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Abstract—Measuring the semantic similarity between words is an important component in various tasks on the web such as relation

extraction, community mining, document clustering, and automatic metadata extraction. Despite the usefulness of semantic similarity

measures in these applications, accurately measuring semantic similarity between two words (or entities) remains a challenging task.

We propose an empirical method to estimate semantic similarity using page counts and text snippets retrieved from a web search

engine for two words. Specifically, we define various word co-occurrence measures using page counts and integrate those with lexical

patterns extracted from text snippets. To identify the numerous semantic relations that exist between two given words, we propose a

novel pattern extraction algorithm and a pattern clustering algorithm. The optimal combination of page counts-based co-occurrence

measures and lexical pattern clusters is learned using support vector machines. The proposed method outperforms various baselines

and previously proposed web-based semantic similarity measures on three benchmark data sets showing a high correlation with

human ratings. Moreover, the proposed method significantly improves the accuracy in a community mining task.

Index Terms—Web mining, information extraction, web text analysis.

Ç

1 INTRODUCTION

ACCURATELY measuring the semantic similarity between
words is an important problem in web mining,

information retrieval, and natural language processing.
Web mining applications such as, community extraction,
relation detection, and entity disambiguation, require the
ability to accurately measure the semantic similarity
between concepts or entities. In information retrieval, one
of the main problems is to retrieve a set of documents that is
semantically related to a given user query. Efficient
estimation of semantic similarity between words is critical
for various natural language processing tasks such as word
sense disambiguation (WSD), textual entailment, and
automatic text summarization.

Semantically related words of a particular word are
listed in manually created general-purpose lexical ontolo-
gies such as WordNet.1 In WordNet, a synset contains a set
of synonymous words for a particular sense of a word.
However, semantic similarity between entities changes over
time and across domains. For example, apple is frequently
associated with computers on the web. However, this sense
of apple is not listed in most general-purpose thesauri or
dictionaries. A user who searches for apple on the web,

might be interested in this sense of apple and not apple as a
fruit. New words are constantly being created as well as
new senses are assigned to existing words. Manually
maintaining ontologies to capture these new words and
senses is costly if not impossible.

We propose an automatic method to estimate the
semantic similarity between words or entities using web
search engines. Because of the vastly numerous documents
and the high growth rate of the web, it is time consuming to
analyze each document separately. Web search engines
provide an efficient interface to this vast information. Page
counts and snippets are two useful information sources
provided by most web search engines. Page count of a query
is an estimate of the number of pages that contain the query
words. In general, page count may not necessarily be equal
to the word frequency because the queried word might
appear many times on one page. Page count for the query P
AND Q can be considered as a global measure of co-
occurrence of words P and Q. For example, the page count
of the query “apple” AND “computer” in Google is
288,000,000, whereas the same for “banana” AND “computer”
is only 3,590,000. The more than 80 times more numerous
page counts for “apple” AND “computer” indicate that apple
is more semantically similar to computer than is banana.

Despite its simplicity, using page counts alone as a
measure of co-occurrence of two words presents several
drawbacks. First, page count analysis ignores the position of a
word in a page. Therefore, even though two words appear in a
page, they might not be actually related. Second, page count
of a polysemous word (a word with multiple senses) might
contain a combination of all its senses. For example, page
counts for apple contain page counts for apple as a fruit and
apple as a company. Moreover, given the scale and noise on
the web, some words might co-occur on some pages without
being actually related [1]. For those reasons, page counts
alone are unreliable when measuring semantic similarity.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 7, JULY 2011 977

. D. Bollegala and M. Ishizuka are with the Department of Electronics and
Information, Graduate School of Information Sciences, The University of
Tokyo, Room 111C1, Engineering Building 2, 7-3-1, Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan.
E-mail: danushka@mi.ci.i.u-tokyo.ac.jp, ishizuka@i.u-tokyo.ac.jp.

. Y. Matsuo is with the Institute of Engineering Innovation, Graduate
School of Engineering, The University of Tokyo, 2-11-6 Yayoi, Bunkyo-ku,
Tokyo 113-8656. E-mail: matsuo@biz-model.t.u-tokyo.ac.jp.

Manuscript received 28 July 2009; revised 11 Feb. 2011; accepted 21 Mar.
2010; published online 8 Sept. 2010.
Recommended for acceptance by J. Zobel.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2009-07-0572.
Digital Object Identifier no. 10.1109/TKDE.2010.172.

1. http://wordnet.princeton.edu/.

1041-4347/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: University of Tokyo. Downloaded on December 08,2022 at 08:04:29 UTC from IEEE Xplore.  Restrictions apply. 



Snippets, a brief window of text extracted by a search
engine around the query term in a document, provide
useful information regarding the local context of the query
term. Semantic similarity measures defined over snippets,
have been used in query expansion [2], personal name
disambiguation [3], and community mining [4]. Processing
snippets is also efficient because it obviates the trouble of
downloading webpages, which might be time consuming
depending on the size of the pages. However, a widely
acknowledged drawback of using snippets is that, because
of the huge scale of the web and the large number of
documents in the result set, only those snippets for the top-
ranking results for a query can be processed efficiently.
Ranking of search results, hence snippets, is determined by
a complex combination of various factors unique to the
underlying search engine. Therefore, no guarantee exists
that all the information we need to measure semantic
similarity between a given pair of words is contained in the
top-ranking snippets.

We propose a method that considers both page counts
and lexical syntactic patterns extracted from snippets that
we show experimentally to overcome the above mentioned
problems. For example, let us consider the snippet shown in
Fig. 1 retrieved from Google for the query Jaguar AND cat.

Here, the phrase is the largest indicates a hypernymic
relationship between Jaguar and cat. Phrases such as also
known as, is a, part of, is an example of all indicate various
semantic relations. Such indicative phrases have been
applied to numerous tasks with good results, such as
hypernym extraction [5] and fact extraction [6]. From the
previous example, we form the pattern X is the largest Y,
where we replace the two words Jaguar and cat by two
variables X and Y.

Our contributions are summarized as follows:

. We present an automatically extracted lexical syn-
tactic patterns-based approach to compute the
semantic similarity between words or entities using
text snippets retrieved from a web search engine. We
propose a lexical pattern extraction algorithm that
considers word subsequences in text snippets.
Moreover, the extracted set of patterns are clustered
to identify the different patterns that describe the
same semantic relation.

. We integrate different web-based similarity mea-
sures using a machine learning approach. We extract
synonymous word pairs from WordNet synsets as
positive training instances and automatically gen-
erate negative training instances. We then train a
two-class support vector machine (SVM) to classify
synonymous and nonsynonymous word pairs. The
integrated measure outperforms all existing web-
based semantic similarity measures on a benchmark
data set.

. We apply the proposed semantic similarity measure
to identify relations between entities, in particular
people, in a community extraction task. In this
experiment, the proposed method outperforms the
baselines with statistically significant precision and
recall values. The results of the community mining
task show the ability of the proposed method to
measure the semantic similarity between not only
words, but also between named entities, for which
manually created lexical ontologies do not exist or
incomplete.

2 RELATED WORK

Given a taxonomy of words, a straightforward method to
calculate similarity between two words is to find the length
of the shortest path connecting the two words in the
taxonomy [7]. If a word is polysemous, then multiple paths
might exist between the two words. In such cases, only the
shortest path between any two senses of the words is
considered for calculating similarity. A problem that is
frequently acknowledged with this approach is that it relies
on the notion that all links in the taxonomy represent a
uniform distance.

Resnik [8] proposed a similarity measure using informa-
tion content. He defined the similarity between two
concepts C1 and C2 in the taxonomy as the maximum of
the information content of all concepts C that subsume both
C1 and C2. Then, the similarity between two words is
defined as the maximum of the similarity between any
concepts that the words belong to. He used WordNet as the
taxonomy; information content is calculated using the
Brown corpus.

Li et al. [9] combined structural semantic information
from a lexical taxonomy and information content from a
corpus in a nonlinear model. They proposed a similarity
measure that uses shortest path length, depth, and local
density in a taxonomy. Their experiments reported a high
Pearson correlation coefficient of 0.8914 on the Miller and
Charles [10] benchmark data set. They did not evaluate
their method in terms of similarities among named entities.
Lin [11] defined the similarity between two concepts as the
information that is in common to both concepts and the
information contained in each individual concept.

Cilibrasi and Vitanyi [12] proposed a distance metric
between words using only page counts retrieved from a
web search engine. The proposed metric is named Normal-
ized Google Distance (NGD) and is given by

NGDðP;QÞ ¼ maxflogHðP Þ; logHðQÞg � logHðP;QÞ
logN �minflogHðP Þ; logHðQÞg :

Here, P and Q are the two words between which distance
NGDðP;QÞ is to be computed, HðP Þ denotes the page
count for the word P , and HðP;QÞ is the page count for the
query P AND Q. NGD is based on normalized information
distance [13], which is defined using Kolmogorov complex-
ity. Because NGD does not take into account the context in
which the words co-occur, it suffers from the drawbacks
described in the previous section that are characteristic to
similarity measures that consider only page counts.
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Sahami and Heilman [2] measured semantic similarity
between two queries using snippets returned for those
queries by a search engine. For each query, they collect
snippets from a search engine and represent each snippet as
a TF-IDF-weighted term vector. Each vector is L2 normal-
ized and the centroid of the set of vectors is computed.
Semantic similarity between two queries is then defined as
the inner product between the corresponding centroid
vectors. They did not compare their similarity measure
with taxonomy-based similarity measures.

Chen et al. [4] proposed a double-checking model using
text snippets returned by a web search engine to compute
semantic similarity between words. For two words P and
Q, they collect snippets for each word from a web search
engine. Then, they count the occurrences of word P in the
snippets for word Q and the occurrences of word Q in the
snippets for word P . These values are combined non-
linearly to compute the similarity between P and Q. The Co-
occurrence Double-Checking (CODC) measure is defined as

CODCðP;QÞ ¼
0; if fðP@QÞ ¼ 0;

exp log fðP@Q
HðP Þ �

fðQ@P Þ
HðQÞ

h i�� �
; otherwise:

(

Here, fðP@QÞ denotes the number of occurrences of P in
the top-ranking snippets for the query Q in Google, HðP Þ is
the page count for query P , and � is a constant in this model,
which is experimentally set to the value 0.15. This method
depends heavily on the search engine’s ranking algorithm.
Although two words P and Q might be very similar, we
cannot assume that one can find Q in the snippets for P , or
vice versa, because a search engine considers many other
factors besides semantic similarity, such as publication date
(novelty) and link structure (authority) when ranking the
result set for a query. This observation is confirmed by the
experimental results in their paper which reports zero
similarity scores for many pairs of words in the Miller and
Charles [10] benchmark data set.

Semantic similarity measures have been used in various
applications in natural language processing such as word
sense disambiguation [14], language modeling [15], syno-
nym extraction [16], and automatic thesauri extraction [17].
Semantic similarity measures are important in many web-
related tasks. In query expansion [18], a user query is
modified using synonymous words to improve the relevancy
of the search. One method to find appropriate words to
include in a query is to compare the previous user queries
using semantic similarity measures. If there exists a previous
query that is semantically related to the current query, then it
can be either suggested to the user, or internally used by the
search engine to modify the original query.

3 METHOD

3.1 Outline

Given two words P and Q, we model the problem of
measuring the semantic similarity between P and Q, as a
one of constructing a function simðP;QÞ that returns a value
in range ½0; 1�. If P and Q are highly similar (e.g.,
synonyms), we expect simðP;QÞ to be closer to 1. On the

other hand, if P and Q are not semantically similar, then we
expect simðP;QÞ to be closer to 0. We define numerous
features that express the similarity between P and Q using
page counts and snippets retrieved from a web search
engine for the two words. Using this feature representation
of words, we train a two-class support vector machine to
classify synonymous and nonsynonymous word pairs. The
function simðP;QÞ is then approximated by the confidence
score of the trained SVM.

Fig. 2 illustrates an example of using the proposed
method to compute the semantic similarity between two
words, gem and jewel. First, we query a web search engine
and retrieve page counts for the two words and for their
conjunctive (i.e., “gem,” “jewel,” and “gem AND jewel”). In
Section 3.2, we define four similarity scores using page
counts. Page counts-based similarity scores consider the
global co-occurrences of two words on the web. However,
they do not consider the local context in which two words
co-occur. On the other hand, snippets returned by a search
engine represent the local context in which two words co-
occur on the web. Consequently, we find the frequency of
numerous lexical syntactic patterns in snippets returned for
the conjunctive query of the two words. The lexical patterns
we utilize are extracted automatically using the method
described in Section 3.3. However, it is noteworthy that a
semantic relation can be expressed using more than one
lexical pattern. Grouping the different lexical patterns that
convey the same semantic relation, enables us to represent a
semantic relation between two words accurately. For this
purpose, we propose a sequential pattern clustering
algorithm in Section 3.4. Both page counts-based similarity
scores and lexical pattern clusters are used to define various
features that represent the relation between two words.
Using this feature representation of word pairs, we train a
two-class support vector machine [19] in Section 3.5.

3.2 Page Count-Based Co-Occurrence Measures

Page counts for the query P AND Q can be considered as an
approximation of co-occurrence of two words (or multi-
word phrases) P and Q on the web. However, page counts
for the query P AND Q alone do not accurately express
semantic similarity. For example, Google returns 11,300,000
as the page count for “car” AND “automobile,” whereas the
same is 49,000,000 for “car” AND “apple.” Although,
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automobile is more semantically similar to car than apple is,
page counts for the query “car” AND “apple” are more than
four times greater than those for the query “car” AND
“automobile.” One must consider the page counts not just for
the query P AND Q, but also for the individual words P and
Q to assess semantic similarity between P and Q.

We compute four popular co-occurrence measures;
Jaccard, Overlap (Simpson), Dice, and Pointwise mutual
information (PMI), to compute semantic similarity using
page counts. For the remainder of this paper, we use the
notation HðP Þ to denote the page counts for the query P in
a search engine. The WebJaccard coefficient between words
(or multiword phrases) P and Q, WebJaccardðP;QÞ, is
defined as

WebJaccardðP;QÞ

¼
0; if HðP \QÞ � c;

HðP \QÞ
HðP Þ þHðQÞ �HðP \QÞ ; otherwise:

8<
:

Therein, P \Q denotes the conjunction query P AND Q.
Given the scale and noise in web data, it is possible that two
words may appear on some pages even though they are not
related. In order to reduce the adverse effects attributable to
such co-occurrences, we set the WebJaccard coefficient to zero
if the page count for the queryP \Q is less than a threshold c.2

Similarly, we define WebOverlap, WebOverlapðP;QÞ, as

WebOverlapðP;QÞ

¼
0; if HðP \QÞ � c;

HðP \QÞ
minðHðP Þ; HðQÞÞ ; otherwise:

8<
:

WebOverlap is a natural modification to the Overlap
(Simpson) coefficient. We define the WebDice coefficient as
a variant of the Dice coefficient. WebDiceðP;QÞ is defined as

WebDiceðP;QÞ ¼
0; if HðP \QÞ � c;

2HðP \QÞ
HðP Þ þHðQÞ ; otherwise:

8<
: ð3Þ

Pointwise mutual information [20] is a measure that is
motivated by information theory; it is intended to reflect the
dependence between two probabilistic events. We define
WebPMI as a variant form of pointwise mutual information
using page counts as

WebPMIðP;QÞ

¼
0; if HðP \QÞ � c;

log2

HðP\QÞ
N

HðP Þ
N

HðQÞ
N

 !
; otherwise:

8><
>:

Here, N is the number of documents indexed by the search
engine. Probabilities in (4) are estimated according to the
maximum likelihood principle. To calculate PMI accurately
using (4), we must know N , the number of documents
indexed by the search engine. Although estimating the
number of documents indexed by a search engine [21] is an
interesting task itself, it is beyond the scope of this work. In

the present work, we set N ¼ 1010 according to the number
of indexed pages reported by Google. As previously
discussed, page counts are mere approximations to actual
word co-occurrences in the web. However, it has been
shown empirically that there exists a high correlation
between word counts obtained from a web search engine
(e.g., Google and Altavista) and that from a corpus (e.g.,
British National corpus) [22]. Moreover, the approximated
page counts have been successfully used to improve a
variety of language modeling tasks [23].

3.3 Lexical Pattern Extraction

Page counts-based co-occurrence measures described in
Section 3.2 do not consider the local context in which those
words co-occur. This can be problematic if one or both
words are polysemous, or when page counts are unreliable.
On the other hand, the snippets returned by a search engine
for the conjunctive query of two words provide useful clues
related to the semantic relations that exist between two
words. A snippet contains a window of text selected from a
document that includes the queried words. Snippets are
useful for search because, most of the time, a user can read
the snippet and decide whether a particular search result is
relevant, without even opening the url. Using snippets as
contexts is also computationally efficient because it obviates
the need to download the source documents from the web,
which can be time consuming if a document is large. For
example, consider the snippet in Fig. 3. Here, the phrase is a
indicates a semantic relationship between cricket and sport.
Many such phrases indicate semantic relationships. For
example, also known as, is a, part of, is an example of all indicate
semantic relations of different types. In the example given
above, words indicating the semantic relation between
cricket and sport appear between the query words. Replacing
the query words by variables X and Y , we can form the
pattern X is a Y from the example given above.

Despite the efficiency of using snippets, they pose two
main challenges: first, a snippet can be a fragmented
sentence, second, a search engine might produce a snippet
by selecting multiple text fragments from different portions
in a document. Because most syntactic or dependency
parsers assume complete sentences as the input, deep
parsing of snippets produces incorrect results. Conse-
quently, we propose a shallow lexical pattern extraction
algorithm using web snippets, to recognize the semantic
relations that exist between two words. Lexical syntactic
patterns have been used in various natural language
processing tasks such as extracting hypernyms [5], [24], or
meronyms [25], question answering [26], and paraphrase
extraction [27]. Although a search engine might produce a
snippet by selecting multiple text fragments from different
portions in a document, a predefined delimiter is used to
separate the different fragments. For example, in Google,
the delimiter “...” is used to separate different fragments in
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a snippet. We use such delimiters to split a snippet before
we run the proposed lexical pattern extraction algorithm on
each fragment.

Given two words P and Q, we query a web search engine
using the wildcard query “P � � � � � Q” and download
snippets. The “�” operator matches one word or none in a
webpage. Therefore, our wildcard query retrieves snippets
in which P and Q appear within a window of seven words.
Because a search engine snippet contains ca. 20 words on
average, and includes two fragments of texts selected from a
document, we assume that the seven word window is
sufficient to cover most relations between two words in
snippets. In fact, over 95 percent of the lexical patterns
extracted by the proposed method contain less than five
words. We attempt to approximate the local context of two
words using wildcard queries. For example, Fig. 4 shows a
snippet retrieved for the query “ostrich� � � � � bird.”

For a snippet �, retrieved for a word pair ðP;QÞ, first, we
replace the two words P and Q, respectively, with two
variables X and Y . We replace all numeric values by D, a
marker for digits. Next, we generate all subsequences of
words from � that satisfy all of the following conditions:

1. A subsequence must contain exactly one occurrence
of each X and Y .

2. The maximum length of a subsequence is L words.
3. A subsequence is allowed to skip one or more

words. However, we do not skip more than g
number of words consecutively. Moreover, the total
number of words skipped in a subsequence should
not exceed G.

4. We expand all negation contractions in a context. For
example, didn’t is expanded to did not. We do not
skip the word not when generating subsequences.
For example, this condition ensures that from the
snippet X is not a Y, we do not produce the
subsequence X is a Y.

Finally, we count the frequency of all generated subse-
quences and only use subsequences that occur more than T
times as lexical patterns.

The parameters L; g;G, and T are set experimentally, as
explained later in Section 3.6. It is noteworthy that the
proposed pattern extraction algorithm considers all the
words in a snippet, and is not limited to extracting patterns
only from the mid fix (i.e., the portion of text in a snippet
that appears between the queried words). Moreover, the
consideration of gaps enables us to capture relations
between distant words in a snippet. We use a modified
version of the prefixspan algorithm [28] to generate sub-
sequences from a text snippet. Specifically, we use the
constraints (2-4) to prune the search space of candidate
subsequences. For example, if a subsequence has reached
the maximum length L, or the number of skipped words is
G, then we will not extend it further. By pruning the search

space, we can speed up the pattern generation process.
However, none of these modifications affect the accuracy of
the proposed semantic similarity measure because the
modified version of the prefixspan algorithm still generates
the exact set of patterns that we would obtain if we used the
original prefixspan algorithm (i.e., without pruning) and
subsequently remove patterns that violate the above
mentioned constraints. For example, some patterns ex-
tracted from the snippet shown in Fig. 4 are: X, a large Y, X a
flightless Y, and X, large Y lives.

3.4 Lexical Pattern Clustering

Typically, a semantic relation can be expressed using more
than one pattern. For example, consider the two distinct
patterns, X is a Y, and X is a large Y. Both these patterns
indicate that there exists an is-a relation between X and Y.
Identifying the different patterns that express the same
semantic relation enables us to represent the relation
between two words accurately. According to the distribu-
tional hypothesis [29], words that occur in the same context
have similar meanings. The distributional hypothesis has
been used in various related tasks, such as identifying
related words [16], and extracting paraphrases [27]. If we
consider the word pairs that satisfy (i.e., co-occur with) a
particular lexical pattern as the context of that lexical pair,
then from the distributional hypothesis, it follows that the
lexical patterns which are similarly distributed over word
pairs must be semantically similar.

We represent a pattern a by a vector a of word-pair
frequencies. We designate a, the word-pair frequency vector
of pattern a. It is analogous to the document frequency vector
of a word, as used in information retrieval. The value of the
element corresponding to a word pair ðPi;QiÞ in a, is the
frequency, fðPi;Qi; aÞ, that the pattern a occurs with the
word pair ðPi;QiÞ. As demonstrated later, the proposed
pattern extraction algorithm typically extracts a large
number of lexical patterns. Clustering algorithms based
on pairwise comparisons among all patterns are prohibi-
tively time consuming when the patterns are numerous.
Next, we present a sequential clustering algorithm to
efficiently cluster the extracted patterns.

Given a set � of patterns and a clustering similarity
threshold �, Algorithm 1 returns clusters (of patterns) that
express similar semantic relations. First, in Algorithm 1, the
function SORT sorts the patterns into descending order of
their total occurrences in all word pairs. The total occur-
rence �ðaÞ of a pattern a is the sum of frequencies over all
word pairs, and is given by

�ðaÞ ¼
X
i

fðPi;Qi; aÞ: ð5Þ

After sorting, the most common patterns appear at the
beginning in �, whereas rare patterns (i.e., patterns that
occur with only few word pairs) get shifted to the end.
Next, in line 2, we initialize the set of clusters, C, to the
empty set. The outer for loop (starting at line 3), repeatedly
takes a pattern ai from the ordered set �, and in the inner
for loop (starting at line 6), finds the cluster, c� (2 C) that is
most similar to ai. First, we represent a cluster by the
centroid of all word-pair frequency vectors corresponding
to the patterns in that cluster to compute the similarity
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between a pattern and a cluster. Next, we compute the
cosine similarity between the cluster centroid (cj), and the
word-pair frequency vector of the pattern (ai). If the
similarity between a pattern ai, and its most similar cluster,
c�, is greater than the threshold �, we append ai to c� (line
14). We use the operator � to denote the vector addition
between c� and ai. Then, we form a new cluster faig and
append it to the set of clusters, C, if ai is not similar to any
of the existing clusters beyond the threshold �.

Algorithm 1. Sequential pattern clustering algorithm.
Input: patterns � ¼ fa1; . . . ; ang, threshold �

Output: clusters C

1: SORT(�)

2: C  fg
3: for pattern ai 2 � do

4: max �1
5: c�  null

6: for cluster cj 2 C do

7: sim cosineðai; cjÞ
8: if sim > max then

9: max sim

10: c�  cj

11: end if

12: end for

13: if max > � then

14: c�  c� � ai

15: else

16: C  C [ faig
17: end if

18: end for

19: return C

By sorting the lexical patterns in the descending order of
their frequency and clustering the most frequent patterns
first, we form clusters for more common relations first. This
enables us to separate rare patterns which are likely to be
outliers from attaching to otherwise clean clusters. The
greedy sequential nature of the algorithm avoids pairwise
comparisons between all lexical patterns. This is particu-
larly important because when the number of lexical patterns
is large as in our experiments (e.g., over 100,000), pairwise
comparisons between all patterns are computationally
prohibitive. The proposed clustering algorithm attempts
to identify the lexical patterns that are similar to each other
more than a given threshold value. By adjusting the
threshold, we can obtain clusters with different granularity.

The only parameter in Algorithm 1, the similarity
threshold, �, ranges in ½0; 1�. It decides the purity of the
formed clusters. Setting � to a high value ensures that the
patterns in each cluster are highly similar. However, high �
values also yield numerous clusters (increased model
complexity). In Section 3.6, we investigate, experimentally,
the effect of � on the overall performance of the proposed
relational similarity measure.

The initial sort operation in Algorithm 1 can be carried
out in time complexity of OðnlognÞ, where n is the number
of patterns to be clustered. Next, the sequential assignment
of lexical patterns to the clusters requires complexity of
OðnjCjÞ, where jCj is the number of clusters. Typically, n is
much larger than jCj (i.e., n�jCj). Therefore, the overall

time complexity of Algorithm 1 is dominated by the sort
operation, hence OðnlognÞ. The sequential nature of the
algorithm avoids pairwise comparisons among all patterns.
Moreover, sorting the patterns by their total word-pair
frequency prior to clustering ensures that the final set of
clusters contains the most common relations in the data set.

3.5 Measuring Semantic Similarity

In Section 3.2, we defined four co-occurrence measures
using page counts. Moreover, in Sections 3.3 and 3.4, we
showed how to extract clusters of lexical patterns from
snippets to represent numerous semantic relations that exist
between two words. In this section, we describe a machine
learning approach to combine both page counts-based co-
occurrence measures, and snippets-based lexical pattern
clusters to construct a robust semantic similarity measure.

Given N clusters of lexical patterns, first, we represent a
pair of words ðP;QÞ by an ðN þ 4Þ-dimensional feature
vector fPQ. The four page counts-based co-occurrence
measures defined in Section 3.2 are used as four distinct
features in fPQ. For completeness, let us assume that
ðN þ 1Þst, ðN þ 2Þnd, ðN þ 3Þrd, and ðN þ 4Þth features
are set, respectively, to WebJaccard, WebOverlap, WebDice,
and WebPMI. Next, we compute a feature from each of the
N clusters as follows: first, we assign a weight wij to a
pattern ai that is in a cluster cj as follows:

wij ¼
�ðaiÞP
t2cj �ðtÞ

: ð6Þ

Here, �ðaÞ is the total frequency of a pattern a in all word
pairs, and it is given by (5). Because we perform a hard
clustering on patterns, a pattern can belong to only one
cluster (i.e., wij ¼ 0 for ai 62 cj). Finally, we compute the
value of the jth feature in the feature vector for a word pair
ðP;QÞ as follows: X

ai2cj
wijfðP;Q; aiÞ: ð7Þ

The value of the jth feature of the feature vector fPQ
representing a word pair ðP;QÞ can be seen as the weighted
sum of all patterns in cluster cj that co-occur with words P
and Q. We assume all patterns in a cluster to represent a
particular semantic relation. Consequently, the jth feature
value given by (7) expresses the significance of the semantic
relation represented by cluster j for word pair ðP;QÞ. For
example, if the weight wij is set to 1 for all patterns ai in a
cluster cj, then the jth feature value is simply the sum of
frequencies of all patterns in cluster cj with words P and Q.
However, assigning an equal weight to all patterns in a
cluster is not desirable in practice because some patterns can
contain misspellings and/or can be grammatically incorrect.
Equation (6) assigns a weight to a pattern proportionate to
its frequency in a cluster. If a pattern has a high frequency in
a cluster, then it is likely to be a canonical form of the
relation represented by all the patterns in that cluster.
Consequently, the weighting scheme described by (6)
prefers high frequent patterns in a cluster.

To train a two-class SVM to detect synonymous and
nonsynonymous word pairs, we utilize a training data set
S ¼ fðPk;Qk; ykÞg of word pairs. S consists of synonymous
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word pairs (positive training instances) and nonsynonymous
word pairs (negative training instances). Training data setS is
generated automatically from WordNet synsets as described
later in Section 3.6. Label yk 2 f�1; 1g indicates whether the
word pair ðPk;QkÞ is a synonymous word pair (i.e., yk ¼ 1) or
a nonsynonymous word pair (i.e., yk ¼ �1). For each word
pair in S, we create an ðN þ 4Þ-dimensional feature vector as
described above. To simplify the notation, let us denote the
feature vector of a word pair ðPk;QkÞ by fk. Finally, we train a
two-class SVM using the labeled feature vectors.

Once we have trained an SVM using synonymous and
nonsynonymous word pairs, we can use it to compute the
semantic similarity between two given words. Following the
same method, we used to generate feature vectors for
training, we create an ðN þ 4Þ-dimensional feature vector f �

for a pair of words ðP �; Q�Þ, between which we must measure
semantic similarity. We define the semantic similarity
simðP �; Q�Þ between P � and Q� as the posterior probability,
pðy� ¼ 1jf �Þ, that the feature vector f� corresponding to the
word pair ðP �; Q�Þ belongs to the synonymous-words class
(i.e., y� ¼ 1). simðP �; Q�Þ is given by

simðP �; Q�Þ ¼ pðy� ¼ 1jf�Þ: ð8Þ

Because SVMs are large margin classifiers, the output of an
SVM is the distance from the classification hyperplane. The
distance dðf �Þ to an instance f � from the classification
hyperplane is given by

dðf �Þ ¼ hðf �Þ þ b:

Here, b is the bias term and the hyperplane, hðf �Þ, is given by

hðf�Þ ¼
X
i

yk�kKðfk; f �Þ:

Here, �k is the Lagrange multiplier corresponding to the
support vector fk,3 and Kðfk; f�Þ is the value of the kernel
function for a training instance fk and the instance to classify,
f �. However, dðf �Þ is not a calibrated posterior probability.
Following Platt [30], we use sigmoid functions to convert this
uncalibrated distance into a calibrated posterior probability.
The probability, pðy ¼ 1jdðfÞÞ, is computed using a sigmoid
function defined over dðfÞ as follows:

pðy ¼ 1jdðfÞÞ ¼ 1

1þ expð�dðfÞ þ �Þ :

Here, � and � are parameters which are determined by
maximizing the likelihood of the training data. Log
likelihood of the training data is given by

Lð�; �Þ ¼
XN
k¼1

log pðykjfk;�; �Þ

¼
XN
k¼1

ftk logðpkÞ þ ð1� tkÞ logð1� pkÞg:

Here, to simplify the notation, we have used tk ¼ ðyk þ 1Þ=2
and pk ¼ pðyk ¼ 1jfkÞ. The maximization in (9) with respect
to parameters � and � is performed using model-trust
minimization [31].

3.6 Training

To train the two-class SVM described in Section 3.5, we
require both synonymous and nonsynonymous word pairs.
We use WordNet, a manually created English dictionary, to
generate the training data required by the proposed
method. For each sense of a word, a set of synonymous
words is listed in WordNet synsets. We randomly select
3,000 nouns from WordNet, and extract a pair of synon-
ymous words from a synset of each selected noun. If a
selected noun is polysemous, then we consider the synset
for the dominant sense. Obtaining a set of nonsynonymous
word pairs (negative training instances) is difficult, because
there does not exist a large collection of manually created
nonsynonymous word pairs. Consequently, to create a set
of nonsynonymous word pairs, we adopt a random
shuffling technique. Specifically, we first randomly select
two synonymous word pairs from the set of synonymous
word pairs created above, and exchange two words
between word pairs to create two new word pairs. For
example, from two synonymous word pairs ðA;BÞ and
ðC;DÞ, we generate two new pairs ðA;CÞ and ðB;DÞ. If the
newly created word pairs do not appear in any of the word
net synsets, we select them as nonsynonymous word pairs.
We repeat this process until we create 3,000 nonsynon-
ymous word pairs. Our final training data set contains
6,000 word pairs (i.e., 3,000 synonymous word pairs and
3,000 nonsynonymous word pairs).

Next, we use the lexical pattern extraction algorithm
described in Section 3.3 to extract numerous lexical patterns
for the word pairs in our training data set. We experimen-
tally set the parameters in the pattern extraction algorithm
to L ¼ 5, g ¼ 2, G ¼ 4, and T ¼ 5. Table 1 shows the number
of patterns extracted for synonymous and nonsynonymous
word pairs in the training data set. As can be seen from
Table 1, the proposed pattern extraction algorithm typically
extracts a large number of lexical patterns. Figs. 5 and 6,
respectively, show the distribution of patterns extracted for
synonymous and nonsynonymous word pairs. Because of
the noise in web snippets such as, ill-formed snippets and
misspells, most patterns occur only a few times in the list of
extracted patterns. Consequently, we ignore any patterns
that occur less than five times. Finally, we deduplicate the
patterns that appear for both synonymous and nonsynon-
ymous word pairs to create a final set of 3,02,286 lexical
patterns. The remainder of the experiments described in the
paper use this set of lexical patterns.

We determine the clustering threshold � as follows: first,
we run Algorithm 1 for different � values, and with each set
of clusters, we compute feature vectors for synonymous
word pairs as described in Section 3.5. Let W denote the set
of synonymous word pairs (i.e., W ¼ fðPi;QiÞjðPi;Qi; yiÞ 2
S; yi ¼ 1g). Moreover, let fW be the centroid vector of all
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feature vectors representing synonymous word pairs,
which is given by

fW ¼
1

jW j
X

ðP;QÞ2W
fPQ: ð10Þ

Next, we compute the average Mahalanobis distance, Dð�Þ,
between fW and feature vectors that represent synonymous
as follows:

Dð�Þ ¼ 1

jW j
X

ðP;QÞ2WMahalaðfW; fPQÞ: ð11Þ

Here, jW j is the number of word pairs in W , and
mahalaðfW; fPQÞ is the Mahalanobis distance defined by

mahalaðfw; fPQÞ ¼ ðfw � fPQÞTC�1ðfw � fPQÞ: ð12Þ

Here, C�1 is the inverse of the intercluster correlation
matrix, C, where the ði; jÞ element of C is defined to be the
inner product between the vectors ci, cj corresponding to
clusters ci and cj. Finally, we set the optimum value of

clustering threshold, �̂, to the value of � that minimizes the
average Mahalanobis distance as follows:

�̂ ¼ arg min
�2½0;1�

Dð�Þ:

Alternatively, we can define the reciprocal of Dð�Þ as
average similarity, and minimize this quantity. Note that
the average in (11) is taken over a large number of
synonymous word pairs (3,000 word pairs in W ), which
enables us to determine � robustly. Moreover, we consider
Mahalanobis distance instead of euclidean distances,
because a set of pattern clusters might not necessarily be
independent. For example, we would expect a certain level
of correlation between the two clusters that represent an is-a
relation and a has-a relation. Mahalanobis distance con-
siders the correlation between clusters when computing
distance. Note that if we take the identity matrix as C in
(12), then we get the euclidean distance.

Fig. 7 plots average similarity between centroid feature
vector and all synonymous word pairs for different values
of �. From Fig. 7, we see that initially average similarity
increases when � is increased. This is because clustering of
semantically related patterns reduces the sparseness in
feature vectors. Average similarity is stable within a range
of � values between 0.5 and 0.7. However, increasing �

beyond 0.7 results in a rapid drop of average similarity. To
explain this behavior, consider Fig. 8 where we plot the
sparsity of the set of clusters (i.e., the ratio between
singletons to total clusters) against threshold �. As seen
from Fig. 8, high � values result in a high percentage of
singletons because only highly similar patterns will form
clusters. Consequently, feature vectors for different word
pairs do not have many features in common. The maximum
average similarity score of 1.31 is obtained with � ¼ 0:7,
corresponding to 32,207 total clusters out of which 23,836
are singletons with exactly one pattern (sparsity ¼ 0:74). For
the remainder of the experiments in this paper, we set � to
this optimal value and use the corresponding set of clusters.

We train an SVM with a radial basis function (RBF)
kernel. Kernel parameter � and soft-margin trade-off C are,
respectively, set to 0.0078125 and 1,31,072 using fivefold
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cross validation on training data. We used LibSVM4 as the
SVM implementation. Remainder of the experiments in the
paper use this trained SVM model.

4 EXPERIMENTS

4.1 Benchmark Data Sets

Following the previous work, we evaluate the proposed
semantic similarity measure by comparing it with human
ratings in three benchmark data sets: Miller-Charles (MC)
[10], Rubenstein-Goodenough (RG) [32], and WordSimilar-
ity-353 (WS) [33]. Each data set contains a list of word pairs
rated by multiple human annotators (MC: 28 pairs, 38
annotators, RG: 65 pairs, 36 annotators, and WS: 353 pairs,
13 annotators). A semantic similarity measure is evaluated
using the correlation between the similarity scores produced
by it for the word pairs in a benchmark data set and the
human ratings. Both Pearson correlation coefficient and
Spearman correlation coefficient have been used as evalua-
tion measures in previous work on semantic similarity. It is
noteworthy that Pearson correlation coefficient can get
severely affected by nonlinearities in ratings. Contrastingly,
Spearman correlation coefficient first assigns ranks to each
list of scores, and then computes correlation between the
two lists of ranks. Therefore, Spearman correlation is more
appropriate for evaluating semantic similarity measures,
which might not be necessarily linear. In fact, as we shall see
later, most semantic similarity measures are nonlinear.
Previous work that used RG and WS data sets in their
evaluations has chosen Spearman correlation coefficient as
the evaluation measure. However, for the MC data set,
which contains only 28 word pairs, Pearson correlation
coefficient has been widely used. To be able to compare our
results with previous work, we use both Pearson and
Spearman correlation coefficients for experiments con-
ducted on MC data set, and Spearman correlation coefficient
for experiments on RG and WS data sets. It is noteworthy
that we exclude all words that appear in the benchmark data
set from the training data created from WordNet as
described in Section 3.6. Benchmark data sets are reserved

for evaluation purposes only and we do not train or tune
any of the parameters using benchmark data sets.

4.2 Semantic Similarity

Table 2 shows the experimental results on MC data set for
the proposed method (Proposed); previously proposed web-
based semantic similarity measures: Sahami and Heilman
[2] (SH), Co-occurrence double-checking model [4], and
Normalized Google Distance [12]; and the four page counts-
based co-occurrence measures in Section 3.2. No Clust
baseline , which resembles our previously published work
[34], is identical to the proposed method in all aspects except
for that it does not use cluster information. It can be
understood as the proposed method with each extracted
lexical pattern in its own cluster. No Clust is expected to
show the effect of clustering on the performance of the
proposed method. All similarity scores in Table 2 are
normalized into ½0; 1� range for the ease of comparison, and
Fisher’s confidence intervals are computed for Spearman
and Pearson correlation coefficients. NGD is a distance
measure and was converted to a similarity score by taking
the inverse. Original papers that proposed NGD and SH
measures did not present their results on MC data set.
Therefore, we reimplemented those systems following the
original papers. The proposed method achieves the highest
Pearson and Spearman coefficients in Table 2 and outper-
forms all other web-based semantic similarity measures.
WebPMI reports the highest correlation among all page
counts-based co-occurrence measures. However, methods
that use snippets such as SH and CODC, have better
correlation scores. MC data set contains polysemous words
such as father (priest versus parent), oracle (priest versus
database system), and crane (machine versus bird), which
are problematic for page counts-based measures that do not
consider the local context of a word. The No Clust baseline
which combines both page counts and snippets outperforms
the CODC measure by a wide margin of 0.2 points.
Moreover, by clustering the lexical patterns, we can further
improve the No Clust baseline.

Table 3 summarizes the experimental results on RG and
WS data sets. Likewise on the MC data set, the proposed
method outperforms all other methods on RG and WS data
sets. In contrast to MC data set, the proposed method
outperforms the No Clust baseline by a wide margin in RG
and WS data sets. Unlike the MC data set which contains
only 28 word pairs, RG and WS data sets contain a large
number of word pairs. Therefore, more reliable statistics
can be computed on RG and WS data sets. Fig. 9 shows the
similarity scores produced by six methods against human
ratings in the WS data set. We see that all methods deviate
from the y ¼ x line, and are not linear. We believe this
justifies the use of Spearman correlation instead of Pearson
correlation by previous work on semantic similarity as the
preferred evaluation measure.

Tables 4, 5, and 6, respectively, compare the proposed
method against previously proposed semantic similarity
measures. Despite the fact that the proposed method does
not require manually created resources such as WordNet,
Wikipedia, or fixed corpora, the performance of the
proposed method is comparable with methods that use
such resources. The nondependence on dictionaries is
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particularly attractive when measuring the similarity
between named entities which are not well covered by
dictionaries such as WordNet. We further evaluate the
ability of the proposed method to compute the semantic
similarity between named entities in Section 4.3.

In Table 7, we analyze the effect of clustering. We
compare No Clust (i.e., does not use any clustering
information in feature vector creation), singletons excluded
(remove all clusters with only one pattern), and singletons
included (considering all clusters). From Table 7, we see in
all three data sets, we obtain the best results by considering
all clusters (singletons incl.). If we remove all singletons,
then the performance drops below No Clust. Note that out
of the 32,207 clusters used by the proposed method, 23,836
are singletons (sparsity ¼ 0:74). Therefore, if we remove all

singletons, we cannot represent some word pairs ade-
quately, resulting in poor performance.

Table 8 shows the contribution of page counts-based
similarity measures, and lexical patterns extracted from
snippets, on the overall performance of the proposed
method. To evaluate the effect of page counts-based co-
occurrence measures on the proposed method, we generate
feature vectors only using the four page counts-based co-
occurrence measures, to train an SVM. Similarly, to evaluate
the effect of snippets, we generate feature vectors only
using lexical pattern clusters. From Table 8, we see that on
all three data sets, snippets have a greater impact on the
performance of the proposed method than page counts. By
considering both page counts as well as snippets, we can
further improve the performance reported by individual
methods. The improvement in performance when we use
snippets only is statistically significant over that when we
use page counts only in RG and WS data sets. However, the
performance gain in the combination is not statistically
significant. We believe that this is because most of the
words in the benchmark data sets are common nouns that
co-occur a lot in web snippets. On the other hand, having
page counts in the model is particularly useful when two
words do not appear in numerous lexical patterns.

4.3 Community Mining

Measuring the semantic similarity between named entities
is vital in many applications such as query expansion [2],
entity disambiguation (e.g., namesake disambiguation), and
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community mining [46]. Because most named entities are

not covered by WordNet, similarity measures that are based

on WordNet cannot be used directly in these tasks. Unlike

common English words, named entities are being created

constantly. Manually maintaining an up-to-date taxonomy

of named entities is costly, if not impossible. The proposed

semantic similarity measure is appealing for these applica-

tions because it does not require precompiled taxonomies.
In order to evaluate the performance of the proposed

measure in capturing the semantic similarity between
named entities, we set up a community mining task. We
select 50 personal names from five communities: tennis

players, golfers, actors, politicians, and scientists,5 (10 names
from each community) from the open directory project
(DMOZ).6 For each pair of names in our data set, we
measure their similarity using the proposed method and
baselines. We use group-average agglomerative hierarchical
clustering (GAAC) to cluster the names in our data set into
five clusters.

Initially, each name is assigned to a separate cluster. In
subsequent iterations, group-average agglomerative clus-
tering process, merges the two clusters with highest
correlation. Correlation, Corrð�Þ between two clusters A
and B is defined as the following:

Corrð�Þ ¼ 1

2

1

j�jðj�j � 1Þ
X
ðu;vÞ2�

simðu; vÞ:

Here, � is the merger of the two clusters A and B. j�j
denotes the number of elements (persons) in � and simðu; vÞ
is the semantic similarity between two persons u and v in �.
We terminate GAAC process when exactly five clusters are
formed. We adopt this clustering method with different
semantic similarity measures simðu; vÞ to compare their
accuracy in clustering people who belong to the same
community.

We employed the B-CUBED metric [47] to evaluate the
clustering results. The B-CUBED evaluation metric was
originally proposed for evaluating cross-document corefer-
ence chains. It does not require the clusters to be labeled.
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Comparison with Previous Work on MC Data Set
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We compute precision, recall, and F -score for each name in
the data set and average the results over the data set. For
each person p in our data set, let us denote the cluster that p
belongs to by CðpÞ. Moreover, we use AðpÞ to denote the
affiliation of person p, e.g., Að“Tiger Woods”Þ ¼ “Tennis
Player.” Then, we calculate precision and recall for person
p as

PrecisionðpÞ ¼ No: of people in CðpÞ with affiliation AðpÞ
No: of people in CðpÞ ;

RecallðpÞ ¼ No: of people in CðpÞ with affiliation AðpÞ
Total No: of people with affiliation AðpÞ :

Since, we selected 10 people from each of the five
categories, the total number of people with a particular
affiliation is 10 for all the names p. Then, the F -score of
person p is defined as

FðpÞ ¼ 2� Precision ðpÞ �RecallðpÞ
PrecisionðpÞ þ RecallðpÞ :

Overall precision, recall, and F -score are computed by
taking the averaged sum over all the names in the data set.

Precision ¼ 1

N

X
p2Data Set

PrecisionðpÞ

Recall ¼ 1

N

X
p2Data Set

RecallðpÞ

F -Score ¼ 1

N

X
p2Data Set

FðpÞ:

Here, Data Set is the set of 50 names selected from the open
directory project. Therefore, N ¼ 50 in our evaluations.

Experimental results are shown in Table 9. The proposed
method shows the highest entity clustering accuracy in
Table 9 with a statistically significant (p � 0:01 Tukey HSD)
F-score of 0.86. Sahami and Heilman’s [2] snippet-based
similarity measure, WebJaccard, WebDice, and WebOver-
lap measures yield similar clustering accuracies. By cluster-
ing semantically related lexical patterns, we see that both
precision as well as recall can be improved in a community
mining task.

5 CONCLUSION

We proposed a semantic similarity measure using both page
counts and snippets retrieved from a web search engine for
two words. Four word co-occurrence measures were
computed using page counts. We proposed a lexical pattern
extraction algorithm to extract numerous semantic relations
that exist between two words. Moreover, a sequential pattern
clustering algorithm was proposed to identify different
lexical patterns that describe the same semantic relation.
Both page counts-based co-occurrence measures and lexical
pattern clusters were used to define features for a word pair.
A two-class SVM was trained using those features extracted
for synonymous and nonsynonymous word pairs selected
from WordNet synsets. Experimental results on three
benchmark data sets showed that the proposed method
outperforms various baselines as well as previously pro-
posed web-based semantic similarity measures, achieving a
high correlation with human ratings. Moreover, the pro-
posed method improved the F -score in a community mining
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task, thereby underlining its usefulness in real-world tasks,

that include named entities not adequately covered by

manually created resources.
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