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Previously...

• PGConf India 2025, POSETTE 2025: "Hacking Postgres Executor for 
Performance”

• "Batching could be the foundation for efficient OLAP execution in Postgres”
• Amortize per-tuple overhead across many tuples
• Path toward vectorized execution

• So I went and tried to build it.
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Agenda

1. Why batching matters - CPU overhead in row-at-a-time
2. The Volcano model and its limits
3. Batching approaches - selective vs batch-native
4. One approach: prototype and results
5. Open questions and future work
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1
Why Batching
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PART 1: WHY BATCHING

Per-Tuple Overhead on Modern CPUs

• Indirect Call Overhead
• node->ExecProcNode(node) target changes as execution bounces 

between nodes,  table AM callbacks add more indirection
• Data-Dependent Branches

• Qual pass/fail depends on tuple data - CPU mispredicts ~50% of the 
time at 50% selectivity

• Cache Inefficiency
• Bouncing between Agg code, scan code, heap AM code pollutes L1 

instruction cache
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2
The Volcano Model
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PART 2: VOLCANO MODEL

The Volcano Iterator Model

• Postgres's executor processes one tuple at a time - a design inherited from 
the classic iterator model that favors modularity but adds significant per-
tuple overhead.
TupleTableSlot *ExecProcNode(node)
{

slot = ExecProcNode(child);
<do things>
return slot;

}

• Strengths:
• Modular: nodes compose freely. Simple: each node is self-contained. 

Memory-efficient: one tuple in flight.
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PART 2: VOLCANO MODEL

The Volcano Iterator Model Bottleneck

• The iterator model remains a bottleneck for analytic workloads, even as 
I/O has gotten faster.

• OLTP Workloads
• ~100 tuples per query. I/O and locking dominate. Volcano works well.

• OLAP Workloads
• 10M+ tuples per query. Data in memory or on fast NVMe. CPU 

becomes the limiting factor.
• Per-tuple overhead limits instruction and cache efficiency even in simple 

scans.
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PART 2: VOLCANO MODEL

Recent Improvements

• Recent improvements have reduced overhead in key paths, but the 
iterator model remains a bottleneck:
• Opcode-based expression evaluation (v10+)
• JIT compilation (v11+)
• Read streams for async I/O (v17+)
• Faster tuple deforming (v18)
• Scan inlining (v18)

• These reduce per-tuple cost, but we still pay it for every tuple.
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3
What is Batching
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PART 3: BATCHING

What is Batching?

• Process multiple tuples together instead of one at a time. Amortize fixed 
costs across the batch.

// Row-at-a-time
for each tuple
{

call_overhead();
process();

}

// Batched
call_overhead();
for each tuple
{

process();
}



12

PART 3: BATCHING

Batching Already Exists in Postgres

• The storage layer already thinks in batches. It is the executor that is behind:
• Heap Pages

• Each 8KB page holds ~40-100 tuples. We already fetch pages, not 
individual tuples.

• Index Leaf Pages
• B-tree leaves contain many TIDs. Index prefetching uses leaf pages as 

batches.
• COPY / Bulk Insert

• Multi-insert, batched WAL writes. Already batch-optimized.
• So, storage returns batches, but executor unwraps them one tuple at a time
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PART 3: BATCHING

Two Approaches to Batching

• Option A: Batch-Native Executor
• Build separate vectorized executor. All nodes work on column batches. 

Think DuckDB, Velox.
• Pros: maximum gains.
• Cons: years of work, two executors to maintain.

• Option B: Selective Batching (this talk)
• Extend existing executor incrementally. Add batch mode to nodes that 

benefit most. Preserve row semantics.
• Pros: incremental changes, one codebase.
• Cons: smaller gains than full vectorization.
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PART 3: BATCHING

PGConf.dev 2025 Unconference: 3 Approaches

• Community discussion identified three possible directions (not mutually exclusive):
• Approach 1: Batching Inside SeqScan

• Loop inside ExecSeqScan fetches multiple tuples before returning. Low 
disruption.

• Approach 2: Specialized Executor
• Separate executor for batch-friendly patterns (SeqScan to Agg). Medium 

disruption.
• Approach 3: General Batch Infrastructure

• ExecProcNodeBatch() + TupleBatch abstraction. Extensible to all nodes.
• This patch: Combines 1 and 3. Focused on SeqScan, introduces 

TupleBatch.



15

4
One Approach

Design, Implementation, and Results
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PART 4: ONE APPROACH

Core Abstractions

• New batch-oriented TableAmRoutine callbacks

+/* ------------------------------------------------------------------------

+ * Batched scan support
+ * ------------------------------------------------------------------------
+ */

+
+ void  *(*scan_begin_batch)(TableScanDesc sscan, int maxitems);
+ int    (*scan_getnextbatch)(TableScanDesc sscan, void *am_batch,

+ ScanDirection dir);
+ void   (*scan_end_batch)(TableScanDesc sscan, void *am_batch);
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PART 4: ONE APPROACH

Core Abstractions

• TupleBatch
• Keeps data in native format, supports columnar access, enables ops 

like count += ntuples.

struct TupleBatch
{

void *am_payload;    // HeapBatch, etc.
TupleBatchOps *ops;  // heapam_materialize_all(), etc.
int ntuples;
int max_tuples;

}
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PART 4: ONE APPROACH

Core Abstractions

• New batched node execution function

• For example, SeqScanBatch()

TupleBatch *ExecProcNodeBatch(PlanState *node)



Per-tuple (current)

ExecProcNode()

ExecSeqScan()

ExecScanExtended() return TupleTableSlot

SeqNext()

table_scan_getnextslot()

heap_getnextslot()

heapgettup_pagemode()

× 10M times

Per-batch (with patch)

ExecProcNode()

ExecSeqScan()

ExecScanExtendedBatch() returns TupleBatch

SeqNextBatch()

table_scan_getnextbatch()

heap_getnextbatch()

heapgettup_pagemode_batch()

× 156K times (for 10M rows)

PART 4: ONE APPROACH

Batched Scan Execution Flow

19
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PART 4: ONE APPROACH

Batched Qual Evaluation

• Adapt expression evaluation to process WHERE clauses across batches:
• Old: per-tuple ExecQual()

• New: ExecQualBatch() with bitmask
• New batch-aware ExprEvalOps for 2-arg OpExpr and NullTest

for each tuple:
result = ExecQual(qual, slot)

results_bitmask = ExecQualBatch(qual, batch)

• Constraints:
• Only simple AND-trees of supported expressions
• Only leakproof operators (security barrier safety)
• Falls back to per-tuple for more complex quals
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PART 4: ONE APPROACH

Batched Agg Execution Flow

• Example: SELECT count(*) FROM t

1. Agg calls ExecProcNodeBatch(SeqScan)
2. SeqScan calls scan_getnextbatch(heap, batch, 64)
3. Heap TAM fills batch with ~40 tuples from current page
4. SeqScan returns batch to Agg
5. Agg processes all tuples in tight loop or just does

count += batch->ntuples
6. Repeat until scan exhausted

• Before: Agg calls SeqScan 10M times, SeqScan calls heap 10M times
• After: Agg calls SeqScan ~156K times, SeqScan calls heap ~156K times
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PART 4: ONE APPROACH

Microbenchmark Results: Batched Scan

• Fully cached, batch size 64. Comparing master vs patched:
https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com

Scan batching (0001-0003): ~24%. Add qual batching (0004): up to 42%.

https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com
https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com
https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com
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PART 4: ONE APPROACH

Microbenchmark Results: Batched Scan + Qual

• Fully cached, batch size 64. Comparing master vs patched:
https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com

Scan batching (0001-0003): ~24%. Add qual batching (0004): up to 42%.

https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com
https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com
https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com
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PART 4: ONE APPROACH

Microbenchmark Results: Batched Scan + Agg

• Fully cached, batch size 64. Comparing master vs patched:
https://postgr.es/m/CA+HiwqFfAY_ZFqN8wcAEMw71T9hM_kA8UtyHaZZEZtuT3UyogA@mail.gmail.com

Scan batching (0001-0003): ~24%. Add qual batching (0004): up to 42%.

https://postgr.es/m/CA+HiwqFfAY_ZFqN8wcAEMw71T9hM_kA8UtyHaZZEZtuT3UyogA@mail.gmail.com
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PART 4: ONE APPROACH

Microbenchmark Results: Batched Scan + Qual + Agg

• Fully cached, batch size 64. Comparing master vs patched:
https://postgr.es/m/CA+HiwqFfAY_ZFqN8wcAEMw71T9hM_kA8UtyHaZZEZtuT3UyogA@mail.gmail.com

Scan batching (0001-0003): ~24%. Add qual batching (0004): up to 42%.

https://postgr.es/m/CA+HiwqFfAY_ZFqN8wcAEMw71T9hM_kA8UtyHaZZEZtuT3UyogA@mail.gmail.com


Patch Status
• Target for v19

• Table AM batch API + heapam: HeapBatch, scan_begin / getnext / end_batch

• SeqScan batching + TupleBatch: inslots[], materialize_all, executor_batch_rows
GUC

• In development (shows potential)

• Batched qual evaluation: new EEOPs, ExecQualBatch(), separate interpreter 
(ExecInterpQualBatch()), WIP.

• Future work

• ExecProcNodeBatch(): node interface returning batches

• Aggregate batching: use ExecProcNodeBatch(), batched agg transitions

PART 4: ONE APPROACH
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PART 4: ONE APPROACH

Hard Questions
• Optimal Batch Size

• Larger batches = better amortization but more memory. 64 tuples × many columns ×
deep plans = pressure on L2/L3. Currently a GUC; needs tuning.

• Optimizer Involvement
• Should planner decide batch vs row mode? Cost model changes? For now: executor 

decides at runtime based on node capabilities.
• LIMIT Queries

• LIMIT 1 with batch size 64 = wasted work. Solution: adaptive batch size ramp-up.
• Mode Mixing

• Parent expects rows, child produces batches? Need adapter logic or graceful fallback.
• No Regressions

• Must not slow OLTP. Batching is opt-in per node; nodes that don't benefit simply don't 
implement it.

• The ability to turn batching off with zero overhead of the new code.
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PART 5: FUTURE

Future Work
• Near Term

• Add batch support to other Scan nodes, Hash/Sort, and TPC-H benchmarks
• Medium Term

• Columnar TAM integration (late materialization), SIMD vectorization, batch-native 
functions

• Longer Term
• Batch-aware joins (HashJoin probe batching), projection batching, planner cost model 

for batch mode
• Long Term

• Aggregate batching via ExecProcNodeBatch() - Agg pulls batches from child, batched 
transitions for sum/count/avg

Enable Postgres to compete on analytics while preserving OLTP strengths
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Key Takeaways

• The iterator model remains a bottleneck for analytic workloads - per-tuple 
overhead limits efficiency even in simple scans

• This prototype enables executor nodes to operate on batches of tuples 
instead of individual slots

• ExecProcNodeBatch() API and TupleBatch abstraction preserve Postgres's 
row-based semantics and plan structure

• Early results show meaningful improvements, paving the way for broader 
batch-aware execution
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Thank You!

Questions and Discussion

Patch Thread: pgsql-hackers "Batching in executor"

Thanks to Andres Freund, David Rowley, Tomas Vondra, Peter Geoghegan,
and everyone who provided feedback

FOSDEM PGDay 2026 - Brussels - January 30, 2026
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