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Previously...

* PGConfIndia 2025, POSETTE 2025: "Hacking Postgres Executor for
Performance”
e "Batching could be the foundation for efficient OLAP execution in Postgres”
* Amortize per-tuple overhead across many tuples
e Path toward vectorized execution
* Solwentand tried to build it.



Agenda

Why batching matters - CPU overhead in row-at-a-time
The Volcano model and its limits

Batching approaches - selective vs batch-native

One approach: prototype and results

Open questions and future work
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Why Batching



PART 1: WHY BATCHING

Per-Tuple Overhead on Modern CPUs

* Indirect Call Overhead
* node->ExecProcNode(node) target changes as execution bounces
between nodes, table AM callbacks add more indirection
e Data-Dependent Branches
* Qual pass/fail depends on tuple data - CPU mispredicts ~50% of the
time at 50% selectivity
e Cache Inefficiency
* Bouncing between Agg code, scan code, heap AM code pollutes L1
instruction cache
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The Volcano Model



PART 2: VOLCANO MODEL

The Volcano Iterator Model

* Postgres's executor processes one tuple at a time - a design inherited from
the classic iterator model that favors modularity but adds significant per-

tuple overhead.
TupleTableSlot *ExecProcNode(node)

{
slot = ExecProcNode(child);
<do things>
return slot;

}

e Strengths:
 Modular: nodes compose freely. Simple: each node is self-contained.

Memory-efficient: one tuple in flight.



PART 2: VOLCANO MODEL
The Volcano Iterator Model Bottleneck

* The iterator model remains a bottleneck for analytic workloads, even as
I/O has gotten faster.
* OLTP Workloads
e ~100 tuples per query. I/O and locking dominate. Volcano works well.
* OLAP Workloads
 10M+ tuples per query. Data in memory or on fast NVMe. CPU
becomes the limiting factor.
e Per-tuple overhead limits instruction and cache efficiency even in simple
scans.



PART 2: VOLCANO MODEL

Recent Improvements

 Recentimprovements have reduced overhead in key paths, but the
iterator model remains a bottleneck:
* Opcode-based expression evaluation (v10+)
e JIT compilation (v11+)
* Read streams for async 1/O (v17+)
e Faster tuple deforming (v18)
e Scaninlining (v18)
* These reduce per-tuple cost, but we still pay it for every tuple.
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What is Batching



PART 3: BATCHING

What is Batching?

* Process multiple tuples together instead of one at a time. Amortize fixed
costs across the batch.

// Row-at-a-time // Batched
for each tuple call_overhead();
{ for each tuple
call overhead(); {
process(); process();

¥ }
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PART 3: BATCHING

Batching Already Exists in Postgres

The storage layer already thinks in batches. It is the executor that is behind:
* Heap Pages
e Each 8KB page holds ~40-100 tuples. We already fetch pages, not
individual tuples.
* Index Leaf Pages
e B-tree leaves contain many TIDs. Index prefetching uses leaf pages as
batches.
 COPY / Bulk Insert
* Multi-insert, batched WAL writes. Already batch-optimized.
So, storage returns batches, but executor unwraps them one tuple at a time
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PART 3: BATCHING

Two Approaches to Batching

e Option A: Batch-Native Executor
* Build separate vectorized executor. All nodes work on column batches.
Think DuckDB, Velox.
* Pros: maximum gains.
e Cons: years of work, two executors to maintain.
e Option B: Selective Batching (this talk)
* Extend existing executor incrementally. Add batch mode to nodes that
benefit most. Preserve row semantics.
* Pros: incremental changes, one codebase.
e Cons: smaller gains than full vectorization.
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PART 3: BATCHING

PGConf.dev 2025 Unconference: 3 Approaches

 Community discussion identified three possible directions (not mutually exclusive):
e Approach 1: Batching Inside SeqScan
* Loop inside ExecSeqScan fetches multiple tuples before returning. Low
disruption.
e Approach 2: Specialized Executor
e Separate executor for batch-friendly patterns (SeqScan to Agg). Medium
disruption.
* Approach 3: General Batch Infrastructure
* ExecProcNodeBatch() + TupleBatch abstraction. Extensible to all nodes.
e This patch: Combines 1 and 3. Focused on SeqScan, introduces
TupleBatch.
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One Approach

Design, Implementation, and Results
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PART 4: ONE APPROACH

Core Abstractions

* New batch-oriented TableAmRoutine callbacks

g
+ * Batched scan support

P
+ */

+

+ void *(*scan_begin batch)(TableScanDesc sscan, int maxitems);

+ int (*scan_getnextbatch) (TableScanDesc sscan, void *am _batch,

+ ScanDirection dir);

+ void (*scan_end _batch)(TableScanDesc sscan, void *am _batch);

16



PART 4: ONE APPROACH

Core Abstractions

* TupleBatch

* Keeps data in native format, supports columnar access, enables ops
like count += ntuples.

struct TupleBatch

{
void *am payload; // HeapBatch, etc.

TupleBatchOps *ops; // heapam _materialize all(), etc.
int ntuples;
int max_tuples;
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PART 4: ONE APPROACH

Core Abstractions

e New batched node execution function

TupleBatch *ExecProcNodeBatch(PlanState *node)

* For example, SegScanBatch()
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PART 4: ONE APPROACH

Batched Scan Execution Flow

Per-tuple (current)

ExecProcNode()
ExecSegScan()
ExecScanExtended() return TupleTableSlot
SegNext()
table_scan_getnextslot()
heap_getnextslot()
heapgettup_pagemode()

X 10M times

Per-batch (with patch)

ExecProcNode()
ExecSeqgScan()
ExecScanExtendedBatch() returns TupleBatch
SegNextBatch()
table_scan_getnextbatch()
heap_getnextbatch()
heapgettup_pagemode_batch()

x 156K times (for 10M rows)
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PART 4: ONE APPROACH

Batched Qual Evaluation

* Adapt expression evaluation to process WHERE clauses across batches:

e Old: per-tuple ExecQual()

for each tuple:
result = ExecQual(qual, slot)

 New: ExecQualBatch() with bitmask
* New batch-aware ExprEvalOps for 2-arg OpExpr and NullTest

results bitmask = ExecQualBatch(qual, batch)

* Constraints:
* Only simple AND-trees of supported expressions
* Only leakproof operators (security barrier safety)
* Falls back to per-tuple for more complex quals
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PART 4: ONE APPROACH

Batched Agg Execution Flow

e Example: SELECT count(*) FROM t

. Agg calls ExecProcNodeBatch(SeqgScan)

. SeqgScan calls scan_getnextbatch(heap, batch, 64)

. Heap TAM fills batch with ~40 tuples from current page

. SegScan returns batch to Agg

. Agg processes all tuples in tight loop or just does
count += batch->ntuples

. Repeat until scan exhausted
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» Before: Agg calls SeqScan 10M times, SeqScan calls heap 10M times
» After: Agg calls SeqScan ~156K times, SeqScan calls heap ~156K times
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PART 4: ONE APPROACH

Microbenchmark Results: Batched Scan

 Fully cached, batch size 64. Comparing master vs patched:
https://postgr.es/m/CA+HiwgH-2GmTKLW9kHdngV4KdFiPfuAdVK2TggOM2JaaeUYXnw@mail.gmail.com

SELECT * FROM t LIMIT n (no qual)

150 1 mmm mMaster
175 - B batch=64

100 ~

75 4

Time (ms)

1M 3M 10M
Rows

22


https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com
https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com
https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com

PART 4: ONE APPROACH

Microbenchmark Results: Batched Scan + Qual

 Fully cached, batch size 64. Comparing master vs patched:
https://postgr.es/m/CA+HiwgH-2GmTKLW9kHdngV4KdFiPfuAdVK2TggOM2JaaeUYXnw@mail.gmail.com

SELECT * FROM t WHERE a > 0 ... OFFSET n (100% selectivity)

N Master
300 4 I batch=64

200 ~

Time (ms)

100 4

1M 3M 10M
Rows
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PART 4: ONE APPROACH

Microbenchmark Results: Batched Scan + Agg

 Fully cached, batch size 64. Comparing master vs patched:
https://postgr.es/m/CA+HiwgFfAY ZFgN8wcAEMw71T9hM_kA8UtyHaZZEZtuT3UyogA@mail.gmail.com

Single aggregate, no WHERE

Batched SeqScan only (0001-0003) + Batched Agg (0001-0007)
~10-22% faster ~33-49% faster
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PART 4: ONE APPROACH

Microbenchmark Results: Batched Scan + Qual + Agg

 Fully cached, batch size 64. Comparing master vs patched:
https://postgr.es/m/CA+HiwgFfAY ZFgN8wcAEMw71T9hM_kA8UtyHaZZEZtuT3UyogA@mail.gmail.com

Single aggregate, with WHERE

Batched SeqScan only (0001-0003) + Batched Agg & Qual (0001-0008)
~4-7% faster ~31-40% faster
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PART 4: ONE APPROACH

Patch Status

Target for v19
* Table AM batch APl + heapam: HeapBatch, scan_begin / getnext / end_batch

e SegScan batching + TupleBatch: inslots[], materialize_all, executor_batch_rows
GUC

In development (shows potential)

* Batched qual evaluation: new EEOPs, ExecQualBatch(), separate interpreter
(ExeclnterpQualBatch()), WIP.

Future work
* ExecProcNodeBatch(): node interface returning batches

* Aggregate batching: use ExecProcNodeBatch(), batched agg transitions
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PART 4: ONE APPROACH

Hard Questions

Optimal Batch Size
* lLarger batches = better amortization but more memory. 64 tuples x many columns x
deep plans = pressure on L2/L3. Currently a GUC; needs tuning.
Optimizer Involvement
e Should planner decide batch vs row mode? Cost model changes? For now: executor
decides at runtime based on node capabilities.
LIMIT Queries
e LIMIT 1 with batch size 64 = wasted work. Solution: adaptive batch size ramp-up.
Mode Mixing
* Parent expects rows, child produces batches? Need adapter logic or graceful fallback.
No Regressions
* Must not slow OLTP. Batching is opt-in per node; nodes that don't benefit simply don't
implement it.
* The ability to turn batching off with zero overhead of the new code. 27



PART 5: FUTURE

Future Work

* Near Term
e Add batch support to other Scan nodes, Hash/Sort, and TPC-H benchmarks
e Medium Term
* Columnar TAM integration (late materialization), SIMD vectorization, batch-native
functions
* Longer Term
* Batch-aware joins (Hashloin probe batching), projection batching, planner cost model
for batch mode
* LongTerm
* Aggregate batching via ExecProcNodeBatch() - Agg pulls batches from child, batched
transitions for sum/count/avg

Enable Postgres to compete on analytics while preserving OLTP strengths
28



Key Takeaways

* The iterator model remains a bottleneck for analytic workloads - per-tuple
overhead limits efficiency even in simple scans

* This prototype enables executor nodes to operate on batches of tuples
instead of individual slots

* ExecProcNodeBatch() APl and TupleBatch abstraction preserve Postgres's
row-based semantics and plan structure

e Early results show meaningful improvements, paving the way for broader
batch-aware execution
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Thank You!

Questions and Discussion

Patch Thread: pgsql-hackers "Batching in executor"

Thanks to Andres Freund, David Rowley, Tomas Vondra, Peter Geoghegan,
and everyone who provided feedback
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POSETTE: An Event for Postgres 2026—in
its 5t year

Free & virtual developer event
Organized by PG team @ Microsoft
Jun 16-18, 2026

CFP is open until Sun Feb 1st "'.. 3;. EI
@ 11:59pm PST Aoy
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