FOSDEM PGDay 2026 - Brussels

Batching in Executor

Toward batch-mode execution in Postgres

Amit Langote, Postgres Committer

B Microsoft



Previously...

* PGConfIndia 2025, POSETTE 2025: "Hacking Postgres Executor for
Performance”
e "Batching could be the foundation for efficient OLAP execution in Postgres”
* Amortize per-tuple overhead across many tuples
e Path toward vectorized execution
* Solwentand tried to build it.



Agenda

Why batching matters - CPU overhead in row-at-a-time
The Volcano model and its limits

Batching approaches - selective vs batch-native

One approach: prototype and results

Open questions and future work

vk wnN e



1

Why Batching



PART 1: WHY BATCHING

Per-Tuple Overhead on Modern CPUs

* Indirect Call Overhead
* node->ExecProcNode(node) target changes as execution bounces
between nodes, table AM callbacks add more indirection
e Data-Dependent Branches
* Qual pass/fail depends on tuple data - CPU mispredicts ~50% of the
time at 50% selectivity
e Cache Inefficiency
* Bouncing between Agg code, scan code, heap AM code pollutes L1
instruction cache



2

The Volcano Model



PART 2: VOLCANO MODEL

The Volcano Iterator Model

* Postgres's executor processes one tuple at a time - a design inherited from
the classic iterator model that favors modularity but adds significant per-

tuple overhead.
TupleTableSlot *ExecProcNode(node)

{
slot = ExecProcNode(child);
<do things>
return slot;

}

e Strengths:
 Modular: nodes compose freely. Simple: each node is self-contained.

Memory-efficient: one tuple in flight.



PART 2: VOLCANO MODEL
The Volcano Iterator Model Bottleneck

* The iterator model remains a bottleneck for analytic workloads, even as
I/O has gotten faster.
* OLTP Workloads
e ~100 tuples per query. I/O and locking dominate. Volcano works well.
* OLAP Workloads
 10M+ tuples per query. Data in memory or on fast NVMe. CPU
becomes the limiting factor.
e Per-tuple overhead limits instruction and cache efficiency even in simple
scans.



PART 2: VOLCANO MODEL

Recent Improvements

 Recentimprovements have reduced overhead in key paths, but the
iterator model remains a bottleneck:
* Opcode-based expression evaluation (v10+)
e JIT compilation (v11+)
* Read streams for async 1/O (v17+)
e Faster tuple deforming (v18)
e Scaninlining (v18)
* These reduce per-tuple cost, but we still pay it for every tuple.



3

What is Batching



PART 3: BATCHING

What is Batching?

* Process multiple tuples together instead of one at a time. Amortize fixed
costs across the batch.

// Row-at-a-time // Batched
for each tuple call_overhead();
{ for each tuple
call overhead(); {
process(); process();

¥ }

11



PART 3: BATCHING

Batching Already Exists in Postgres

The storage layer already thinks in batches. It is the executor that is behind:
* Heap Pages
e Each 8KB page holds ~40-100 tuples. We already fetch pages, not
individual tuples.
* Index Leaf Pages
e B-tree leaves contain many TIDs. Index prefetching uses leaf pages as
batches.
 COPY / Bulk Insert
* Multi-insert, batched WAL writes. Already batch-optimized.
So, storage returns batches, but executor unwraps them one tuple at a time

12



PART 3: BATCHING

Two Approaches to Batching

e Option A: Batch-Native Executor
* Build separate vectorized executor. All nodes work on column batches.
Think DuckDB, Velox.
* Pros: maximum gains.
e Cons: years of work, two executors to maintain.
e Option B: Selective Batching (this talk)
* Extend existing executor incrementally. Add batch mode to nodes that
benefit most. Preserve row semantics.
* Pros: incremental changes, one codebase.
e Cons: smaller gains than full vectorization.

13



PART 3: BATCHING

PGConf.dev 2025 Unconference: 3 Approaches

 Community discussion identified three possible directions (not mutually exclusive):
e Approach 1: Batching Inside SeqScan
* Loop inside ExecSeqScan fetches multiple tuples before returning. Low
disruption.
e Approach 2: Specialized Executor
e Separate executor for batch-friendly patterns (SeqScan to Agg). Medium
disruption.
* Approach 3: General Batch Infrastructure
* ExecProcNodeBatch() + TupleBatch abstraction. Extensible to all nodes.
e This patch: Combines 1 and 3. Focused on SeqScan, introduces
TupleBatch.

14



A

One Approach

Design, Implementation, and Results

15



PART 4: ONE APPROACH

Core Abstractions

* New batch-oriented TableAmRoutine callbacks

g
+ * Batched scan support

P
+ */

+

+ void *(*scan_begin batch)(TableScanDesc sscan, int maxitems);

+ int (*scan_getnextbatch) (TableScanDesc sscan, void *am _batch,

+ ScanDirection dir);

+ void (*scan_end _batch)(TableScanDesc sscan, void *am _batch);

16



PART 4: ONE APPROACH

Core Abstractions

* TupleBatch

* Keeps data in native format, supports columnar access, enables ops
like count += ntuples.

struct TupleBatch

{
void *am payload; // HeapBatch, etc.

TupleBatchOps *ops; // heapam _materialize all(), etc.
int ntuples;
int max_tuples;

17



PART 4: ONE APPROACH

Core Abstractions

e New batched node execution function

TupleBatch *ExecProcNodeBatch(PlanState *node)

* For example, SegScanBatch()

18



PART 4: ONE APPROACH

Batched Scan Execution Flow

Per-tuple (current)

ExecProcNode()
ExecSegScan()
ExecScanExtended() return TupleTableSlot
SegNext()
table_scan_getnextslot()
heap_getnextslot()
heapgettup_pagemode()

X 10M times

Per-batch (with patch)

ExecProcNode()
ExecSeqgScan()
ExecScanExtendedBatch() returns TupleBatch
SegNextBatch()
table_scan_getnextbatch()
heap_getnextbatch()
heapgettup_pagemode_batch()

x 156K times (for 10M rows)

19



PART 4: ONE APPROACH

Batched Qual Evaluation

* Adapt expression evaluation to process WHERE clauses across batches:

e Old: per-tuple ExecQual()

for each tuple:
result = ExecQual(qual, slot)

 New: ExecQualBatch() with bitmask
* New batch-aware ExprEvalOps for 2-arg OpExpr and NullTest

results bitmask = ExecQualBatch(qual, batch)

* Constraints:
* Only simple AND-trees of supported expressions
* Only leakproof operators (security barrier safety)
* Falls back to per-tuple for more complex quals

20



PART 4: ONE APPROACH

Batched Agg Execution Flow

e Example: SELECT count(*) FROM t

. Agg calls ExecProcNodeBatch(SeqgScan)

. SeqgScan calls scan_getnextbatch(heap, batch, 64)

. Heap TAM fills batch with ~40 tuples from current page

. SegScan returns batch to Agg

. Agg processes all tuples in tight loop or just does
count += batch->ntuples

. Repeat until scan exhausted

ui h W N R

o))}

» Before: Agg calls SeqScan 10M times, SeqScan calls heap 10M times
» After: Agg calls SeqScan ~156K times, SeqScan calls heap ~156K times

21



PART 4: ONE APPROACH

Microbenchmark Results: Batched Scan

 Fully cached, batch size 64. Comparing master vs patched:
https://postgr.es/m/CA+HiwgH-2GmTKLW9kHdngV4KdFiPfuAdVK2TggOM2JaaeUYXnw@mail.gmail.com

SELECT * FROM t LIMIT n (no qual)

150 1 mmm mMaster
175 - B batch=64

100 ~

75 4

Time (ms)

1M 3M 10M
Rows

22


https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com
https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com
https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com

PART 4: ONE APPROACH

Microbenchmark Results: Batched Scan + Qual

 Fully cached, batch size 64. Comparing master vs patched:
https://postgr.es/m/CA+HiwgH-2GmTKLW9kHdngV4KdFiPfuAdVK2TggOM2JaaeUYXnw@mail.gmail.com

SELECT * FROM t WHERE a > 0 ... OFFSET n (100% selectivity)

N Master
300 4 I batch=64

200 ~

Time (ms)

100 4

1M 3M 10M
Rows

23


https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com
https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com
https://postgr.es/m/CA+HiwqH-2GmTKLW9kHdnqV4KdFiPfuAdVK2TgqOM2JaaeUYXnw@mail.gmail.com

PART 4: ONE APPROACH

Microbenchmark Results: Batched Scan + Agg

 Fully cached, batch size 64. Comparing master vs patched:
https://postgr.es/m/CA+HiwgFfAY ZFgN8wcAEMw71T9hM_kA8UtyHaZZEZtuT3UyogA@mail.gmail.com

Single aggregate, no WHERE

Batched SeqScan only (0001-0003) + Batched Agg (0001-0007)
~10-22% faster ~33-49% faster

Time (ms)

8 3 3
g

Time (ms)

3 8

9]
(=]
mJ
o
i

o
I

1M 2M 3M 4M 5M 10M 1M 2M 3M

4M 5M 10M
Rows

Rows
24


https://postgr.es/m/CA+HiwqFfAY_ZFqN8wcAEMw71T9hM_kA8UtyHaZZEZtuT3UyogA@mail.gmail.com

PART 4: ONE APPROACH

Microbenchmark Results: Batched Scan + Qual + Agg

 Fully cached, batch size 64. Comparing master vs patched:
https://postgr.es/m/CA+HiwgFfAY ZFgN8wcAEMw71T9hM_kA8UtyHaZZEZtuT3UyogA@mail.gmail.com

Single aggregate, with WHERE

Batched SeqScan only (0001-0003) + Batched Agg & Qual (0001-0008)
~4-7% faster ~31-40% faster

150 1 mmm on 150 4 I on

100 100 -

Time (ms)
Time (ms)

1M M 3M 4M 5M 10M ZM 3M 4M 5M 10M

Rows Rows
25


https://postgr.es/m/CA+HiwqFfAY_ZFqN8wcAEMw71T9hM_kA8UtyHaZZEZtuT3UyogA@mail.gmail.com

PART 4: ONE APPROACH

Patch Status

Target for v19
* Table AM batch APl + heapam: HeapBatch, scan_begin / getnext / end_batch

e SegScan batching + TupleBatch: inslots[], materialize_all, executor_batch_rows
GUC

In development (shows potential)

* Batched qual evaluation: new EEOPs, ExecQualBatch(), separate interpreter
(ExeclnterpQualBatch()), WIP.

Future work
* ExecProcNodeBatch(): node interface returning batches

* Aggregate batching: use ExecProcNodeBatch(), batched agg transitions

26



PART 4: ONE APPROACH

Hard Questions

Optimal Batch Size
* lLarger batches = better amortization but more memory. 64 tuples x many columns x
deep plans = pressure on L2/L3. Currently a GUC; needs tuning.
Optimizer Involvement
e Should planner decide batch vs row mode? Cost model changes? For now: executor
decides at runtime based on node capabilities.
LIMIT Queries
e LIMIT 1 with batch size 64 = wasted work. Solution: adaptive batch size ramp-up.
Mode Mixing
* Parent expects rows, child produces batches? Need adapter logic or graceful fallback.
No Regressions
* Must not slow OLTP. Batching is opt-in per node; nodes that don't benefit simply don't
implement it.
* The ability to turn batching off with zero overhead of the new code. 27



PART 5: FUTURE

Future Work

* Near Term
e Add batch support to other Scan nodes, Hash/Sort, and TPC-H benchmarks
e Medium Term
* Columnar TAM integration (late materialization), SIMD vectorization, batch-native
functions
* Longer Term
* Batch-aware joins (Hashloin probe batching), projection batching, planner cost model
for batch mode
* LongTerm
* Aggregate batching via ExecProcNodeBatch() - Agg pulls batches from child, batched
transitions for sum/count/avg

Enable Postgres to compete on analytics while preserving OLTP strengths
28



Key Takeaways

* The iterator model remains a bottleneck for analytic workloads - per-tuple
overhead limits efficiency even in simple scans

* This prototype enables executor nodes to operate on batches of tuples
instead of individual slots

* ExecProcNodeBatch() APl and TupleBatch abstraction preserve Postgres's
row-based semantics and plan structure

e Early results show meaningful improvements, paving the way for broader
batch-aware execution

29



Thank You!

Questions and Discussion

Patch Thread: pgsql-hackers "Batching in executor"

Thanks to Andres Freund, David Rowley, Tomas Vondra, Peter Geoghegan,
and everyone who provided feedback

30
FOSDEM PGDay 2026 - Brussels - January 30, 2026



POSETTE: An Event for Postgres 2026—in
its 5t year

Free & virtual developer event
Organized by PG team @ Microsoft
Jun 16-18, 2026

CFP is open until Sun Feb 1st "'.. 3;. EI
@ 11:59pm PST Aoy

o

& PosetteConf.com/2026/cfp [E]:]




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

