form of a string that defines connection information for each
alternate server. You must specify the name or the IP address of each alternate server and the
port number, if you are not using the default port value of 1583. The string has the format:

"Host=hostvalue;Port=portvalue[, ...]"

For example, the following Alternate Servers value defines two alternate servers for connection
failover:

Alternate Servers="Host=AcctServer;Port=1584,
Host=123.456.78.90;Port=1584"

See Using Connection Failover for a discussion of connection failover and information about other
connection string options that you can set for this feature.

ConnectionPoolBehavior {LeastRecentlyUsed | MostRecentlyUsed | LeastFrequentlyUsed | MostFrequentlyUsed}.
Specifies the order in which a connection is removed from the connection pool for reuse, based
on how frequently or how recently the connection has been used.

If set to MostRecentlyUsed, the data provider uses a Last In First Out (LIFO) approach to return
the connection that was returned to the pool most recently.

If set to LeastRecentlyUsed (the initial default), the data provider uses a First In First Out (FIFO)
approach to return the connection that has been in the pool for the longest time. This value
ensures a balanced use of connections in the pool.

If set to MostFrequentlyUsed, the data provider returns the connection with the highest use count.
This value enables applications to give preference to the most seasoned connection.

If set to LeastFrequentlyUsed, the data provider returns the connection with the lowest use count.
This value ensures a balanced use of connections in the pool.

ConnectionReset {True | False}. Specifies whether a connection that is removed from the connection pool for reuse
by an application will have its state reset to the initial configuration settings of the connection.
Resetting the state impacts performance because the new connection must issue additional
commands to the server, for example, resetting the current database to the value specified at
connect time.

If set to False (the initial default), the data provider does not reset the state of the connection.

ConnectionRetryCount Specifies the number of times the data provider tries to connect to the primary server, and, if
specified, the alternate servers after the initial unsuccessful attempt.

The value can be any integer from 0 to 65535.

If set to 0 (the initial default), the data provider does not try to reconnect after the initial
unsuccessful attempt.

If a connection is not established during the retry attempts, the data provider returns an error that
is generated by the last server to which it attempted to connect.

This option and Connection Retry Delay, which specifies the wait interval between attempts, can
be used in conjunction with connection failover. See Using Connection Failover for a discussion
of connection failover and for information about other connection string options that you can set
for this feature.

159

ConnectionRetryDelay Specifies the number of seconds the data provider waits after the initial unsuccessful connection
attempt before retrying a connection to the primary server, and, if specified, the alternate servers.

The value can be any integer from 0 to 65535.

The initial default is 3 (seconds). If set to 0, there is no delay between retrying the connection.

Note: This option has no effect unless the Connection Retry Count connection string option is set
to an integer value greater than 0.

This option and the Connection Retry Count connection string option, which specifies the number
of times the data provider attempts to connect after the initial attempt, can be used in conjunction
with connection failover. See Using Connection Failover for a discussion of connection failover
and for information about other connection string options that you can set for this feature.

ConnectionTimeout Specifies the number of seconds after which the attempted connection to the server will fail if not
yet connected. If connection failover is enabled, this option applies to each connection attempt.

If set to 0, the data provider never times out on a connection attempt.

The initial default is 15 seconds.

DatabaseName Specifies the internal name of the database to which you want to connect. Use this option when
you need to connect to a Zen data source for which a ServerDSN has not been defined.

The default value is an empty string.

Note: Do not combine the Database Name and Server DSN connection string options in a
connection string.

Alias: DBQ

DbFileDirectoryPath Note: This option is supported only for Zen ADO.NET Entity Framework Core data providers.

It determines in which directory on the database server the database files are created.

The default value is an empty string.

EnableIPV6 Provides backward compatibility for connecting to a Zen server using an IPv4 address.

If set to True, a client with IPv6 protocol installed can identify itself to the server using either an
IPv4 address or an IPv6 address.

If set to False, the clients runs in the backward compatibility mode. The client always identifies
itself to the server using an IPv4 address.

The default value for 4.0 is set to True.

For more information about IPv6 formats, see IPv6 in Getting Started with Zen.

EnableTrace {0 | 1}. Specifies whether tracing is enabled.

If set to 0 (the initial default), tracing is not enabled.

Encoding Specifies an IANA name or Windows code page number to be used for translating the string data
stored in the database.

The default value is an empty string; the current Windows Active Code Page (ACP) is used.

Table 35 Connection String Properties (Continued)

Property Description

160

Encrypt {If Needed | Always | Never}. Determines whether the data provider uses Encrypted Network
Communications, also known as wire encryption.

If set to Always, the data provider uses encryption, or, if the server does not allow wire encryption,
returns an error.

If set to Never, the data provider does not use encryption and returns an error if wire encryption is
required by the server.

If set to IfNeeded (the default), the data provider uses the default setting on the server.

Note: This option may adversely affect performance because of the additional overhead, mainly
CPU usage, required to encrypt and decrypt data.

Encryption {Low | Medium | High}. Determines the minimum level of encryption allowed by the data provider.

The initial default is Medium.

The meaning of these values depends on the encryption module used. With the default encryption
module, these values correspond to 40-, 56-, and 128-bit encryption, respectively.

Enlist {True | False}. Specifies whether the data provider automatically attempts to enlist the connection
in creating the thread’s current transaction context.

Note: Because Zen does not support distributed transactions, any attempt to enlist the connection
in the thread’s current transaction context will fail.

If set to False, the data provider does not automatically attempt to enlist the connection.

If set to True (the initial default), the data provider returns an error on the connection if a current
transaction context exists. If a current transaction context does not exist, the data provider raises
a warning.

Host Specifies the name or the IP address of the Zen database server to which you want to connect.
For example, you can specify a server name such as Accountingserver. Or, you can specify
an IP address such as 199.226.22.34 (IPv4) or
1234:5678:0000:0000:0000:0000:9abc:def0 (IPv6).

The initial default value is an empty string.

Alias: Server, Server Name

Table 35 Connection String Properties (Continued)

Property Description

161

InitialCommandTimeout Specifies the default wait time (timeout in seconds) before the data provider terminates the
attempt to execute the command and generates an error. This option provides the same
functionality as the PsqlCommand object’s CommandTimeout property without the need to make
changes to the application code. Subsequently, an application can use the CommandTimeout
property to override the Initial Command Timeout connection string option.

The initial default value is 30. If set to 0, the query never times out.

For example, in the following C# code fragment, the connection string instructs the application to
wait 60 seconds before terminating the attempt to execute the command. The application then
specifies a CommandTimeout of 45 seconds, which overrides the value set in the connection
string:
PsqlCommand command = new PsqlCommand();
PsqlConnection conn = new PsqlConnection("…; Initial Command

Timeout=60; …");
conn .Open();
command.Connection = connection;
// command.CommandTimeout returns 60;
command.CommandTimeout = 45;
// command.CommandTimeout returns 45

command = new PsqlCommand();
command.CommandTimeout = 45;
command.Connection = conn;
// command.CommandTimeout still returns 45

Note: Set the Initial Command Timeout option to a value that is greater than the largest default
deadlock detection and timeout value on the server. This ensures that the application receives a
more meaningful reply in case of a timeout.

InitializationString Specifies one statement that will be issued immediately after connecting to the database to
manage session settings.

The initial default is an empty string.

Example: To handle CHAR columns that are padded with NULLs, set the value to:
Initialization String=SET ANSI_PADDING ON

Note: If the statement fails to execute for any reason, the connection to the Zen server fails. The
data provider throws an exception that contains the errors returned from the server.

LoadBalanceTimeout Specifies the number of seconds to keep connections in a connection pool. The pool manager
periodically checks all pools, and closes and removes any connection that exceeds its lifetime.
The MinPoolSize option can cause some connections to ignore this value. See Removing
Connections from a Pool for a discussion of connection lifetimes.

The value can be any integer from 0 to 65335.

If set to 0, (the initial default), the connections have the maximum timeout.

Alias: Connection Lifetime

Table 35 Connection String Properties (Continued)

Property Description

162

LoadBalancing {True | False}. Determines whether the data provider uses client load balancing in its attempts to
connect to primary and alternate database servers. The list of alternate servers is specified by the
Alternate Servers connection option.

If set to True, the data provider attempts to connect to the database servers in random order. See
Using Client Load Balancing for more information about load balancing.

If set to False (the initial default), client load balancing is not used and the data provider connects
to each server based on its sequential order (primary server first, then, alternate servers in the
order they are specified).

Note: This option has no effect unless alternate servers are defined for the Alternate Servers
connection string option.

The Load Balancing connection string option is an optional setting that you can use in conjunction
with connection failover. See Using Connection Failover for more information for a discussion of
connection failover and for information about other connection options that you can set for this
feature.

MaxPoolSize Specifies the maximum number of connections within a single pool. When the maximum number
is reached, no additional connections can be added to the connection pool. The Max Pool Size
Behavior connection string option can cause some connections to ignore this value temporarily.

The value can be any integer from 1 to 65335.

The initial default is 100.

MaxPoolSizeBehavior {SoftCap | HardCap}. Specifies whether the data provider can exceed the number of connections
specified by the Max Pool Size option when all connections in the connection pool are in use.

If set to SoftCap, the number of connections created can exceed the value set for Max Pool Size,
but the number of connections pooled does not. When the maximum connections for the pool are
in use and a a connection request is received, the data provider creates a new connection. If a
connection is returned to a pool that is full and contains idle connections, the pooling mechanism
selects a connection to be discarded so the connection pool never exceeds the Max Pool Size.

If set to HardCap (the initial default), when the maximum number of connections allowed in the
pool are in use, any new connection requests wait for an available connection until the Connection
Timeout is reached.

MaxStatementCacheSize Specifies the maximum number of statements that can be held in the statement cache. The value
can be 0, or any integer greater than 1.

Setting the cache size to 0 disables statement caching.

The initial default is 10.

In most cases, using statement caching results in improved performance. See the "Performance
Considerations" topic for your data provider for information on how this option can affect
performance.

Table 35 Connection String Properties (Continued)

Property Description

163

MinPoolSize Specifies the number of connections created when a connection pool is initialized and the
minimum number of connections that will be kept in the pool. The connection pool retains this
number of connections even when some connections have exceeded their LoadBalanceTimeout
value.

The value can be any integer from 0 to 65335.

If set to 0 (the initial default), when the connection is closed and sent to the connection pool, the
pool retains only the original connection used to create the pool.

If set to an integer from 1 to 65535, the specified number of duplicates of the connection are
placed in the pool.

See the "Performance Considerations" topic for your data provider for information on how pooling
can affect performance.

ParameterMode Specifies the behavior of native parameter markers and binding. This allows applications to reuse
provider-specific SQL code and simplifies migration to Zen ADO.NET data providers.

If set to ANSI (the initial default), the ? character is processed as a parameter marker and bound
as ordinal. Applications can toggle the behavior of the BindByName property on a per-command
basis.

If set to BindByOrdinal, native parameter markers are used and are bound as ordinal for stored
procedures and standard commands.

If set to BindByName, native parameter markers are used and are bound by name for stored
procedures and standard commands.

Note: This option is not supported for Zen ADO.NET Entity Framework data providers.

Password Specifies a case-insensitive password used to connect to your Zen database. A password is
required only if security is enabled on your database. If so, contact your system administrator to
get your password.

Alias: PWD

PersistSecurityInfo {True | False}. Specifies whether to display security information in clear text in the
ConnectionString property.

If set to True, the value of the Password connection string option is displayed in clear text.

If set to False (the initial default), the data provider does not display the password in the
connection string.

Pooling {True | False}. Specifies whether connections are pooled. See Using Connection Pooling for more
information about connection pooling.

If set to True (the initial default), connection pooling is enabled.

See the "Performance Considerations" topic for your data provider for information on how pooling
can affect performance.

Port Specifies the TCP port of the listener running on the Zen database.

The default port number is 1583.

PVTranslate {Auto | Nothing}. Specifies whether the client should negotiate a compatible encoding with the
server.

If set to Auto, the data provider will set the Encoding connection property to the database code
page. In addition, SQL query text will be sent to the engine using UTF-8 encoding instead of the
data encoding. This preserves NCHAR string literals in the query text.

If set to Nothing (the default), the setting for the Encoding connection property is used.

Table 35 Connection String Properties (Continued)

Property Description

164

SchemaCollectionTimeout Specifies the number of seconds after which an attempted schema collection operation fails if it is
not yet completed.

If set to 0, the data provider never times out on a schema collection operation attempt.

The initial default is 120.

SchemaOptions Specifies additional database metadata that can be returned. By default, the data provider
prevents the return of some available performance-expensive database metadata to optimize
performance. If your application needs this database metadata, specify the name or hexadecimal
value of the metadata.

This option can affect performance.

See Table 36 for the name and hexadecimal value of the database metadata that the data provider
can add.

If set to ShowColumnDefaults or 0x04, column defaults are returned.

If set to ShowParameterDefaults or 0x08, column defaults are returned.

If set to FixParameterDirections or 0x10, procedure definitions are returned.

If set to ShowProcedureDefinitions or 0x20, procedure definitions are returned.

If set to ShowViewDefinitions or 0x40, view definitions are returned.

If set to ShowAll or 0xFFFFFFFF (the initial default), all database metadata is returned.

For example, to return descriptions of procedure definitions, specify Schema
Options=ShowProcedureDefinitions or Schema Options=0x20.

To show more than one piece of the omitted database metadata, specify either a comma-
separated list of the names, or the sum of the hexadecimal values of the column collections that
you want to restrict. For example, to return descriptions of procedure definitions and view
definitions (hexadecimal values 0x20 and 0x40, respectively), specify Schema
Options=ShowProcedureDefinitions, ShowViewDefinitions or Schema
Options=0x60.

Note: This connection string option may adversely affect performance. See documentation on
performance considerations for your data provider for more information.

ServerDSN Specifies the name of the data source on the server, such as Server DSN=SERVERDEMO.

The default value is DEMODATA.

Note: Do not combine the Database Name and Server DSN connection string options in a
connection string.

Table 35 Connection String Properties (Continued)

Property Description

165

Table 36 lists the name and the hexadecimal value of the column collection that the data provider will
omit from the returned data. To specify multiple values, specify a comma-separated list of the names, or
the sum of the hexadecimal values of the column collections that you want to return.

StatementCacheMode Specifies the statement cache mode. The statement cache mode controls the behavior of the
statement cache. Statements can be cached automatically or only cached when a command is
explicitly marked.

If set to Auto, statement caching is enabled for statements marked as Implicit by the
PsqlCommand property StatementCacheBehavior. These commands have a lower priority than
that of explicitly marked commands, that is, if the statement pool reaches its maximum number of
statements, the statements marked Implicit are removed from the statement pool first to make
room for statements marked Cache.

If set to ExplicitOnly (the initial default), only statements that are marked Cache by the
StatementCacheBehavior property are cached.

In most cases, enabling statement caching results in improved performance. See Performance
Considerations for information on how this option can affect performance of the ADO.NET data
provider.

Note: This option is not supported for Zen ADO.NET Entity Framework data providers.

Timestamp {DateTime | String}. Specifies whether Zen time stamps are stored and retrieved as strings in the
data provider.

If set to DateTime or not defined (the default), the data provider maps time stamps to the .NET
DateTime type. This setting may be appropriate when native precision is required, for example,
when using the PsqlCommandBuilder with a time stamp.

If set to String, the time stamps are returned as strings. The data provider maps Zen time stamps
to the .NET String type.

TimeType {DateTime | TimeSpan}. Specifies whether Zen Times are retrieved as Timespan or DataTime in
the ADO.NET data provider.

If set to As DateTime, the data provider maps the SQL type TIME to the .NET type
System.DateTime.

If set to As TimeSpan, the data provider maps the SQL type TIME to the .NET type
System.DateTimespan.

TraceFile Specifies the path and file name of the trace file.

The initial default is an empty string. If the specified file does not exist, the data provider creates it.

UseCurrentSchema This connection string option is not supported. Setting it will cause the data provider to throw an
exception.

UserID Specifies the default Zen user name used to connect to your Zen database.

Alias: UID

Table 36 Zen Column Collections

Name Hex Value Collection/Column

ShowColumnDefaults
1

0x04 Columns/COLUMN_DEFAULT

ShowParameterDefaults 0x08 ProcedureColumns//PARAMETER_DEFAULT

Table 35 Connection String Properties (Continued)

Property Description

166

The PsqlConnectionStringBuilder object has no provider-specific methods. For information about the
methods supported, refer to the data provider’s online help and the Microsoft .NET Framework SDK
documentation.

PsqlCredential Object

The PsqlCredential object provides a secure way to log in using Zen server authentication.
PsqlCredential is comprised of a user ID and a password recognized by the Zen server.

The password in a PsqlCredential object is of type SecureString, unlike Connection String where the
password is unsecure until the provider reads it and converts it to SecureString. The password is handled
in a secure way without writing it to memory. The string that stores the password is cleaned after use.

Note Use PsqlCredential only when the authentication method requires the user ID and password.
Also, if you are using Kerberos or Client, you should not use PsqlCredential. Finally, the Connection
String should not include the user ID and password when the Credential object is being used.

The following code snippet shows how the PsqlCredential class can be used. The method used to convert
a string into a SecureString in this example is one of many possible methods.
PsqlConnection con = null;
PsqlCredential lobjCredential = null;
string userId = "ABCD";
SecureString password = ConvertToSecureString("XYXYX");
private static SecureString ConvertToSecureString(string value)
{
 var securePassword = new SecureString();
 foreach (char c in value.ToCharArray())
 securePassword.AppendChar(c);
 securePassword.MakeReadOnly();
 return securePassword;
}
try
{
 lobjCredential = new PsqlCredential(userId, password);
 con = new PsqlConnection("Host=nc-xxx;Port=xxxx;Database Name=xxxx"",
 lobjCredential);
 con.Open();
 Console.WriteLine("Connection Successfully Opened...");
 con.Close();
}
catch (Exception e)

FixParameterDirections 0x10 ProcedureColumns/PARAMETER_TYPE

ShowProcedureDefinitions 0x20 Procedures/PROCEDURE_DEFINITION

ShowViewDefinitions 0x40 Views/VIEW_DEFINITION

ShowAll 0x7F All

1 COLUMN_HAS_DEFAULT is always reported with a value of null.

Table 36 Zen Column Collections (Continued)

Name Hex Value Collection/Column

167

{
 Console.Write(e.Message)
}
finally
{
 if (null != con)
 {
 con.Close();
 con = null;
 }
 if (null != lobjCredential)
 {
 lobjCredential = null;
 }
}

The following table lists the provider-specific implementation of the public properties of the
PsqlCredential object.

If you use the PsqlCredential object while opening the connection and want to use the same pooled
connection, you need to reference the same PsqlCredential object so that the same connection is fetched
from the available connection pool.

If you create a new credential object for each connection, the driver treats them separately and puts them
into different connection pools, even if the same user ID and password are used.

PsqlDataAdapter Object

The PsqlDataAdapter object uses PsqlCommand objects to execute SQL commands on the Zen
database, to load the DataSet with data, and to reconcile the changed data in the DataSet to the database.

Table 38 describes the public properties of PsqlDataAdapter.

Table 37 Public Properties of the PsqlCredential Object

Property Description

User ID Returns the user ID component of the PsqlCredential object.

Uses String data type. NULL and empty are invalid values.

Password Returns the password component of the PsqlCredential object.

Uses SecureString data type. NULL is an invalid value.

168

PsqlDataReader Object

The PsqlDataReader object is a forward-only cursor that retrieves read-only records from a database.
Performance is better than using PsqlDataAdapter, but the result set cannot be modified.

Table 39 describes the public properties of PsqlDataReader.

Table 40 describes some of the public methods of the PsqlDataReader.

Table 38 Public Properties of the PsqlDataAdapter Object

Property Description

UpdateBatchSize Gets or sets a value that specifies the number of commands that can be executed in a batch.

If your application uses disconnected DataSets and updates those DataSets, you can positively influence
performance by setting this property to a value greater than 1. By default, the data provider attempts to
use the largest batch size possible. However, this may not equate to optimal performance for your
application. Set the value based on the number of rows you typically update in the DataSet. For example,
if you are updating less than 50 rows, a suggested setting for this property is 25.

If set to 0, the PsqlDataAdapter uses the largest batch size the data source can support. The
UpdatedRowSource property for the InsertCommand, UpdateCommand, and DeleteCommand must be
set to None or OutputParameters.

If set to 1, batch updating is disabled.

If set to a value greater than 1, the specified number of commands are executed in a batch. The
UpdatedRowSource property for the InsertCommand, UpdateCommand, and DeleteCommand must be
set to None or OutputParameters.

DeleteCommand Gets or sets a SQL statement for deleting records from the Zen data source.

InsertCommand Gets or sets a SQL statement used to insert new records into the Zen database.

SelectCommand Gets or sets a SQL statement used to select records in the Zen database.

UpdateCommand Gets or sets a SQL statement used to update records in the data source.

Table 39 Public Properties of the PsqlDataReader Object

Property Description

Depth Gets a value indicating the depth of nesting for the current row.

HasRows Gets a value indicating whether the PsqlDataReader contains one or more rows.

IsClosed Gets a value indicating whether the data reader is closed.

RecordsAffected Gets the number of rows that were changed, inserted, or deleted by execution of the SQL statement.

Table 40 Supported Methods of the PsqlDataReader Object

Method Description

Close Closes the DataReader. Always call the Close method when you finish using the DataReader object.

GetSchemaTable Returns a DataTable that describes the column metadata of the PsqlDataReader. See Table 58 for more
information.

169

PsqlError Object

The PsqlError object collects information relevant to errors and warnings generated by the Zen server.

Table 41 describes the public properties supported by PsqlError.

PsqlErrorCollection Object

The PsqlErrorCollection object is created by a PsqlException to contain all the errors generated by the
Zen server.

Table 42 provides the public provider-specific properties supported for the PsqlErrorCollection object.
For information about other properties and methods supported, refer to the data provider's online help
and the Microsoft .NET Framework SDK documentation.

The PsqlErrorCollection object supports the public methods described in Table 43.

NextResult Advances the data reader to the next result when reading the results of batch SQL statements.

Read Advances the IDataReader to the next result.

Table 41 Public Properties of the PsqlError Object

Property Description

Message Gets the error message text returned from the Zen server.

Number Gets the error number returned from the Zen server.

SQLState Gets the string representation of the SQLState when an exception is thrown by the Zen data provider, or
0 if the exception is not applicable to the error. This property is read-only.
Note: For all of the ADO.NET client error messages which do not have any SQLstate information, S1000
is used as the default SQLState.

Table 42 Public Properties of the PsqlErrorCollection Object

Property Description

Count Gets the number of PsqlError objects generated by the Zen server.

Table 43 Public Methods of the PsqlErrorCollection Object

Method Description

CopyTo Copies the PsqlError objects from the ErrorCollection to the specified array.

GetEnumerator Returns the IEnumerator interface for a given array.

Table 40 Supported Methods of the PsqlDataReader Object

Method Description

170

PsqlException Object

Provider-specific exceptions are derived directly from the System.Data interface. Only the public
properties and methods, for example, the Message property, are directly available on the
System.Exception object in a generic sense. The SQLState and Number properties are only accessible
through provider-specific code or by using reflection.

ADO.NET 2.0 introduced a new property on the DbException class, Data. This property returns a
collection of key-value pair tuples that provide additional user-defined information about an exception.
The ADO.NET Data Provider gets a collection of key/value pairs such as SQLState, Number, and
ErrorPosition.

The Psql.Data.SqlClient prefix is applied to each key, for example:
Psql.Data.SqlClient.Data["SQLState"] = 28000;

The properties described in Table 44 apply to the last error generated, if multiple errors exist. The
application should check the Count property of the PsqlErrorCollection returned in the Errors property
of this object to determine whether multiple errors occurred. See PsqlErrorCollection Object for more
information.

PsqlFactory Object

Provider Factory classes allow users to program to generic objects. Once instantiated from
DbProviderFactory, the factory generates the proper type of concrete class.

Table 45 lists the static methods used to accommodate choosing the ADO.NET Data Provider and
instantiating its DbProviderFactory.

Table 44 Public Properties of the PsqlException Object

Property Description

Errors Gets or sets a PsqlErrorCollection of one of more PsqlError objects.

Message Specifies the error message text that is returned from the Zen server.

Number Gets or sets the number returned from the Zen server.

SQLState Returns the string representation of the SQLState when an exception is thrown by the Zen data provider,
or 0 if the exception is not applicable to the error. This property is read-only.

Table 45 Methods of the PsqlFactory Object

Method Description

CreateCommand Returns a strongly typed DbCommand instance.

CreateCommandBuilder Returns a strongly typed DbCommandBuilder instance.

CreateConnection Returns a strongly typed DbConnection instance.

CreateConnectionStringBuilder Returns a strongly typed DbConnectionString instance.

CreateDataAdapter Returns a strongly typed DbDataAdapter instance.

171

PsqlInfoMessageEventArgs Object

The PsqlInfoMessageEventArgs object is passed as an input to the PsqlInfoMessageEventHandler and
contains information relevant to a warning generated by the Zen server.

Table 46 describes the public properties for PsqlInfoMessageEventArgs.

PsqlParameter Object

The PsqlParameter object represents a parameter to a PsqlCommand object.

Table 47 describes the public properties for PsqlParameter.

CreateDataSourceEnumerator Returns a strongly typed PsqlDataSourceEnumerator instance.

CreateParameter Returns a strongly typed DbParameter instance.

Table 46 Public Properties of PsqlInfoMessageEventArgs

Property Description

Errors Specifies a PsqlErrorCollection that contains a collection of warnings sent from the Zen server. See
PsqlErrorCollection Object for more information.

Message Returns the text of the last message returned from the Zen server. The application should check the Count
property of the PsqlErrorCollection returned in the Errors property of this object to determine whether
multiple warnings occurred.

Table 47 Public Properties of the PsqlParameter Object

Property Description

ArrayBindStatus Determines whether any values in the array of PsqlParameterStatus entries should be bound
as null. The PsqlParameterStatus enumeration contains the entry NullValue.

When this property is not set, then no values are null. The length of the array should match the
amount specified by the PsqlCommand object's ArrayBindCount property (see PsqlCommand
Object).

The initial default is null.

DbType Gets or sets the DbType of the parameter.

Direction Gets or sets a value that indicates whether the parameter is input-only, output-only, bidirectional,
or the return value parameter of a stored procedure.

IsNullable Gets or sets a value that indicates whether the parameter accepts null values.

ParameterName Gets or sets the name of the PsqlParameter object.

Precision Gets or sets the maximum number of digits used to represent the Value property.

Scale Gets or sets the number of decimal places to which the Value property is resolved.

Size Gets or sets the maximum size, in bytes, of the data within the column.

Table 45 Methods of the PsqlFactory Object (Continued)

Method Description

172

PsqlParameterCollection Object

The PsqlParameterCollection object represents a collection of parameters relevant to a PsqlCommand,
and includes their mappings to columns in a DataSet.

Table 48 describes the public properties for PsqlParameterCollection.

Table 49 provides the public methods for PsqlParameterCollection.

SourceColumn Gets or sets the name of the source column that is mapped to the DataSet and used for loading
or returning the Value property.

SourceColumnNullMapping Sets or gets a value that indicates whether the source column is nullable.

SourceVersion Gets or sets the DataRowVersion to use when loading the Value property.

Value Gets or sets the value of the parameter.

The initial default value is null.

Note: When array binding is enabled (see the ArrayBindCount property of the PsqlCommand
Object), this property is specified as an array of values. Each array's length must match the
value of the ArrayBindCount property. When specifying the array's values for binary type
columns, the data will actually be specified as byte[]. This is an array of arrays of bytes. The data
provider anticipates a "jagged" array as such when using parameter array binding with
parameters.

If set to null for a stored procedure parameter, the data provider does not send the parameter to
the server. Instead, the default value for the parameter is used when executing the stored
procedure.

Table 48 Public Properties of PsqlParameterCollection

Property Description

Count Gets the number of PsqlParameter objects in the collection.

IsFixedSize Gets a value that indicates whether the PsqlParameterCollection has a fixed size.

IsReadOnly Gets a value that indicates whether the PsqlParameterCollection is read-only.

IsSynchronized Gets a value that indicates whether the PsqlParameterCollection is thread-safe.

Item Gets the parameter at the specified index. In C#, this property is the indexer for the
IDataParameterCollection class.

SynchRoot Gets the object used to synchronize access to the PsqlParameterCollection.

Table 49 Public Methods of the PsqlParameterCollection Object

Method Description

Contains Gets a value that indicates whether a parameter in the collection has the specified source table name.

Table 47 Public Properties of the PsqlParameter Object (Continued)

Property Description

173

PsqlTrace Object

The PsqlTrace object is created by the application to debug problems during development. Setting the
properties in the PsqlTrace object overrides the settings of the environment variables. For your final
application, be sure to remove references to the PsqlTrace object.

The following code fragment creates a Trace object named MyTrace.txt. All subsequent calls to the data
provider will be traced to that file.
PsqlTrace MyTraceObject = new PsqlTrace();
 MyTraceObject.TraceFile="C:\\MyTrace.txt";
 MyTraceObject.RecreateTrace = 1;
 MyTraceObject.EnableTrace = 1;

Table 50 describes the public properties for the PsqlTrace object.

Table 51 describes the public methods for PsqlTrace.

PsqlTransaction Object

Table 52 describes the public properties of PsqlTransaction.

IndexOf Gets the location of the IDataParameter within the collection.

RemoveAt Removes the IDataParameter from the collection.

Table 50 Public Properties of PsqlTrace

Property Description

EnableTrace If set to 1 or higher, enables tracing.

The initial default value is 0. Tracing is disabled.

RecreateTrace If set to 1, recreates the trace file each time the application restarts.

If set to 0 (the initial default), the trace file is appended

TraceFile Specifies the path and name of the trace file.

The initial default is an empty string. If the specified file does not exist, the data provider creates it.

Note: Setting EnableTrace starts the tracing process. Therefore, you must define the property values for the trace file before
setting EnableTrace. Once the trace processing starts, the values of TraceFile and RecreateTrace cannot be changed.

Table 51 Public Methods of the PsqlTrace Object

Method Description

DumpFootprints Displays the footprint of all source files in a data provider.

Table 49 Public Methods of the PsqlParameterCollection Object

Method Description

174

Table 53 describes the public methods of the PsqlTransaction object.

Table 52 Public Properties of the PsqlTransaction Object

Property Description

Connection Specifies the PsqlConnection object associated with the transaction. See PsqlConnection Object for more
information.

IsolationLevel Defines the isolation level for the entire transaction. If the value is changed, the new value is used at
execution time.

Table 53 Public Methods of the PsqlTransaction Object

Method Description

Commit When overridden in a derived class, returns the Exception that is the root cause of one or more subsequent
exceptions.

Rollback Cancels modifications made in a transaction before the transaction is committed.

175

Zen Common Assembly Classes

Zen ADO.NET data providers support additional classes that provide enhanced functionality, such as
bulk load. All classes are created with 100% managed code. The following classes are provided in the
Pervasive.Data.Common.dll assembly:

 CsvDataReader
 CsvDataWriter
 DbBulkCopy
 DbBulkCopyColumnMapping
 DbBulkCopyColumnMapping

The classes used for bulk loading implement the generic programming model. They can be used with
any DataDirect Technologies ADO.NET data provider or ODBC driver that supports Zen Bulk Load
and any supported database.

CsvDataReader

The CsvDataReader class provides the DataReader semantics for the CSV file format defined by Zen
Bulk Load.

Table 54 lists the public properties for the CsvDataWriter object.

Table 54 Public Properties of the CsvDataReader Object

Property Description

BulkConfigFile Specifies the CSV bulk configuration file that is produced when the WriteToFile method is called. A bulk
load configuration file defines the names and data types of the columns in the bulk load data file in the
same way as the table or result set from which the data was exported. A bulk load configuration file is
supported by an underlying XML schema.

The path may be fully qualified. Otherwise, the file is considered to exist in the current working directory.

Note: This property can only be set prior to the Open() call and after the Close() call; otherwise, an
InvalidOperationException is thrown.

BulkFile Specifies the bulk load data file that contains the CSV-formatted bulk data. The file name is used for
writing (exporting) and reading (importing) the bulk data. If the file name provided does not contain an
extension, the ".csv" extension is assumed.

The path may be fully qualified. Otherwise, the file is considered by default to exist in the current working
directory. An InvalidOperationException is thrown if this value is not set.

Note: This property can only be set prior to the Open() call and after the Close() call; otherwise, an
InvalidOperationException is thrown.

ReadBufferSize Specifies the size of the read buffer when using bulk load to import data from a data source.

The initial default is 2048 KB.

Values equal to or less than zero cause a System.ArgumentOutOfRangeException to be thrown.

176

Table 55 lists the public methods for the CsvDataReader object.

CsvDataWriter

The CsvDataWriter class provides the DataWriter semantics of the CSV file format that is written by Zen
Bulk Load.

For more information, refer to the data provider’s online help.

Table 56 lists the public properties for the CsvDataWriter object.

RowOffset Specifies the row from which to start the bulk load read. The RowOffset is relative to the first (1) row.

The initial default is 1.

Values equal to or less than zero cause a System.ArgumentOutOfRangeException to be thrown.

Note: This property can only be set prior to the Open() call and after the Close() call; otherwise, an
InvalidOperationException is thrown.

SequentialAccess Determines whether columns are accessed in order for improved performance.

The initial default is False.

Note: This property can only be set prior to the Open() call and after the Close() call; otherwise, an
InvalidOperationException is thrown.

Table 55 Public Methods of the CsvDataReader Object

Property Description

Open Opens the bulk file instance and associated metadatafile for processing.

Table 56 Public Properties of the CsvDataWriter Object

Property Description

BinaryThreshold Specifies the threshold (in KB) at which separate files are generated to store binary data during
a bulk unload.

The Initial default is 32.

Values less than zero throw a System.ArgumentOutOfRangeException to be thrown.

Table 54 Public Properties of the CsvDataReader Object (Continued)

Property Description

177

Table 57 lists the public methods for the CsvDataWriter object.

DbBulkCopy

The DbBulkCopy class facilitates copying rows from one data source to another.

The DbBulkCopy object follows the de facto standard defined by the Microsoft SqlBulkCopy class, and
has no provider-specific properties or methods. For information about the properties and methods
supported, refer to the data provider’s online help and the Microsoft .NET Framework SDK
documentation.

DbBulkCopyColumnMapping

The DbBulkCopyColumnMapping class represents a column mapping from the data sources table to a
destination table.

The DbBulkCopyColumnMapping object follows the de facto standard defined by the Microsoft
SqlBulkCopyColumnMapping class, and has no provider-specific properties or methods. For
information about the properties and methods supported, refer to the data provider’s online help and the
Microsoft .NET Framework SDK documentation.

DbBulkCopyColumnMappingCollection

The DbBulkCopyColumnMappingCollection class is a collection of DbBulkCopyColumnMapping
objects.

CharacterThreshold Specifies the threshold (in KB) at which separate files are generated to store character data
during a bulk unload.

The initial default is 64.

Values less than zero cause a System.ArgumentOutOfRangeException to be thrown.

CsvCharacterSetName Specifies any of the supported IANA code page names that may be used as values. See IANA
Code Page Mappings for the supported values.

Applications can obtain the database character that was set using the
PsqlConnection.DatabaseCharacterSetName property.

If an unrecognized CharacterSetName is used, an exception is thrown, declaring that invalid
character set has been used.

The initial default value is UTF-16.

Note this property enforces the character set used in the CSV data file and overflow files added.

Table 57 Public Methods of the CsvDataWriter Object

Property Description

Open Opens the bulk file instance and associated metadatafile for processing.

WriteToFile Writes the contents of the IDataReader to the bulk data file.

Table 56 Public Properties of the CsvDataWriter Object

Property Description

178

The DbBulkCopyColumnMappingCollection object follows the de facto standard defined by the
Microsoft SqlBulkCopyColumnMappingCollection class, and has no provider-specific properties or
methods. For information about the properties and methods supported, refer to the data provider’s
online help and the Microsoft .NET Framework SDK documentation.

179

a p p e n d i x

BGetting Schema Information

Finding and Returning Metadata for a Database

Applications can request that data providers find and return metadata for a database. Schema collections
specific to each data provider expose database schema elements such as tables and columns. The data
provider uses the GetSchema method of the Connection class. You can also retrieve schema information
from a result set, as described in Columns Returned by the GetSchemaTable Method.

The data provider also includes provider-specific schema collections. Using the schema collection name
MetaDataCollections, you can return a list of the supported schema collections, and the number of
restrictions that they support.

180

Columns Returned by the GetSchemaTable Method

While a PsqlDataReader is open, you can retrieve schema information from the result set. The result set
produced for PsqlDataReader.GetSchemaTable() returns the columns described in Table 58, in the order
shown.

Table 58 Columns Returned by GetSchemaTable on PsqlDataReader

Column Description

ColumnName Specifies the name of the column, which might not be unique. If the name cannot be determined, a null
value is returned. This name reflects the most recent renaming of the column in the current view or
command text.

ColumnOrdinal Specifies the ordinal of the column, which cannot be null. The bookmark column of the row, if any, is 0.
Other columns are numbered starting with 1.

ColumnSize Specifies the maximum possible length of a value in the column. For columns that use a fixed-length
data type, this is the size of the data type.

NumericPrecision Specifies the precision of the column, which depends on how the column is defined in ProviderType.

If ProviderType is a numeric data type, this is the maximum precision of the column.

If ProviderType is not a numeric data type, the value is null.

NumericScale Specifies the number of digits to the right of the decimal point if ProviderType is DBTYPE_DECIMAL or
DBTYPE_NUMERIC. Otherwise, this is a null value.

The value depends on how the column is defined in ProviderType.

DataType Maps to the .NET Framework type of the column.

ProviderType Specifies the indicator of the column data type. This column cannot contain a null value.

If the data type of the column varies from row to row, this must be Object.

IsLong Set if the column contains a BLOB that contains very long data. The setting of this flag corresponds to
the value of the IS_LONG column in the PROVIDER_TYPES rowset for the data type.

The definition of very long data is provider-specific.

AllowDBnull Set if the consumer can set the column to a null value, or if the data provider cannot determine whether
the consumer can set the column to a null value. Otherwise, no value is set.

A column can contain null values, even if it cannot be set to a null value.

IsReadOnly Determines whether a column can be changed.

The value is true if the column can be modified; otherwise, the value is false.

IsRowVersion Is set if the column contains a persistent row identifier that cannot be written to, and has no meaningful
value except to identify the row.

IsUnique Specifies whether the column constitutes a key by itself or if there is a constraint of type UNIQUE that
applies only to this column.

If set to true, no two rows in the base table (the table returned in BaseTableName) can have the same
value in this column.

If set to false (the initial default), the column can contain duplicate values in the base table.

181

IsKey Specifies whether a set of columns uniquely identifies a row in the rowset. This set of columns may be
generated from a base table primary key, a unique constraint, or a unique index.

The value is true if the column is one of a set of columns in the rowset that, taken together, uniquely
identify the row. The value is false if the column is not required to uniquely identify the row.

IsAutoIncrement Specifies whether the column assigns values to new rows in fixed increments.

If set to VARIANT_TRUE, the column assigns values to new rows in fixed increments.

If set to VARIANT_FALSE (the initial default), the column does not assign values to new rows in fixed
increments.

BaseSchemaName Specifies the name of the schema in the database that contains the column. The value is null if the base
schema name cannot be determined.

The initial default is null.

BaseCatalogName Specifies the name of the catalog in the data store that contains the column. A null value is used if the
base catalog name cannot be determined.

The initial default is null.

BaseTableName Specifies the name of the table or view in the data store that contains the column. A null value is used if
the base table name cannot be determined.

The initial default is null.

BaseColumnName Specifies the name of the column in the data store. This might be different than the column name
returned in the ColumnName column if an alias was used. A null value is used if the base column name
cannot be determined or if the rowset column is derived from, but is not identical to, a column in the
database.

The initial default is null.

IsAliased Specifies whether the name of the column is an alias. The value true is returned if the column name is
an alias; otherwise, false is returned.

IsExpression Specifies whether the name of the column is an expression. The value true is returned if the column is
an expression; otherwise, false is returned.

IsIdentity Specifies whether the name of the column is an identity column. The value true is returned if the column
is an identity column; otherwise, false is returned.

IsHidden Specifies whether the name of the column is hidden. The value true is returned if the column is hidden;
otherwise, false is returned.

Table 58 Columns Returned by GetSchemaTable on PsqlDataReader (Continued)

Column Description

182

Retrieving Schema Metadata with the GetSchema Method

Applications use the GetSchema method of the Connection object to retrieve Schema Metadata about a
data provider and/or data source. Each provider implements a number of Schema collections, including
the five standard metadata collections.

 MetaDataCollections Schema Collections
 DataSourceInformation Schema Collection
 DataTypes Collection
 ReservedWords Collection
 Restrictions Collection

Additional collections are specified and must be supported to return Schema information from the data
provider.

See Additional Schema Collections for details about the other collections supported by the data
providers.

Note: Refer to the .NET Framework documentation for additional background functional requirements,
including the required data type for each ColumnName.

MetaDataCollections Schema Collections

The MetaDataCollections schema collection is a list of the schema collections available to the logged in
user. The MetaDataCollection can return the supported columns described in Table 59 in any order.

DataSourceInformation Schema Collection

The DataSourceInformation schema collection can return the supported columns, described in Table
60, in any order. Note that only one row is returned.

Table 59 Columns Returned by the MetaDataCollections Schema Collection

ColumnName Description

CollectionName The name of the collection to pass to the GetSchema method to return the collection.

NumberOfRestrictions The number of restrictions that may be specified for the collection.

NumberOfIdentifierParts The number of parts in the composite identifier/data base object name.

Table 60 ColumnNames Returned by the DataSourceInformation Collection

ColumnName Description

CompositeIdentifierSeparatorPattern The regular expression to match the composite separators in a composite identifier.

DataSourceProductName The name of the product accessed by the data provider.

DataSourceProductVersion Indicates the version of the product accessed by the data provider, in the data
source’s native format.

DataSourceProductVersionNormalized A normalized version for the data source. This allows the version to be compared
with String.Compare().

183

DataTypes Collection

Table 61 describes the supported columns of the DataTypes schema collection. The columns can be
returned in any order.

GroupByBehavior Specifies the relationship between the columns in a GROUP BY clause and the
non-aggregated columns in the select list.

Host The host to which the data provider is connected.

IdentifierCase Indicates whether non-quoted identifiers are treated as case sensitive.

IdentifierPattern A regular expression that matches an identifier and has a match value of the
identifier.

OrderByColumnsInSelect Specifies whether columns in an ORDER BY clause must be in the select list. A
value of true indicates that they are required to be in the Select list, a value of false
indicates that they are not required to be in the Select list.

ParameterMarkerFormat A format string that represents how to format a parameter.

ParameterMarkerPattern A regular expression that matches a parameter marker. It will have a match value
of the parameter name, if any.

ParameterNameMaxLength The maximum length of a parameter name in characters.

ParameterNamePattern A regular expression that matches the valid parameter names.

QuotedIdentifierCase Indicates whether quoted identifiers are treated as case sensitive.

QuotedIdentifierPattern A regular expression that matches a quoted identifier and has a match value of the
identifier itself without the quotation marks.

StatementSeparatorPattern A regular expression that matches the statement separator.

StringLiteralPattern A regular expression that matches a string literal and has a match value of the literal
itself.

SupportedJoinOperators Specifies the types of SQL join statements that are supported by the data source.

Table 61 ColumnNames Returned by the DataTypes Collection

ColumnName Description

ColumnSize The length of a non-numeric column or parameter refers to either the maximum or the length defined
for this type by the data provider.

CreateFormat Format string that represents how to add this column to a data definition statement, such as
CREATE TABLE.

Table 60 ColumnNames Returned by the DataSourceInformation Collection (Continued)

ColumnName Description

184

CreateParameters The creation parameters that must be specified when creating a column of this data type. Each
creation parameter is listed in the string, separated by a comma in the order they are to be supplied.

For example, the SQL data type DECIMAL needs a precision and a scale. In this case, the creation
parameters should contain the string "precision, scale".

In a text command to create a DECIMAL column with a precision of 10 and a scale of 2, the value
of the CreateFormat column might be DECIMAL({0},{1})" and the complete type specification
would be DECIMAL(10,2).

DataType The name of the .NET Framework type of the data type.

IsAutoIncrementable Specifies whether values of a data type are auto-incremented.

true: Values of this data type may be auto-incremented.

false: Values of this data type may not be auto-incremented.

IsBestMatch Specifies whether the data type is the best match between all data types in the data store and the
.NET Framework data type indicated by the value in the DataType column.

true: The data type is the best match.

false: The data type is not the best match.

IsCaseSensitive Specifies whether the data type is both a character type and case-sensitive.

true: The data type is a character type and is case-sensitive.

false: The data type is not a character type or is not case-sensitive.

IsConcurrencyType true: The data type is updated by the database every time the row is changed and the value of the
column is different from all previous values.

false: The data type is not updated by the database every time the row is changed.

IsFixedLength true: Columns of this data type created by the data definition language (DDL) will be of fixed length.

false: Columns of this data type created by the DDL will be of variable length.

IsFixedPrecisionScale true: The data type has a fixed precision and scale.

false: The data type does not have a fixed precision and scale.

IsLiteralsSupported true: The data type can be expressed as a literal.

false: The data type cannot be expressed as a literal.

IsLong true: The data type contains very long data. The definition of very long data is provider-specific.

false: The data type does not contain very long data.

IsNullable true: The data type is nullable.

false: The data type is not nullable.

IsSearchable true: The data type contains very long data. The definition of very long data is provider-specific.

false: The data type does not contain very long data.

IsSearchableWithLike true: The data type can be used with the LIKE predicate.

false: The data type cannot be used with the LIKE predicate.

Table 61 ColumnNames Returned by the DataTypes Collection (Continued)

ColumnName Description

185

ReservedWords Collection

This schema collection exposes information about the words that are reserved by the database to which
the data provider is connected. Table 62 describes the columns that the data provider supports.

Restrictions Collection

The Restrictions schema collection exposes information about the restrictions supported by the data
provider that is currently connected to the database. Table 63 describes the columns returned by the data
providers. The columns can be returned in any order.

The ADO.NET Data Provider uses standardized names for restrictions. If the data provider supports a
restriction for a Schema method, it always uses the same name for the restriction.

The case sensitivity of any restriction value is determined by the underlying database, and can be
determined by the IdentifierCase and QuotedIdentifierCase values in the DataSourceInformation
collection (see DataSourceInformation Schema Collection).

IsUnisgned true: The data type is unsigned.

false: The data type is signed.

LiteralPrefix The prefix applied to a given literal.

LiteralSuffix The suffix applied to a given literal.

MaximumScale If the type indicator is a numeric type, this is the maximum number of digits allowed to the right of
the decimal point.

Otherwise, this is DBNull.Value.

MinimumScale If the type indicator is a numeric type, this is the minimum number of digits allowed to the right of the
decimal point.

Otherwise, this is DBNull.Value.

ProviderDbType The provider-specific type value that should be used when specifying a parameter's type.

TypeName The provider-specific data type name.

Table 62 ReservedWords Schema Collection

ColumnName Description

Reserved Word Provider-specific reserved words.

Table 63 ColumnNames Returned by the Restrictions Collection

ColumnName Description

CollectionName The name of the collection to which the specified restrictions apply.

RestrictionName The name of the restriction in the collection.

RestrictionDefault Ignored.

Table 61 ColumnNames Returned by the DataTypes Collection (Continued)

ColumnName Description

186

See Additional Schema Collections for the restrictions that apply to the each of the additional supported
schema collections.

RestrictionNumber The actual location in the collection restrictions for this restriction.

IsRequired Specifies whether the restriction is required.

Table 63 ColumnNames Returned by the Restrictions Collection (Continued)

ColumnName Description

187

Additional Schema Collections

The Zen ADO.NET Data Provider supports the following additional schema collections:

 Columns Schema Collection
 ForeignKeys Schema Collection
 Indexes Schema Collection
 PrimaryKeys Schema Collection
 ProcedureParameters Schema Collection
 Procedures Schema Collection
 TablePrivileges Schema Collection
 Tables Schema Collection
 Views Schema Collection

Columns Schema Collection

Description: The Columns schema collection identifies the columns of tables (including views) defined
in the catalog that are accessible to a given user. Table 64 identifies the columns of tables defined in the
catalog that are accessible to a given user.

Number of restrictions: 3

Restrictions available: TABLE_CATALOG, TABLE_NAME, COLUMN_NAME

Sort order: TABLE_CATALOG, TABLE_NAME, ORDINAL_POSITION

Table 64 Columns Schema Collection

Column Name .NET
Framework
DataType

*

Description

CHARACTER_MAXIMUM_ LENGTH Int32 The maximum possible length of a value in the column. For
character, binary, or bit columns, this is one of the following:

 The maximum length of the column in characters, bytes, or bits,
respectively, if one is defined.

 The maximum length of the data type in characters, bytes, or
bits, respectively, if the column does not have a defined length.

 Zero (0) if neither the column or the data type has a defined
maximum length, or if the column is not a character, binary, or bit
column.

CHARACTER_OCTET_LENGTH Int32 The maximum length in octets (bytes) of the column, if the type of
the column is character or binary.

A value of zero (0) means the column has no maximum length or
that the column is not a character or binary column.

COLUMN_DEFAULT String The default value of the column.

COLUMN_HASDEFAULT Boolean TRUE: The column has a default value.

FALSE: The column does not have a default value, or it is unknown
whether the column has a default value.

188

ForeignKeys Schema Collection

Description: The ForeignKeys schema collection identifies the foreign key columns defined in the
catalog by a given user.

Number of restrictions: 2

Restrictions available: FK_TABLE_CATALOG, PK_TABLE_NAME

Sort order: FK_TABLE_CATALOG, FK_TABLE_NAME

COLUMN_NAME String The name of the column; this might not be unique.

DATA_TYPE Object The indicator of the column data type.

This value cannot be null.

IS_NULLABLE Boolean TRUE: The column might be nullable.

FALSE: The column is known not to be nullable.

NATIVE_DATA_TYPE String The data source description of the type.

This value cannot be null.

NUMERIC_PRECISION Int32 If the column data type is of numeric data, this is the maximum
precision of the column.

NUMERIC_PRECISION_RADIX Int32 The radix indicates in which base the values in
NUMERIC_PRECISION and NUMERIC_SCALE are expressed. It
is only useful to return either 2 or 10.

NUMERIC_SCALE Int16 If the column type is a numeric type that has a scale, this is the
number of digits to the right of the decimal point.

ORDINAL_POSITION Int32 The ordinal of the column. Columns are numbered starting from
one.

PROVIDER_DEFINED_TYPE Int32 The data source defined type of the column is mapped to the type
enumeration of the data provider, for example, the PsqlDbType
enumeration.

This value cannot be null.

PROVIDER_GENERIC_TYPE Int32 The provider-defined type of the column is mapped to the
System.Data.DbType enumeration.

This value cannot be null.

TABLE_CATALOG String The database name.

TABLE_NAME String The table name.

TABLE_OWNER String The table owner.

* All classes are System.XXX. For example, System.String.

Table 64 Columns Schema Collection (Continued)

Column Name .NET
Framework
DataType

*

Description

189

Table 65 ForeignKeys Schema Collection

Column Name .NET
Framework
Datatype

*

* All classes are System.XXX. For example, System.String

Description

DEFERRABILITY String The deferrability of the foreign key. The value is one of the following:

 INITIALLY DEFERRED

 INITIALLY IMMEDIATE

 NOT DEFERRABLE

DELETE_RULE String If a delete rule was specified, the value is one of the following:

CASCADE: A referential action of CASCADE was specified.

SET NULL: A referential action of SET NULL was specified.

SET DEFAULT: A referential action of SET DEFAULT was specified.

NO ACTION: A referential action of NO ACTION was specified.

FK_COLUMN_NAME String The foreign key column name.

FK_NAME String The foreign key name. This is a required restriction.

FK_TABLE_CATALOG String The catalog name in which the foreign key table is defined.

FK_TABLE_NAME String The foreign key table name. This is a required restriction.

FK_TABLE_OWNER String The foreign key table owner. This is a required restriction.

ORDINAL Int32 The order of the column names in the key. For example, a table might contain
several foreign key references to another table. The ordinal starts over for
each reference; for example, two references to a three-column key would
return 1, 2, 3, 1, 2, 3.

PK_COLUMN_NAME String The primary key column name.

PK_NAME String The primary key name.

PK_TABLE_CATALOG String The catalog name in which the primary key table is defined.

PK_TABLE_NAME String The primary key table name.

PK_TABLE_OWNER String The primary key table owner. This is a required restriction.

UPDATE_RULE String If an update rule was specified, one of the following:

CASCADE: A referential action of CASCADE was specified.

SET NULL: A referential action of SET NULL was specified.

SET DEFAULT: A referential action of SET DEFAULT was specified.

NO ACTION: A referential action of NO ACTION was specified.

190

Indexes Schema Collection

Description: The Indexes schema collection identifies the indexes defined in the catalog that are owned
by a given user.

Number of restrictions: 2

Restrictions available: TABLE_CATALOG, TABLE_NAME

Sort order: UNIQUE, TYPE, INDEX_CATALOG, INDEX_NAME, ORDINAL_POSITION

PrimaryKeys Schema Collection

Description: The PrimaryKeys schema collection identifies the primary key columns defined in the
catalog by a given user.

Table 66 Indexes Schema Collection

Column Name .NET
Framework
DataType

*

* All classes are System.XXX. For example, System.String.

Description

CARDINALITY Int32 The number of unique values in the index.

COLLATION String This is one of the following:

ASC: The sort sequence for the column is ascending.

DESC: The sort sequence for the column is descending.

COLUMN_NAME String The column name.

FILTER_CONDITION String The WHERE clause that identifies the filtering restriction.

INDEX_CATALOG String The catalog name.

INDEX_NAME String The index name.

ORDINAL_POSITION Int32 The ordinal position of the column in the index, starting with 1.

PAGES Int32 The number of pages used to store the index.

TABLE_CATALOG String The catalog name.

TABLE_NAME String The table name.

TABLE_OWNER String The table owner.

TABLE_QUALIFIER String The table qualifier.

TYPE String The type of the index. One of the following values:

 BTREE: The index is a B+-tree.

 HASH: The index is a hash file using, for example, linear or extensible hashing.

 CONTENT: The index is a content index.

 OTHER: The index is some other type of index.

UNIQUE Boolean

191

Number of restrictions: 2

Restrictions available: TABLE_CATALOG, TABLE_NAME

Sort order: TABLE_CATALOG, TABLE_NAME

ProcedureParameters Schema Collection

Description: The ProcedureParameters schema collection returns information about the parameters
and return codes of procedures that are part of the Procedures collection.

Number of restrictions: 3

Restrictions available: PROCEDURE_CATALOG, PROCEDURE_NAME, PARAMETER_NAME

Sort order: PROCEDURE_CATALOG, PROCEDURE_NAME, ORDINAL_POSITION

Table 67 PrimaryKeys Schema Collection

Column Name .NET
Framework
DataType

*

* All classes are System.XXX. For example, System.String.

Description

COLUMN_NAME String The primary key column name.

ORDINAL Int32 The order of the column names in the key.

PK_NAME String The primary key name.

TABLE_CATALOG String The database name in which the table is defined.

TABLE_NAME String The table name.

TABLE_OWNER String The table owner.

Table 68 ProcedureParameters Schema Collection

Column Name .NET
Framework
DataType

*

Description

CHARACTER_MAXIMUM_LENGTH Int32 The maximum length of the parameter.

CHARACTER_OCTET_LENGTH Int32 The maximum length in octets (bytes) of the parameter, if the type
of the parameter is character or binary.

If the parameter has no maximum length, the value is zero (0).

For all other types of parameters, the value is -1.

DATA_TYPE Object The indicator of the column data type.

This value cannot be null.

DESCRIPTION String The description of the parameter. For example, the description of
the Name parameter in a procedure that adds a new employee
might be Employee name.

192

IS_NULLABLE Boolean TRUE: The parameter might be nullable.

FALSE: The parameter is not nullable.

NATIVE_DATA_TYPE String The data source description of the type.

This value cannot be null.

NULLABLE String Denotes whether null value can be specified for the parameter. YES
and NO are the two possible values.

NUMERIC_PRECISION Int32 If the column data type is numeric, this is the maximum precision of
the column.

If the column data type is not numeric, this is DbNull.

NUMERIC_PRECISION_RADIX Int32 Applicable when the column data type is numeric.

The radix indicates in which base the values in
NUMERIC_PRECISION and NUMERIC_SCALE are expressed. It
is only useful to return either 2 or 10.

NUMERIC_SCALE Int16 If the column data type is a numeric type that has a scale, this is the
number of digits to the right of the decimal point.

Otherwise, this is DbNull.

ORDINAL_POSITION Int32 If the parameter is an input, input/output, or output parameter, this
is the one-based ordinal position of the parameter in the procedure
call.

If the parameter is the return value, this is DbNull.

PARAMETER_DEFAULT String The default value of parameter.

If the default value is a NULL, then the
PARAMETER_HASDEFAULT column returns TRUE and the
PARAMETER_DEFAULT column will not exist.

If PARAMETER_HASDEFAULT is set to FALSE, then the
PARAMETER_DEFAULT column will not exist.

PARAMETER_HASDEFAULT Boolean TRUE: The parameter has a default value.

FALSE: The parameter does not have a default value, or it is
unknown whether the parameter has a default value.

PARAMETER_NAME String The parameter name. If the parameter is not named, this is DbNull.

PARAMETER_TYPE String This is one of the following:

INPUT: The parameter is an input parameter.

INPUTOUTPUT: The parameter is an input/output parameter.

OUTPUT: The parameter is an output parameter.

RETURNVALUE: The parameter is a procedure return value.

UNKNOWN: The parameter type is unknown to the data provider.

PROCEDURE_CATALOG String The catalog name.

Table 68 ProcedureParameters Schema Collection (Continued)

Column Name .NET
Framework
DataType

*

Description

193

Procedures Schema Collection

Description: The Procedures schema collection identifies the procedures defined in the catalog. When
possible, only procedures for which the connected user has execute permission should be returned.

Number of restrictions: 2

Restrictions available: PROCEDURE_CATALOG, PROCEDURE_NAME, PROCEDURE_TYPE

Sort order: PROCEDURE_CATALOG, PROCEDURE_NAME

PROCEDURE_NAME String The procedure name.

PROCEDURE_COLUMN_NAME String The procedure column name.

PROVIDER_DEFINED_TYPE Int32 The data source defined type of the column as mapped to the type
enumeration of the data provider, for example, the PSQLDbType
enumeration.

This value cannot be null.

PROVIDER_GENERIC_TYPE Int32 The data source defined type of the column as mapped to the
System.Data.DbType enumeration.

This value cannot be null.

SQL_DATETIME_SUB Object Applicable when the column data type is DateTime.

* All classes are System.XXX. For example, System.String.

Table 69 Procedures Schema Collection

Column Name .NET
Framework
DataType

*

* All classes are System.XXX. For example, System.String.

Description

PROCEDURE_CATALOG String The database name.

PROCEDURE_NAME String The procedure name.

PROCEDURE_OWNER String The procedure owner.

PROCEDURE_TYPE String This is one of the following:

UNKNOWN: It is not known whether a value is returned.

PROCEDURE: Procedure; no value is returned.

FUNCTION: Function; a value is returned.

Table 68 ProcedureParameters Schema Collection (Continued)

Column Name .NET
Framework
DataType

*

Description

194

TablePrivileges Schema Collection

Description: The TablePrivileges schema collection identifies the privileges on tables defined in the
catalog that are available to or granted by a given user.

Number of restrictions: 3

Restrictions available: TABLE_CATALOG, TABLE_NAME, GRANTEE

Sort order: TABLE_CATALOG, TABLE_NAME, PRIVILEGE_TYPE

Tables Schema Collection

Description: The Tables schema collection identifies the tables (including views) defined in the catalog
that are accessible to a given user.

Number of Restrictions: 3

Restrictions Available: TABLE_CATALOG, TABLE_NAME, TABLE_TYPE

Sort order: TABLE_TYPE, TABLE_CATALOG, TABLE_NAME

Table 70 TablePrivileges Schema Collection

Column Name Type
Indicator

*

* All classes are System.XXX. For example, System.String.

Description

GRANTEE String The user name (or PUBLIC) to whom the privilege has been
granted.

PRIVILEGE_TYPE String The privilege type. This is one of the following types:

 DELETE

 INSERT

 REFERENCES

 SELECT

 UPDATE

TABLE_CATALOG String The name of the database in which the table is defined.

TABLE_NAME String The table name.

TABLE_OWNER String The table owner.

Table 71 Tables Schema Collection

Column Name .NET
Framework
DataType

*

Description

DESCRIPTION String A description of the table.

If no description is associated with the column, the data provider returns DbNull.

TABLE_CATALOG String The name of the database in which the table is defined.

195

Views Schema Collection

Description: The Views schema collection identifies the views defined in the catalog that are accessible
to a given user.

Number of restrictions: 2

Restrictions available: TABLE_CATALOG, TABLE_NAME

Sort order: TABLE_CATALOG, TABLE_NAME

TABLE_NAME String The table name.

TABLE_OWNER String The table owner.

TABLE_TYPE String The table type. One of the following:

 ALIAS

 GLOBAL TEMPORARY

 LOCAL TEMPORARY

 SYNONYM

 SYSTEM TABLE

 SYSTEM VIEW

 TABLE

 VIEW

This column cannot contain an empty string.

* All classes are System.XXX. For example, System.String.

Table 72 Views Schema Collection

Column Name Type
Indicator

*

* All classes are System.XXX. For example, System.String.

Description

TABLE_CATALOG String The name of the database in which the table is defined.

TABLE_NAME String The table name.

TABLE_OWNER String The table owner.

TABLE_QUALIFIER String The table qualifier.

VIEW _DEFINITION String The view definition. This is a query expression.

Table 71 Tables Schema Collection (Continued)

Column Name .NET
Framework
DataType

*

Description

196

197

a p p e n d i x

CSQL Escape Sequences for .NET

A number of language features, such as outer joins and scalar function calls, are commonly implemented
by database management systems. The syntax for these features is often DBMS-specific, even when a
standard syntax has been defined. The .NET support for escape sequences contain standard syntaxes for
the following language features:

 Date, time, and timestamp literals
 Scalar functions such as numeric, string, and data type conversion functions
 Outer joins

The escape sequence used by .NET is:
{extension}

The escape sequence is recognized and parsed by the ADO.NET Data Provider, which replaces the
escape sequences with data store-specific grammar.

198

Date, Time, and Timestamp Escape Sequences

The escape sequence for date, time, and timestamp literals is:
{literal-type 'value'}

where literal-type is one of the following:

Note: If you receive an error while running a query in Visual Studio to insert data into the Date field of
a table, ensure that your system's Date format is set to yyyy-mm-dd. If not, change it to yyyy-mm-dd.

Example

UPDATE Orders SET OpenDate={d '1997-01-29'}
WHERE OrderID=1023

literal-type Description Value Format

d Date yyyy-mm-dd

t Time hh:mm:ss [1]

ts Timestamp yyyy-mm-dd hh:mm:ss[.f...]

199

Scalar Functions

You can use scalar functions in SQL statements with the following syntax:
{fn scalar-function}

where scalar-function is a scalar function supported by the ADO.NET Data Provider.

Example

SELECT {fn UCASE(NAME)} FROM EMP

Table 73 lists the scalar functions supported.

Table 73 Scalar Functions Supported

String
Functions

Numeric Functions Timedate
Functions

System
Functions

ASCII
BIT_LENGTH
CHAR
CHAR_LENGTH
CHARACTER_LENGTH
CONCAT
LCASE or LOWER
LEFT
LENGTH
LOCATE
LTRIM
OCTET_LENGTH
POSITION
REPLACE
REPLICATE
RIGHT
RTRIM
SPACE
STUFF
SUBSTRING
UCASE or UPPER

ABS
ACOS
ASIN
ATAN
ATAN2
CEILING
COS
COT
DEGREES
EXP
FLOOR
LOG
LOG10
MOD
PI
POWER
RADIANS
RAND
ROUND
SIGN
SIN
SQRT
TAN
TRUNCATE

CURDATE
CURRENT_DATE
CURTIME
CURRENT_TIME
CURRENT_TIMESTAMP
DAYNAME
DAYOFMONTH
DAYOFYEAR
EXTRACT
HOUR
MINUTE
MONTH
MONTHNAME
NOW
QUARTER
SECOND
TIMESTAMPADD
TIMESTAMPDIFF
WEEK
YEAR

DATABASE
USER

200

Outer Join Escape Sequences

.NET supports the SQL92 left, right, and full outer join syntax. The escape sequence for outer joins is:
{oj outer-join}

where outer-join is:
table-reference {LEFT | RIGHT | FULL} OUTER JOIN
{table-reference | outer-join} ON search-condition

where:

table-reference is a table name and search-condition is the join condition you want to use for the tables.

Example

SELECT Customers.CustID, Customers.Name, Orders.OrderID, Orders.Status
 FROM {oj Customers LEFT OUTER JOIN
 Orders ON Customers.CustID=Orders.CustID}
 WHERE Orders.Status='OPEN'

The ADO.NET Data Provider supports the following outer join escape sequences as supported by Zen
9.x and higher:

 Left outer joins
 Right outer joins
 Full outer joins

201

a p p e n d i x

DLocking and Isolation Levels

Different database systems support various locking and isolation levels. The following topics cover
locking and isolation levels and how their settings affect the data you retrieve:

 Locking
 Isolation Levels
 Locking Modes and Levels

202

Locking

Locking is a database operation that restricts a user from accessing a table or record. Locking is used in
situations where more than one user might try to use the same table or record at the same time. By
locking the table or record, the system ensures that only one user at a time can affect the data.

Locking is critical in multiuser databases, where different users can try to access or modify the same
records concurrently. Although such concurrent database activity is desirable, it can create problems.
Without locking, for example, if two users try to modify the same record at the same time, they might
encounter problems ranging from retrieving bad data to deleting data that the other user needs. If,
however, the first user to access a record can lock that record to temporarily prevent other users from
modifying it, such problems can be avoided. Locking provides a way to manage concurrent database
access while minimizing the various problems it can cause.

203

Isolation Levels

An isolation level represents a particular locking strategy employed in the database system to improve
data consistency. The higher the isolation level, the more complex the locking strategy behind it. The
isolation level provided by the database determines whether a transaction will encounter the following
behaviors in data consistency:

Isolation levels represent the database system’s ability to prevent these behaviors. The American National
Standards Institute (ANSI) defines four isolation levels:

 Read uncommitted (0)
 Read committed (1)
 Repeatable read (2)
 Serializable (3)

In ascending order (0–3), these isolation levels provide an increasing amount of data consistency to the
transaction. At the lowest level, all three behaviors can occur. At the highest level, none can occur. The
success of each level in preventing these behaviors is due to the locking strategies that they employ, which
are as follows:

Table 74 shows what data consistency behaviors can occur at each isolation level.

Dirty reads User 1 modifies a row. User 2 reads the same row before User 1 commits. User 1 performs a rollback.
User 2 has read a row that has never really existed in the database. User 2 may base decisions on
false data.

Non-repeatable reads User 1 reads a row but does not commit. User 2 modifies or deletes the same row and then commits.
User 1 rereads the row and finds it has changed (or has been deleted).

Phantom reads User 1 uses a search condition to read a set of rows but does not commit. User 2 inserts one or more
rows that satisfy this search condition, then commits. User 1 rereads the rows using the search
condition and discovers rows that were not present before.

Read uncommitted (0) Locks are obtained on modifications to the database and held until end of transaction (EOT).
Reading from the database does not involve any locking.

Read committed (1) Locks are acquired for reading and modifying the database. Locks are released after reading, but
locks on modified objects are held until EOT.

Repeatable read (2) Locks are obtained for reading and modifying the database. Locks on all modified objects are held
until EOT. Locks obtained for reading data are held until EOT. Locks on non-modified access
structures (such as indexes and hashing structures) are released after reading.

Serializable (3) A lock is placed on the affected rows of the DataSet until EOT. All access structures that are
modified, and those used by the query, are locked until EOT.

Table 74 Isolation Levels and Data Consistency

Level Dirty Read Nonrepeatable Read Phantom Read

0, Read uncommitted Yes Yes Yes

204

Although higher isolation levels provide better data consistency, this consistency can be costly in terms
of the concurrency provided to individual users. Concurrency is the ability of multiple users to access and
modify data simultaneously. As isolation levels increase, so does the chance that the locking strategy
used will create problems in concurrency.

Put another way: The higher the isolation level, the more locking involved, and the more time users may
spend waiting for data to be freed by another user. Because of this inverse relationship between isolation
levels and concurrency, you must consider how people use the database before choosing an isolation
level. You must weigh the trade-offs between data consistency and concurrency, and decide which is
more important.

1, Read committed No Yes Yes

2, Repeatable read No No Yes

3, Serializable No No No

Table 74 Isolation Levels and Data Consistency (Continued)

205

Locking Modes and Levels

Different database systems employ various locking modes, but they have two basic modes in common:
shared and exclusive. Shared locks can be held on a single object by multiple users. If one user has a
shared lock on a record, then a second user can also get a shared lock on that same record; however, the
second user cannot get an exclusive lock on that record. Exclusive locks are exclusive to the user that
obtains them. If one user has an exclusive lock on a record, then a second user cannot get either type of
lock on the same record.

Performance and concurrency can also be affected by the locking level used in the database system. The
locking level determines the size of an object that is locked in a database. For example, many database
systems let you lock an entire table, as well as individual records. An intermediate level of locking, page-
level locking, is also common. A page contains one or more records and is typically the amount of data
read from the disk in a single disk access. The major disadvantage of page-level locking is that if one user
locks a record, a second user may not be able to lock other records because they are stored on the same
page as the locked record.

206

207

a p p e n d i x

EDesigning .NET Applications for
Performance Optimization

Developing performance-oriented .NET applications is not easy. Zen ADO.NET data providers do not
throw exceptions to say that your code is running too slowly.

208

Retrieving Data

To retrieve data efficiently, return only the data that you need, and choose the most efficient method of
doing so. The guidelines in this section will help you to optimize system performance when retrieving
data with .NET applications.

Retrieving Long Data

Unless it is necessary, applications should not request long data because retrieving long data across a
network is slow and resource-intensive.

Most users don't want to see long data. If the user wants to see these result items, then the application
can query the database again, specifying only the long columns in the select list. This method allows the
average user to retrieve the result set without having to pay a high performance penalty for network
traffic.

Although the best method is to exclude long data from the select list, some applications do not formulate
the select list before sending the query to the Zen ADO.NET data provider (that is, some applications
use syntax such as select * from <table name> ...). If the select list contains long data, then some
data providers must retrieve that data at fetch time even if the application does not bind the long data in
the result set. When possible, try to implement a method that does not retrieve all columns of the table.

Sometimes long data must be retrieved. When this is the case, remember that most users do not want to
see 100 KB, or more, of text on the screen.

Reducing the Size of Data Retrieved

To reduce network traffic and improve performance, you can reduce the size of any data being retrieved
to some manageable limit by calling set max rows or set max field size, or some other database-specific
command to limit row size or field size. Another method of reducing the size of the data being retrieved
is to decrease the column size. If the data provider allows you to define the packet size, use the smallest
packet size that will meet your needs.

In addition, be careful to return only the rows you need. If you return five columns when you only need
two columns, performance is decreased, especially if the unnecessary rows include long data.

Using CommandBuilder Objects

It is tempting to use CommandBuilder objects because they generate SQL statements. However, this
shortcut can have a negative effect on performance. Because of concurrency restrictions, the Command
Builder does not generate efficient SQL statements. For example, the following SQL statement was
created by the Command Builder:
CommandText: UPDATE TEST01.EMP SET EMPNO = ?, ENAME = ?, JOB = ?, MGR = ?, HIREDATE
= ?, SAL = ?, COMM = ?, DEPT = ?
WHERE

 ((EMPNO = ?) AND ((ENAME IS NULL AND ? IS NULL)
 OR (ENAME = ?)) AND ((JOB IS NULL AND ? IS NULL)
 OR (JOB = ?)) AND ((MGR IS NULL AND ? IS NULL)
 OR (MGR = ?)) AND ((HIREDATE IS NULL AND ? IS NULL)
 OR (HIREDATE = ?)) AND ((SAL IS NULL AND ? IS NULL)
 OR (SAL = ?)) AND ((COMM IS NULL AND ? IS NULL)
 OR (COMM = ?)) AND ((DEPT IS NULL AND ? IS NULL)
 OR (DEPT = ?)))

209

The end user can often write more efficient update and delete statements than those that the
CommandBuilder generates.

Another drawback is also implicit in the design of the CommandBuilder object. The CommandBuilder
object is always associated with a DataAdapter object and registers itself as a listener for RowUpdating
and RowUpdated events that the DataAdapter object generates. This means that two events must be
processed for every row that is updated.

Choosing the Right Data Type

Retrieving and sending certain data types can be expensive. When you design a schema, select the data
type that can be processed most efficiently. For example, integer data is processed faster than floating-
point data. Floating-point data is defined according to internal database-specific formats, usually in a
compressed format. The data must be decompressed and converted into a different format so that it can
be processed by the wire protocol.

Processing time is shortest for character strings, followed by integers, which usually require some
conversion or byte ordering. Processing floating-point data and timestamps is at least twice as slow as
integers.

210

Selecting .NET Objects and Methods

The guidelines in this section will help you to optimize system performance when selecting and using
.NET objects and methods.

Using Parameter Markers as Arguments to Stored Procedures

When calling stored procedures, always use parameter markers for the argument markers instead of
using literal arguments.

When you set the CommandText property in the Command object to the stored procedure name, do not
physically code the literal arguments into the CommandText. For example, do not use literal arguments
such as:
{call expense (3567, 'John', 987.32)}

Zen ADO.NET data providers can call stored procedures on the database server by executing the
procedure as any other SQL query. Executing the stored procedure as a SQL query results in the database
server parsing the statement, validating the argument types, and converting the arguments into the
correct data types.

In the following example, the application programmer might assume that the only argument to
getCustName is the integer 12345:
{call getCustName (12345)}

However, SQL is always sent to the database server as a character string. When the database server parses
the SQL query and isolates the argument value, the result is still a string. The database server must then
convert the string ’12345’ into the integer 12345. Using a parameter marker eliminates the need to
convert the string and reduces the amount of processing by the server:
{call getCustName (?)}

211

 Designing .NET Applications

The guidelines in this section will help you to optimize system performance when designing .NET
applications.

Managing Connections

Connection management is important to application performance. Optimize your application by
connecting once and using multiple statement objects, instead of performing multiple connections.
Avoid connecting to a data source after establishing an initial connection.

You can improve performance significantly with connection pooling, especially for applications that
connect over a network or through the World Wide Web. Connection pooling lets you reuse
connections. Closing connections does not close the physical connection to the database. When an
application requests a connection, an active connection is reused, thus avoiding the network I/O needed
to create a new connection.

Pre-allocate connections. Decide what connection strings you will need to meet your needs. Remember
that each unique connection string creates a new connection pool.

Once created, connection pools are not destroyed until the active process ends or the connection lifetime
is exceeded. Maintenance of inactive or empty pools involves minimal system overhead.

Connection and statement handling should be addressed before implementation. Spending time and
thoughtfully handling connection management improves application performance and maintainability.

Opening and Closing Connections

Open connections just before they are needed. Opening them earlier than necessary decreases the
number of connections available to other users and can increase the demand for resources.

To keep resources available, explicitly Close the connection as soon as it is no longer needed. If you wait
for the garbage collector to implicitly clean up connections that go out of scope, the connections will not
be returned to the connection pool immediately, tieing up resources that are not actually being used.

Close connections inside a finally block. Code in the finally block always runs, even if an exception
occurs. This guarantees explicit closing of connections. For example:
try
{

DBConn.Open();
… // Do some other interesting work
}
catch (Exception ex)
{

// Handle exceptions
}
finally
{

// Close the connection
if (DBConn != null)

DBConn.Close();
}

If you are using connection pooling, opening and closing connections is not an expensive operation.
Using the Close() method of the data provider's Connection object adds or returns the connection to the

212

connection pool. Remember, however, that closing a connection automatically closes all DataReader
objects that are associated with the connection.

Using Statement Caching

A statement cache is a group of prepared statements or instances of Command objects that can be reused
by an application. Using statement caching can improve application performance because the actions on
the prepared statement are performed once even though the statement is reused multiple times over an
application’s lifetime.

A statement cache is owned by a physical connection. After being executed, a prepared statement is
placed in the statement cache and remains there until the connection is closed.

Caching all of the prepared statements that an application uses might appear to offer increased
performance. However, this approach may come at a cost of database memory if you implement
statement caching with connection pooling. In this case, each pooled connection has its own statement
cache that may contain all of the prepared statements that are used by the application. All of these pooled
prepared statements are also maintained in the database’s memory.

Using Commands Multiple Times

Choosing whether to use the Command.Prepare method can have a significant positive (or negative)
effect on query execution performance. The Command.Prepare method tells the underlying data
provider to optimize for multiple executions of statements that use parameter markers. Note that it is
possible to Prepare any command regardless of which execution method is used (ExecuteReader,
ExecuteNonQuery, or ExecuteScalar).

Consider the case where a Zen ADO.NET data provider implements Command.Prepare by creating a
stored procedure on the server that contains the prepared statement. Creating stored procedures
involves substantial overhead, but the statement can be executed multiple times. Although creating
stored procedures is performance-expensive, execution of that statement is minimized because the
query is parsed and optimization paths are stored at create procedure time. Applications that execute the
same statement multiples times can benefit greatly from calling Command.Prepare and then executing
that command multiple times.

However, using Command.Prepare for a statement that is executed only once results in unnecessary
overhead. Furthermore, applications that use Command.Prepare for large single execution query
batches exhibit poor performance. Similarly, applications that either always use Command.Prepare or
never use Command.Prepare do not perform as well as those that use a logical combination of prepared
and unprepared statements.

Using Native Managed Providers

Bridges into unmanaged code, that is, code outside the .NET environment, adversely affect performance.
Calling unmanaged code from managed code causes the data provider to be significantly slower than
data providers that are completely managed code. Why take that kind of performance hit?

If you use a bridge, your code will be written for this bridge. Later, when a database-specific Zen
ADO.NET data provider becomes available, the code must be rewritten; you will have to rewrite object
names, schema information, error handling, and parameters. You'll save valuable time and resources by
coding to managed data providers instead of coding to the bridges.

213

Updating Data

This section provides general guidelines to help you to optimize system performance when updating
data in databases.

Using the Disconnected DataSet

Keep result sets small. The full result set must be retrieved from the server before the DataSet is
populated. The full result set is stored in memory on the client.

Synchronizing Changes Back to the Data Source

You must build the logic into the PsqlDataAdapter for synchronizing the changes back to the data source
using the primary key, as shown in the following example:
string updateSQL As String = "UPDATE emp SET sal = ?, job = ?" +
 " = WHERE empno = ?";

214

215

a p p e n d i x

FUsing an .edmx File

An .edmx file is an XML file that defines an Entity Data Model (EDM), describes the target database
schema, and defines the mapping between the EDM and the database. An .edmx file also contains
information that is used by the ADO.NET Entity Data Model Designer (Entity Designer) to render a
model graphically.

The following code examples illustrate the necessary changes to the .edmx file in order to provide
Extended Entity Framework functionality to the EDM layer.

The Entity Framework includes a set of methods similar to those of ADO.NET. These methods have
been tailored to be useful for the new Entity Framework consumers – LINQ, EntitySQL, and
ObjectServices.

The ADO.NET Entity Framework data provider models this functionality in the EDM by surfacing the
PsqlStatus and PsqlConnectionStatistics entities, allowing you to model this functionality using
standard tools in Visual Studio.

216

Code Examples

The following code fragment is an example of the SSDL model:
<?xml version="1.0" encoding="utf-8"?>
<Schema Namespace="EntityModel.Store" Alias="Self"

xmlns="http://schemas.microsoft.com/ado/2006/04/edm/ssdl"
 Provider=Pervasive.Data.SqlClient"
 ProviderManifestToken="PSQL">
 <EntityContainer Name="SampleStoreContainer">
 <EntitySet Name="Connection_Statistics"

EntityType="EntityModel.Store.Connection_Statistics" />
 <EntitySet Name="Status" EntityType="EntityModel.Store.Status" />
 </EntityContainer>
 <Function Name="RetrieveStatistics" Aggregate="false" BuiltIn="false"

NiladicFunction="false" IsComposable="false"
ParameterTypeSemantics="AllowImplicitConversion"
StoreFunctionName=""Psql_Connection_RetrieveStatistics"" />

 <Function Name="EnableStatistics" Aggregate="false" BuiltIn="false"
NiladicFunction="false" IsComposable="false"
ParameterTypeSemantics="AllowImplicitConversion"
StoreFunctionName=""Psql_Connection_EnableStatistics"" />

 <Function Name="DisableStatistics" Aggregate="false" BuiltIn="false"
NiladicFunction="false" IsComposable="false"
ParameterTypeSemantics="AllowImplicitConversion"
StoreFunctionName=""Psql_Connection_DisableStatistics"" />

 <Function Name="ResetStatistics" Aggregate="false" BuiltIn="false"
NiladicFunction="false" IsComposable="false"
ParameterTypeSemantics="AllowImplicitConversion"
StoreFunctionName=""Psql_Connection_ResetStatistics"" />

 </Function>
 <EntityType Name="Connection_Statistics">
 <Key>
 <PropertyRef Name="Id" />
 </Key>
 <Property Name="SocketReadTime" Type="double" Nullable="false" />
 <Property Name="MaxSocketReadTime" Type="double" Nullable="false" />
 <Property Name="SocketReads" Type="bigint" Nullable="false" />
 <Property Name="BytesReceived" Type="bigint" Nullable="false" />
 <Property Name="MaxBytesPerSocketRead" Type="bigint" Nullable="false" />
 <Property Name="SocketWriteTime" Type="double" Nullable="false" />
 <Property Name="MaxSocketWriteTime" Type="double" Nullable="false" />
 <Property Name="SocketWrites" Type="bigint" Nullable="false" />
 <Property Name="BytesSent" Type="bigint" Nullable="false" />
 <Property Name="MaxBytesPerSocketWrite" Type="bigint" Nullable="false" />
 <Property Name="TimeToDisposeOfUnreadRows" Type="double" Nullable="false" />
 <Property Name="SocketReadsToDisposeUnreadRows" Type="bigint" Nullable="false"

/>
 <Property Name="BytesRecvToDisposeUnreadRows" Type="bigint" Nullable="false" />
 <Property Name="IDUCount" Type="bigint" Nullable="false" />
 <Property Name="SelectCount" Type="bigint" Nullable="false" />
 <Property Name="StoredProcedureCount" Type="bigint" Nullable="false" />
 <Property Name="DDLCount" Type="bigint" Nullable="false" />
 <Property Name="PacketsReceived" Type="bigint" Nullable="false" />
 <Property Name="PacketsSent" Type="bigint" Nullable="false" />
 <Property Name="ServerRoundTrips" Type="bigint" Nullable="false" />
 <Property Name="SelectRowsRead" Type="bigint" Nullable="false" />

217

 <Property Name="StatementCacheHits" Type="bigint" Nullable="false" />
 <Property Name="StatementCacheMisses" Type="bigint" Nullable="false" />
 <Property Name="StatementCacheReplaces" Type="bigint" Nullable="false" />
 <Property Name="StatementCacheTopHit1" Type="bigint" Nullable="false" />
 <Property Name="StatementCacheTopHit2" Type="bigint" Nullable="false" />
 <Property Name="StatementCacheTopHit3" Type="bigint" Nullable="false" />
 <Property Name="PacketsReceivedPerSocketRead" Type="double" Nullable="false" />
 <Property Name="BytesReceivedPerSocketRead" Type="double" Nullable="false" />
 <Property Name="PacketsSentPerSocketWrite" Type="double" Nullable="false" />
 <Property Name="BytesSentPerSocketWrite" Type="double" Nullable="false" />
 <Property Name="PacketsSentPerRoundTrip" Type="double" Nullable="false" />
 <Property Name="PacketsReceivedPerRoundTrip" Type="double" Nullable="false" />
 <Property Name="BytesSentPerRoundTrip" Type="double" Nullable="false" />
 <Property Name="BytesReceivedPerRoundTrip" Type="double" Nullable="false" />
 <Property Name="Id" Type="integer" Nullable="false" />
 </EntityType>
 <EntityType Name="Status">
 <Key>
 <PropertyRef Name="Id" />
 </Key>
 <Property Name="ServerVersion" Type="varchar" MaxLength="127" Nullable="false"

/>
 <Property Name="Host" Type="varchar" MaxLength="127" Nullable="false" />
 <Property Name="Port" Type="integer" Nullable="false" />
 <Property Name="DatabaseName" Type="varchar" MaxLength="127" Nullable="false" />
 <Property Name="SessionId" Type="integer" Nullable="false" />
 <Property Name="StatisticsEnabled" Type="smallint_as_boolean" Nullable="false"

/>
 <Property Name="Id" Type="integer" Nullable="false" />
 </EntityType>
</Schema>

The following code fragment is an example of the MSL model:
<?xml version="1.0" encoding="utf-8"?>
<Mapping Space="C-S" xmlns="urn:schemas-microsoft-com:windows:storage:mapping:CS">

<EntityContainerMapping
 StorageEntityContainer="SampleStoreContainer"
 CdmEntityContainer="SampleContainer">
 <EntitySetMapping Name="PsqlConnectionStatistics">
 <EntityTypeMapping TypeName="EntityModel.PsqlConnectionStatistics">
 <MappingFragment StoreEntitySet="Connection_Statistics">
 <ScalarProperty Name="SocketReadTime" ColumnName="SocketReadTime" />
 <ScalarProperty Name="MaxSocketReadTime" ColumnName="MaxSocketReadTime"

/>
 <ScalarProperty Name="SocketReads" ColumnName="SocketReads" />
 <ScalarProperty Name="BytesReceived" ColumnName="BytesReceived" />
 <ScalarProperty Name="MaxBytesPerSocketRead"

ColumnName="MaxBytesPerSocketRead" />
 <ScalarProperty Name="SocketWriteTime" ColumnName="SocketWriteTime" />
 <ScalarProperty Name="MaxSocketWriteTime"

ColumnName="MaxSocketWriteTime" />
 <ScalarProperty Name="SocketWrites" ColumnName="SocketWrites" />
 <ScalarProperty Name="BytesSent" ColumnName="BytesSent" />
 <ScalarProperty Name="MaxBytesPerSocketWrite"

ColumnName="MaxBytesPerSocketWrite" />
 <ScalarProperty Name="TimeToDisposeOfUnreadRows"

ColumnName="TimeToDisposeOfUnreadRows" />

218

 <ScalarProperty Name="SocketReadsToDisposeUnreadRows"
ColumnName="SocketReadsToDisposeUnreadRows" />

 <ScalarProperty Name="BytesRecvToDisposeUnreadRows"
ColumnName="BytesRecvToDisposeUnreadRows" />

 <ScalarProperty Name="IDUCount" ColumnName="IDUCount" />
 <ScalarProperty Name="SelectCount" ColumnName="SelectCount" />
 <ScalarProperty Name="StoredProcedureCount"

ColumnName="StoredProcedureCount" />
 <ScalarProperty Name="DDLCount" ColumnName="DDLCount" />
 <ScalarProperty Name="PacketsReceived" ColumnName="PacketsReceived" />
 <ScalarProperty Name="PacketsSent" ColumnName="PacketsSent" />
 <ScalarProperty Name="ServerRoundTrips" ColumnName="ServerRoundTrips" />
 <ScalarProperty Name="SelectRowsRead" ColumnName="SelectRowsRead" />
 <ScalarProperty Name="StatementCacheHits"

ColumnName="StatementCacheHits" />
 <ScalarProperty Name="StatementCacheMisses"

ColumnName="StatementCacheMisses" />
 <ScalarProperty Name="StatementCacheReplaces"

ColumnName="StatementCacheReplaces" />
 <ScalarProperty Name="StatementCacheTopHit1"

ColumnName="StatementCacheTopHit1" />
 <ScalarProperty Name="StatementCacheTopHit2"

ColumnName="StatementCacheTopHit2" />
 <ScalarProperty Name="StatementCacheTopHit3"

ColumnName="StatementCacheTopHit3" />
 <ScalarProperty Name="PacketsReceivedPerSocketRead"

ColumnName="PacketsReceivedPerSocketRead" />
 <ScalarProperty Name="BytesReceivedPerSocketRead"

ColumnName="BytesReceivedPerSocketRead" />
 <ScalarProperty Name="PacketsSentPerSocketWrite"

ColumnName="PacketsSentPerSocketWrite" />
 <ScalarProperty Name="BytesSentPerSocketWrite"

ColumnName="BytesSentPerSocketWrite" />
 <ScalarProperty Name="PacketsSentPerRoundTrip"

ColumnName="PacketsSentPerRoundTrip" />
 <ScalarProperty Name="PacketsReceivedPerRoundTrip"

ColumnName="PacketsReceivedPerRoundTrip" />
 <ScalarProperty Name="BytesSentPerRoundTrip"

ColumnName="BytesSentPerRoundTrip" />
 <ScalarProperty Name="BytesReceivedPerRoundTrip"

ColumnName="BytesReceivedPerRoundTrip" />
 <ScalarProperty Name="Id" ColumnName="Id" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>
 <EntitySetMapping Name="PsqlStatus">
 <EntityTypeMapping TypeName="EntityModel.PsqlStatus">
 <MappingFragment StoreEntitySet="Status">
 <ScalarProperty Name="ServerVersion" ColumnName="ServerVersion" />
 <ScalarProperty Name="Host" ColumnName="Host" />
 <ScalarProperty Name="Port" ColumnName="Port" />
 <ScalarProperty Name="DatabaseName" ColumnName="DatabaseName" />
 <ScalarProperty Name="SessionId" ColumnName="SessionId" />
 <ScalarProperty Name="StatisticsEnabled" ColumnName="StatisticsEnabled"

/>
 <ScalarProperty Name="Id" ColumnName="Id" />
 </MappingFragment>
 </EntityTypeMapping>
 </EntitySetMapping>

219

 <FunctionImportMapping FunctionImportName="RetrieveStatistics"
FunctionName="EntityModel.Store.RetrieveStatistics" />

 <FunctionImportMapping FunctionImportName="EnableStatistics"
FunctionName="EntityModel.Store.EnableStatistics" />

 <FunctionImportMapping FunctionImportName="DisableStatistics"
FunctionName="EntityModel.Store.DisableStatistics" />

 <FunctionImportMapping FunctionImportName="ResetStatistics"
FunctionName="EntityModel.Store.ResetStatistics" />

 <FunctionImportMapping FunctionImportName="Reauthenticate"
FunctionName="EntityModel.Store.Reauthenticate" />

 </EntityContainerMapping>
</Mapping>

Breaking the model down further, a CSDL model is established at the conceptual layer – this is what is
exposed to the EDM.
<?xml version="1.0" encoding="utf-8"?>
<Schema Namespace="EntityModel" Alias="Self"

xmlns="http://schemas.microsoft.com/ado/2006/04/edm">
 <EntityContainer Name="SampleContainer">
 <EntitySet Name="PsqlConnectionStatistics"

EntityType="EntityModel.PsqlConnectionStatistics" />
 <EntitySet Name="PsqlStatus" EntityType="EntityModel.PsqlStatus" />
 <FunctionImport Name="RetrieveStatistics" EntitySet="PsqlConnectionStatistics"

ReturnType="Collection(EntityModel.PsqlConnectionStatistics)" />
 <FunctionImport Name="EnableStatistics" EntitySet="PsqlStatus"

ReturnType="Collection(EntityModel.PsqlStatus)" />
 <FunctionImport Name="DisableStatistics" EntitySet="PsqlStatus"

ReturnType="Collection(EntityModel.PsqlStatus)" />
 <FunctionImport Name="ResetStatistics" EntitySet="PsqlStatus"

ReturnType="Collection(EntityModel.PsqlStatus)" />
 <FunctionImport Name="Reauthenticate" EntitySet="PsqlStatus"

ReturnType="Collection(EntityModel.PsqlStatus)">
 <Parameter Name="CurrentUser" Type="String" />
 <Parameter Name="CurrentPassword" Type="String" />
 <Parameter Name="CurrentUserAffinityTimeout" Type="Int32" />
 </FunctionImport>
 </EntityContainer>
 <EntityType Name="PsqlConnectionStatistics">
 <Key>
 <PropertyRef Name="Id" />
 </Key>
 <Property Name="SocketReadTime" Type="Double" Nullable="false" />
 <Property Name="MaxSocketReadTime" Type="Double" Nullable="false" />
 <Property Name="SocketReads" Type="Int64" Nullable="false" />
 <Property Name="BytesReceived" Type="Int64" Nullable="false" />
 <Property Name="MaxBytesPerSocketRead" Type="Int64" Nullable="false" />
 <Property Name="SocketWriteTime" Type="Double" Nullable="false" />
 <Property Name="MaxSocketWriteTime" Type="Double" Nullable="false" />
 <Property Name="SocketWrites" Type="Int64" Nullable="false" />
 <Property Name="BytesSent" Type="Int64" Nullable="false" />
 <Property Name="MaxBytesPerSocketWrite" Type="Int64" Nullable="false" />
 <Property Name="TimeToDisposeOfUnreadRows" Type="Double" Nullable="false" />
 <Property Name="SocketReadsToDisposeUnreadRows" Type="Int64" Nullable="false"

/>
 <Property Name="BytesRecvToDisposeUnreadRows" Type="Int64" Nullable="false" />
 <Property Name="IDUCount" Type="Int64" Nullable="false" />
 <Property Name="SelectCount" Type="Int64" Nullable="false" />
 <Property Name="StoredProcedureCount" Type="Int64" Nullable="false" />

220

 <Property Name="DDLCount" Type="Int64" Nullable="false" />
 <Property Name="PacketsReceived" Type="Int64" Nullable="false" />
 <Property Name="PacketsSent" Type="Int64" Nullable="false" />
 <Property Name="ServerRoundTrips" Type="Int64" Nullable="false" />
 <Property Name="SelectRowsRead" Type="Int64" Nullable="false" />
 <Property Name="StatementCacheHits" Type="Int64" Nullable="false" />
 <Property Name="StatementCacheMisses" Type="Int64" Nullable="false" />
 <Property Name="StatementCacheReplaces" Type="Int64" Nullable="false" />
 <Property Name="StatementCacheTopHit1" Type="Int64" Nullable="false" />
 <Property Name="StatementCacheTopHit2" Type="Int64" Nullable="false" />
 <Property Name="StatementCacheTopHit3" Type="Int64" Nullable="false" />
 <Property Name="PacketsReceivedPerSocketRead" Type="Double" Nullable="false" />
 <Property Name="BytesReceivedPerSocketRead" Type="Double" Nullable="false" />
 <Property Name="PacketsSentPerSocketWrite" Type="Double" Nullable="false" />
 <Property Name="BytesSentPerSocketWrite" Type="Double" Nullable="false" />
 <Property Name="PacketsSentPerRoundTrip" Type="Double" Nullable="false" />
 <Property Name="PacketsReceivedPerRoundTrip" Type="Double" Nullable="false" />
 <Property Name="BytesSentPerRoundTrip" Type="Double" Nullable="false" />
 <Property Name="BytesReceivedPerRoundTrip" Type="Double" Nullable="false" />
 <Property Name="Id" Type="Int32" Nullable="false" />
 </EntityType>
 <EntityType Name="PsqlStatus">
 <Key>
 <PropertyRef Name="Id" />
 </Key>
 <Property Name="ServerVersion" Type="String" Nullable="false" />
 <Property Name="Host" Type="String" Nullable="false" />
 <Property Name="Port" Type="Int32" Nullable="false" />
 <Property Name="DatabaseName" Type="String" Nullable="false" />
 <Property Name="SessionId" Type="Int32" Nullable="false" />
 <Property Name="StatisticsEnabled" Type="Boolean" Nullable="false" />
 <Property Name="Id" Type="Int32" Nullable="false" />
 </EntityType>
</Schema>

221

a p p e n d i x

GBulk Load Configuration Files

The following topics describe the configuration files used by Zen Bulk Load.

 Sample Bulk Data Configuration File
 XML Schema Definition for a Bulk Data Configuration File

See Using Zen Bulk Load for more information about this feature.

222

Sample Bulk Data Configuration File

The bulk format configuration file is produced when either a table or a DataReader is exported
(unloaded) using the BulkCopy and BulkLoad operation.
<?xml version="1.0"?>
<!--
Sample DDL

CREATE_STMT = CREATE TABLE GTABLE (CHARCOL char(10),VCHARCOL varchar2(10), \

DECIMALCOL number(15,5), NUMERICCOL decimal(15,5), SMALLCOL number(38), \

INTEGERCOL integer, REALCOL number, \

FLOATCOL float, DOUBLECOL number, LVCOL clob, \

BITCOL number(1),TINYINTCOL number(19), BIGINTCOL number(38), BINCOL raw(10), \

VARBINCOL raw(10), LVARBINCOL blob, DATECOL date, \

TIMECOL date, TSCOL date) -->

<table codepage="UTF-16" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file:///c:/Documents and Settings/jbruce/My
Documents/Current Specs/BulkData.xsd">

 <row>
 <column codepage="UTF-16" datatype="CHAR" length="10"

nullable="true">CHARCOL</column>
 <column codepage="UTF-16" datatype="LONGVARCHAR" length="10">VCHARCOL</column>
 <column codepage="UTF-16" datatype="DECIMAL" precision="15"

scale="5">DECIMALCOL</column>
 <column codepage="UTF-16" datatype="DECIMAL" precision="15"

scale="5">NUMERICOL</column>
 <column codepage="UTF-16" datatype="DECIMAL" precision="38">SMALLCOL</column>
 <column codepage="UTF-16" datatype="INTEGER">INTEGERCOL</column>
 <column codepage="UTF-16" datatype="SINGLEPRECISION"">REALCOL</column>

 <!-More definitions can follow here -->
 </row>
</table>

223

XML Schema Definition for a Bulk Data Configuration File

The bulk configuration XML schema governs bulk configuration files. The bulk configuration files in
turn govern bulk load data files that are processed by Zen Bulk Load.

This schema provides a foundation for any third-party functionality to be built using this standard.
Custom applications or tools that manage large amounts of data can employ this schema as a loosely
coupled Zen Bulk Load across ODBC, JDBC, and ADO.NET APIs and across multiple platforms.

If you want to generate CSV data that can be consumed by Zen Bulk Load, you must supply an XML
Schema for your XML configuration file.

Each bulk operation generates an XML configuration file in UTF-8 format that describes the bulk data
file produced. If the bulk data file cannot be created or does not comply with the schema described in
the XML configuration file, an exception is returned.

224

225

a p p e n d i x

HIANA Code Page Mappings

This following table maps the most widely used IBM code pages to IANA code page names.

IBM Number IANA Code Page Name

37 IBM037

38 IBM038

290 IBM290

300 IBM300

301 IBM301

500 IBM500

813 ISO_8859-7:1987

819 ISO_8859-1:1987

857 IBM857

860 IBM860

861 IBM861

897 IBM897

932 IBM-942_P120-2000

939 IBM-939

943 Windows-932-2000 (for Windows clients)

943 IBM-943_P14A-2000 (for UNIX clients)

950 Big5

1200 UTF-16

1208 UTF-8

1251 Windows-1251

1252 Windows-1252

4396 IBM-930

5025 IBM5025

5035 IBM5035

5297 UTF-16

226

5304 UTF-8

13488 UTF-16BE

IBM Number IANA Code Page Name

227

a p p e n d i x

IGlossary

.NET Architecture Microsoft defines Microsoft .NET as a set of software technologies for
connecting information, people, systems, and devices. To optimize
software integration, the .NET Framework uses small, discrete building-
block applications called Web services that connect to each other as well as
to other, larger applications over the Internet.

The .NET Framework has two key parts:

 ASP.NET is an environment for building smart client applications
(Windows Forms), and a loosely coupled data access subsystem
(ADO.NET).

 The common language runtime (CLR) is the core runtime engine for
executing applications in the .NET Framework. You can think of the
CLR as a safe area – a "sandbox" – inside of which your .NET code runs.
Code that runs in the CLR is called managed code.

ADO.NET The data access component for the .NET Framework. ADO.NET is made
of a set of classes that are used for connecting to a database, providing
access to relational data, XML, and application data, and retrieving results.

ADO.NET Entity
Framework

An object-relational mapping (ORM) framework for the .NET Framework.
Developers can use it to create data access applications by programming
against a conceptual application model instead of programming directly
against a relational storage schema. This model allows developers to
decrease the amount of code that must be written and maintained in data-
centric applications

assembly A compiled representation of one or more classes. Each assembly is self-
contained, that is, the assembly includes the metadata about the assembly
as a whole. Assemblies can be private or shared.

 Private assemblies, which are used by a limited number of applications,
are placed in the application folder or one of its subfolders. For
example, even if the client has two different applications that call a
private assembly named formulas, each client application loads the
correct assembly.

 Shared assemblies, which are available to multiple client applications,
are placed in the Global Assembly Cache (GAC). Each shared assembly
is assigned a strong name to handle name and version conflicts.

bulk load Rows from the database client are sent to the database server in a
continuous stream instead of in numerous smaller packets of data.
Performance improves because far fewer network round trips are required.

228

client load
balancing

A mechanism that distributes new connections in a computing
environment so that no one server is overwhelmed with connection
requests.

code access
security (CAS)

A mechanism provided by the common language runtime through which
managed code is granted permissions by security policy; permissions are
enforced, limiting the operations that the code will be allowed to perform.

common language
runtime (CLR)

The common language runtime (CLR) is the core runtime engine in the
Microsoft .NET Framework. The CLR supplies services such as cross-
language integration, code access security, object lifetime management,
and debugging support. Applications that run in the CLR are sometimes
said to be running "in the sandbox."

connection
failover

A mechanism that allows an application to connect to an alternate, or
backup, database server if the primary database server is unavailable, for
example, because of a hardware failure or traffic overload.

connection
pooling

The process by which connections can be reused rather than creating a new
one every time the data provider needs to establish a connection to the
underlying database.

connection retry Connection retry defines the number of times the data provider attempts
to connect to the primary and, if configured, alternate database servers
after the initial unsuccessful connection attempt. Connection retry can be
an important strategy for system recovery.

Data Access
Application Block
(DAAB)

A pre-defined code block that provides access to the most often used
ADO.NET data access features. Applications can use the application block
to pass data through application layers, and submit changed data back to
the database.

destination table In a Zen Bulk Load operation, the table on the database server into which
the data is copied.

entity An entity is an instance of an EntityType. It has a unique identity,
independent existence, and forms the operational unit of consistency. An
EntityType defines the principal data objects about which information has
to be managed such as person, places, things or activities relevant to the
application.

global assembly
cache (GAC)

The part of the assembly cache that stores assemblies specifically installed
to be shared by many applications on the computer. Applications deployed
in the global assembly cache must have a strong name to handle name and
version conflicts.

isolation level A particular locking strategy employed in the database system to improve
data consistency.The higher the isolation level number, the more complex

229

the locking strategy behind it. The isolation level provided by the database
determines how a transaction handles data consistency.

The American National Standards Institute (ANSI) defines four isolation
levels:

 Read uncommitted (0)
 Read committed (1)
 Repeatable read (2)
 Serializable (3)

load balancing See client load balancing.

locking level A database operation that restricts a user from accessing a table or record.
Locking is used in situations more than one user might try to use the same
table or the same time. By locking the table or record, the system that only
one user at a time can affect the data.

Logging
Application Block
(LAB)

A component of the Microsoft Enterprise Libraries that simplifies the
implementation of common logging functions. Developers can use the
Logging Block to write information to a variety of locations, such as the
event log, an e-mail message, or a database.

managed code Code executed and managed by the .NET Framework, specifically by the
CLR. Managed code must supply the information necessary for the CLR to
provide services such as memory management and code access security.

namespace A logical naming scheme for grouping related types. The .NET Framework
uses a hierarchical naming scheme for grouping types into logical
categories of related functionality, such as the ASP.NET technology or
remoting functionality. Design tools can use namespaces to make it easier
for developers to browse and reference types in their code. A single
assembly can contain types whose hierarchical names have different
namespace roots, and a logical namespace root can span multiple
assemblies. In the .NET Framework, a namespace is a logical design-time
naming convenience, whereas an assembly establishes the name scope for
types at run time.

Performance
Monitor

A tool in the Windows SDK that identifies areas in which performance
problems exist. You can use Performance Monitor to identify the number
and frequency of CLR exceptions in your applications. The Performance
Monitor (PerfMon) and VS Performance Monitor (VSPerfMon) utilities
also allow you to record application parameters and review the results as a
report or graph.

stream An abstraction of a sequence of binary or text data. The Stream class and
its derived classes provide a generic view of these different types of input
and output.

230

schema collection Closely related schemas that can be handled more efficiently when grouped
together. Database schema elements such as tables and columns are
exposed through schema collections.

strong name A name that consists of an assembly's text name, version number, and
culture information (if provided), with a public key and a digital signature
generated over the assembly. Assemblies with the same strong name should
be identical.

unmanaged code Code that is executed directly by the operating system, outside of the CLR.
Unmanaged code includes all code written before the .NET Framework
was introduced. Because it outside the .NET environment, unmanaged
code cannot make use of any .NET managed facilities.

	Data Providers for ADO.NET
	About This Document
	What Are the Zen Data Providers?
	Using This Guide
	Typographical Conventions

	Quick Start
	ADO.NET Data Providers Installed with Zen
	Supported .NET Framework Versions

	Zen ADO.NET Data Providers Available with SDK Download
	Defining Basic Connection Strings
	Notes

	Connecting to a Database
	Example: Using the Provider-Specific Objects
	Example: Using the Common Programming Model
	Example: Using the Zen Common Assembly

	Using the Zen ADO.NET Entity Framework Data Provider

	Using the Data Providers
	About the Data Providers
	Using Connection Strings
	Guidelines
	Using the Zen Performance Tuning Wizard

	Stored Procedures
	Using IP Addresses
	Transaction Support
	Using Local Transactions

	Thread Support
	Unicode Support
	Isolation Levels
	SQL Escape Sequences
	Event Handling
	Error Handling
	Using .NET Objects
	Developing Applications for .NET

	Advanced Features
	Using Connection Pooling
	Creating a Connection Pool
	Adding Connections to a Pool
	Removing Connections from a Pool
	Handling Dead Connection in a Pool
	Tracking Connection Pool Performance

	Using Statement Caching
	Enabling Statement Caching
	Choosing a Statement Caching Strategy

	Using Connection Failover
	Using Client Load Balancing
	Using Connection Retry
	Configuring Connection Failover
	Setting Security
	Code Access Permissions
	Security Attributes

	Using Zen Bulk Load
	Use Scenarios for Zen Bulk Load
	Zen Common Assembly
	Bulk Load Data File
	Example

	Bulk Load Configuration File
	Example

	Determining the Bulk Load Protocol
	Character Set Conversions
	External Overflow File
	Bulk Copy Operations and Transactions

	Using Diagnostic Features
	Tracing Method Calls
	Using Environment Variables
	Notes

	Using Static Methods

	PerfMon Support
	Analyzing Performance With Connection Statistics
	Enabling and Retrieving Statistical Items

	The ADO.NET Data Providers
	About Zen ADO.NET Data Providers
	Namespace
	C#
	Visual Basic

	Assembly Name

	Using Connection Strings with the Zen ADO.NET Data Provider
	Constructing a Connection String

	Performance Considerations
	Connection String Options that Affect Performance
	Properties that Affect Performance

	Data Types
	Mapping Zen Data Types to .NET Framework Data Types
	Mapping Parameter Data Types
	Data Types Supported with Stream Objects

	Using Streams as Input to Long Data Parameters
	Parameter Markers
	Parameter Arrays

	Zen ADO.NET Core Data Providers
	About Zen ADO.NET Core Data Providers
	Creating an Application in Visual Studio Using Zen ADO.Net Core DLL
	Creating a UWP Application in Visual Studio Using Zen ADO.Net Core Data Provider
	ADO.NET Data Provider Features Missing in Zen ADO.NET Core Data Provider

	Zen ADO.NET Entity Framework Data Providers
	About Zen ADO.NET Entity Framework Data Providers
	Namespace
	Assembly Names

	Configuring Entity Framework 6.1
	Configuration File Registration
	Code-Based Registration
	Using Multiple Entity Framework Versions Against the Same Database

	Using Connection Strings with the Zen ADO.NET Entity Framework Data Provider
	Defining Connection String Values in Server Explorer
	Changes in Default Values for Connection String Options

	Code First and Model First Support
	Handling Long Identifier Names

	Using Code First Migrations with the ADO.NET Entity Framework
	Using Enumerations with the ADO.NET Entity Framework
	Mapping Data Types and Functions
	Type Mapping for Database First
	Type Mapping for Model First
	Type Mapping for Code First
	Mapping EDM Canonical Functions to Zen Functions
	Aggregate Canonical Functions
	Math Canonical Functions
	Date and Time Canonical Functions
	Bitwise Canonical Functions
	String Canonical Functions
	Other Canonical Functions

	Extending Entity Framework Functionality
	Enhancing Entity Framework Performance
	Limiting the Size of XML Schema Files

	Using Stored Procedures with the ADO.NET Entity Framework
	Providing Functionality
	Using Overloaded Stored Procedures

	Using .NET Objects
	Creating a Model

	Upgrading Entity Framework 5 Applications to Entity Framework 6.1
	For More Information

	Zen ADO.NET Entity Framework Core Data Providers
	About Zen ADO.NET Entity Framework Core Data Providers
	Namespace
	Assembly Names

	Configuring the Zen ADO.NET Entity Framework Core Data Provider
	Using Connection Strings with the Zen ADO.NET Entity Framework Core Data Provider
	Changes in Default Values for Connection String Options

	Code First Support
	Handling Long Identifier Names

	Using Code First Migrations with the ADO.NET Entity Framework Core
	Using Reverse Engineering (Scaffolding)
	Type Mapping for Code First
	Mapping EDM Canonical Functions to Zen Functions
	Aggregate Canonical Functions
	Math Canonical Functions
	Date and Time Canonical Functions
	String Canonical Functions
	Other Canonical Functions

	Extending Entity Framework Functionality
	Using Stored Procedures with the ADO.NET Entity Framework Core
	Upgrading an Application from Entity Framework 6.x to Entity Framework Core
	Limitations

	Using Zen Data Providers in Visual Studio
	Adding Connections
	Adding Connections in Server Explorer
	Advanced
	Connection Pooling
	Failover
	Performance
	Schema Information
	Security
	Standard Connection
	Tracing

	Adding Connections with the Data Source Configuration Wizard

	Using the Zen Performance Tuning Wizard
	Using Provider-Specific Templates
	Creating a New Project
	Adding a Template to an Existing Project

	Using the Zen Visual Studio Wizards
	Creating Tables with the Add Table Wizard
	Creating Views with the Add View Wizard

	Adding Components from the Toolbox
	Data Provider Integration Scenario

	Using the Microsoft Enterprise Libraries
	Data Access Application Blocks
	When Should You Use the DAAB?
	Should You Use Generic or Database-specific Classes?
	Configuring the DAAB
	Adding a New DAAB Entry
	Adding the Data Access Application Block to Your Application

	Using the DAAB in Application Code

	Logging Application Blocks
	When Should You Use the LAB?
	Configuring the LAB
	Adding a New Logging Application Block Entry
	Using the LAB in Application Code

	Additional Resources

	.NET Objects Supported
	.NET Base Classes
	Data Provider-Specific Classes
	PsqlBulkCopy
	PsqlBulkCopyColumnMapping
	PsqlBulkCopyColumnMappingCollection
	PsqlCommand Object
	PsqlCommandBuilder Object
	PsqlConnection Object
	PsqlConnectionStringBuilder Object
	PsqlCredential Object
	PsqlDataAdapter Object
	PsqlDataReader Object
	PsqlError Object
	PsqlErrorCollection Object
	PsqlException Object
	PsqlFactory Object
	PsqlInfoMessageEventArgs Object
	PsqlParameter Object
	PsqlParameterCollection Object
	PsqlTrace Object
	PsqlTransaction Object

	Zen Common Assembly Classes
	CsvDataReader
	CsvDataWriter
	DbBulkCopy
	DbBulkCopyColumnMapping
	DbBulkCopyColumnMappingCollection

	Getting Schema Information
	Columns Returned by the GetSchemaTable Method
	Retrieving Schema Metadata with the GetSchema Method
	MetaDataCollections Schema Collections
	DataSourceInformation Schema Collection
	DataTypes Collection
	ReservedWords Collection
	Restrictions Collection

	Additional Schema Collections
	Columns Schema Collection
	ForeignKeys Schema Collection
	Indexes Schema Collection
	PrimaryKeys Schema Collection
	ProcedureParameters Schema Collection
	Procedures Schema Collection
	TablePrivileges Schema Collection
	Tables Schema Collection
	Views Schema Collection

	SQL Escape Sequences for .NET
	Date, Time, and Timestamp Escape Sequences
	Example

	Scalar Functions
	Example

	Outer Join Escape Sequences
	Example

	Locking and Isolation Levels
	Locking
	Isolation Levels
	Locking Modes and Levels

	Designing .NET Applications for Performance Optimization
	Retrieving Data
	Retrieving Long Data
	Reducing the Size of Data Retrieved
	Using CommandBuilder Objects
	Choosing the Right Data Type

	Selecting .NET Objects and Methods
	Using Parameter Markers as Arguments to Stored Procedures

	Designing .NET Applications
	Managing Connections
	Opening and Closing Connections
	Using Statement Caching
	Using Commands Multiple Times
	Using Native Managed Providers

	Updating Data
	Using the Disconnected DataSet
	Synchronizing Changes Back to the Data Source

	Using an .edmx File
	Code Examples

	Bulk Load Configuration Files
	Sample Bulk Data Configuration File
	XML Schema Definition for a Bulk Data Configuration File

	IANA Code Page Mappings
	Glossary
	.NET Architecture
	ADO.NET
	ADO.NET Entity Framework
	assembly
	bulk load
	client load balancing
	code access security (CAS)
	common language runtime (CLR)
	connection failover
	connection pooling
	connection retry
	Data Access Application Block (DAAB)
	destination table
	entity
	global assembly cache (GAC)
	isolation level
	load balancing
	locking level
	Logging Application Block (LAB)
	managed code
	namespace
	Performance Monitor
	stream
	schema collection
	strong name
	unmanaged code

