第3章 多角測量

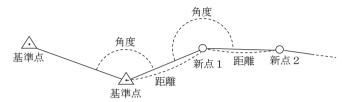
主にトータルステーションを用いて、角度と距離を観測し、位置を定める測量 のことを多角測量(トラバース測量)という。

1 トータルステーション

多角測量では角度と距離を観測するが、この角度と距離を観測する機械のこ とをトータルステーション (TS) という。目標 (プリズム) を視準することで、 角度(水平角・鉛直角)と距離が同時に観測できる。

トータルステーションに付随する機械として、データコレクタがある。デー タコレクタは、観測手簿の代わりになるもので、角度と距離の観測値を自動的 に記録したり、コンピュータへデータ転送をしたりすることができる装置であ る。自動的に記録されるのは観測値のみであり、器械高及び反射鏡高や気象要 素の測定値などは観測者が入力する必要がある。

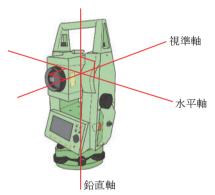
観測データを失うことがないように、観測後には速やかに他の媒体にバック アップをとるようにする。また、データコレクタに記録された値を訂正するこ とは認められておらず、再測によって不要となった観測値を編集によって削除 することも同様に認められていない。



(1) 什組み

既知点(位置が分かっている既存の基準点)を使い、新点(設置した新しい 基準点)までの角度と距離を観測する。その後、新点にトータルステーション

アガルートアカデミー 測量士試験


を移動させ、次の新点までの角度と距離を観測する。これを繰り返すことで、 新しい基準点の位置を求めていく。

ア. 角度を測る仕組み

トータルステーションの中に分度器が入っており、その値を電子的に読む ことで角度を測る。

角度を測るためには、複数の点を視準する必要があるため、トータルステーションには可動部がある。これを「トータルステーションの3軸」と呼ぶ。

鉛直軸はトータルステーションを水平方向に回転させるための軸、水平軸はトータルステーションを鉛直方向に回転させるための軸、視準軸は視準する望遠鏡の中心の軸となる。

それぞれが正確でないと精度ある観測ができないため、定期的な点検・調整を要する。

トータルステーションを用いた角度の観測は方向観測法と呼び、1級基準点測量では、水平角と鉛直角の観測は1視準1読定(1方向を見て、1回角度を観測する)、望遠鏡正反の観測を1対回として、2対回おこなう。対回とは1回角度を観測した後、望遠鏡を180°回転させ、さらに2回目の角度を観測することをいう。

1級基準点測量とは

公共測量は求められる精度により、1級から4級の等級があります。1級がもっとも要求される精度が高いです。

イ. 距離を測る仕組み

レーザ(光)がトータルステーションから発射され、目標(プリズム)に 反射して往復する時間を計測することで、距離を測定する。

トータルステーションを用いた1級基準点測量では、距離の観測は1視準2読定(1方向を見て、2回距離を観測する)を1セットとして2セットおこなう。水平角と鉛直角観測の必要対回数(2対回)に合わせ、取得された距離の観測値をすべて採用し、その平均値を最確値とすることができる。

(2) 誤差

一般に測量における観測値は、観測するごとにわずかに異なった値となる。 この観測値と真値との差を誤差という。測量では、十分な注意を払って観測を おこなっても真値を求めることはできない。

したがって、複数の観測値から最確値を統計的に推定することになる。

真値と最確値の違いとは

真値は「真の値」、最確値は「もっとも確からしい値」です。測量では真値を 求めることができないため、測量士試験の問題文も「もっとも近いものを選べ」 となっています。

ア. 誤差の種類

測量における誤差には、観測機械が正常に機能していない場合や、観測者に固有のクセがある場合に一定の傾向で生じる系統誤差(定誤差)と、観測者が注意しても避けることができない偶然誤差(不定誤差)がある。観測者の不注意によって生じる測定値の誤りを過失誤差として、誤差に含めることもある。

精度の高い測量をするためには、過失誤差をなくすのはもちろん、系統誤差を究明して誤差を取り除くことが要求される。

イ. 精度

精度とは誤差の上限であり、誤差が大きく、要求された精度に満たない場合、再測(測量をやり直すこと)をしなければならない。

ウ. 器械誤差

水平角を観測する上で発生する誤差のうち、トータルステーションが構造 上持つ誤差を器械誤差という。器械誤差の原因と消去法は以下の表の通りで ある。

誤差の名称	原因	消去法
視準軸誤差	水平軸と望遠鏡の視準線	正反観測値を平均する
	が直交していない	
水平軸誤差	水平軸と鉛直線が直交し	正反観測値を平均する
	ていない	
鉛直軸誤差	鉛直軸が鉛直線から傾い	なし
	ている	
偏心誤差	目盛盤の中心が鉛直軸の	正反観測値を平均する
	中心と一致していない	
外心誤差	望遠鏡の視準線が鉛直軸	正反観測値を平均する
	の中心から外れている	
	目盛盤の目盛間隔が均等	観測工夫による軽減(目
目盛誤差	でない	盛盤の位置を変えて観測す
		る)のみ
目標像のゆらぎ	空気密度の不均一さ	観測工夫による軽減のみ

特に、トータルステーションの鉛直軸が、鉛直線から傾いているために生じる鉛直軸誤差には消去・軽減の方法がない。鉛直軸誤差をなくすためには、三脚やトータルステーションを正しく鉛直に整置しなおすことになる。また、空気密度の不均一さによる目標像のゆらぎのために生じる誤差は、観測回数を増やすことによる誤差の軽減しかできず、望遠鏡の正反観測値を平均しても消去できない。

トータルステーションの3軸のうち、鉛直軸の誤差だけは正反観測値を平均しても消去・軽減ができません。

整置とは

トータルステーションや三脚などの測量機器を、水平にしっかりと固定して設置することを整置といいます。