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Abstract—The World Wide Web includes semantic relations of numerous types that exist among different entities. Extracting the

relations that exist between two entities is an important step in various Web-related tasks such as information retrieval (IR), information

extraction, and social network extraction. A supervised relation extraction system that is trained to extract a particular relation type

(source relation) might not accurately extract a new type of a relation (target relation) for which it has not been trained. However, it is

costly to create training data manually for every new relation type that one might want to extract. We propose a method to adapt an

existing relation extraction system to extract new relation types with minimum supervision. Our proposed method comprises two

stages: learning a lower dimensional projection between different relations, and learning a relational classifier for the target relation

type with instance sampling. First, to represent a semantic relation that exists between two entities, we extract lexical and syntactic

patterns from contexts in which those two entities co-occur. Then, we construct a bipartite graph between relation-specific (RS) and

relation-independent (RI) patterns. Spectral clustering is performed on the bipartite graph to compute a lower dimensional projection.

Second, we train a classifier for the target relation type using a small number of labeled instances. To account for the lack of target

relation training instances, we present a one-sided under sampling method. We evaluate the proposed method using a data set that

contains 2,000 instances for 20 different relation types. Our experimental results show that the proposed method achieves a

statistically significant macroaverage F -score of 62.77. Moreover, the proposed method outperforms numerous baselines and a

previously proposed weakly supervised relation extraction method.

Index Terms—Relation extraction, domain adaptation, Web mining

Ç

1 INTRODUCTION

THE World Wide Web contains information related to
numerous real-world entities (e.g., persons, locations,

organizations, etc.) interconnected by various semantic
relations. Accurately detecting the semantic relations that
exist between two entities is of paramount importance for
numerous tasks on the Web such as information retrieval
(IR) [1], information extraction (IE) [2], and social network
extraction [3]. For example, to improve coverage in
information retrieval, a query about a particular person
can return documents describing the various semantic
relations that the person under consideration has with
other related entities. Recent work on relation extraction has
demonstrated that supervised machine learning algorithms
coupled with intelligent feature engineering provide state-
of-the-art solutions to this problem [4], [5], [6]. However,
supervised learning algorithms depend heavily on the
availability of adequate labeled data for the target relation
types that must be extracted. Considering the potentially
numerous semantic relations that exist among entities on

the Web, it is costly to create labeled data manually for each
new relation type that we want to extract. Instead of
annotating a large set of training data manually for each
new relation type, it would be cost effective if we could
somehow adapt an existing relation extraction system to
those new relation types using a small set of training
instances. As described in this paper, we examine relation
adaptation—how to adapt an existing relation extraction
system that is trained to extract some specific relation types,
to extract new relation types in a minimally supervised
setting. We designate the existing relation types on which a
relation extraction system has been trained as source
relations, whereas the novel relation type to which we
must adapt is called the target relation.

We must overcome three fundamental challenges when
adapting a relation extraction system to new relation types.
First, a semantic relation that exists between two entities can
be expressed using more than one lexical or syntactic
pattern. For example, the acquiredBy relation that exist
between two companies X and Y where the company X is
acquired by the company Y can be expressed using lexical
patterns such as X acquires Y, X buys Y, and X purchases Y. To
classify a relation accurately, we must recognize the
different ways in which it can be expressed on the Web.
Second, the types of relations are strongly dependent on the
application domain. For example, in the financial domain,
we might be interested in extracting relations such as
acquiredBy (between two companies) and ceoOf (between a
company and a person), whereas, in the movie domain we
might be interested in extracting relations such as actedIn
(between an actor and a movie) and directed (between a
director and a movie). Therefore, a classifier trained on the
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financial domain might not be applied directly to classify
relations in the movie domain because the two domains
have different sets of relations. Third, the labeled instances
for the target relation are markedly fewer than those for the
source relations. It is challenging to learn a classifier for the
target relation type using such an unbalanced data set.

We propose a two-stage approach to adapt an existing
relation extraction system to new relation types. First, to
represent a semantic relation R that exist between two
entities A and B, we extract lexical and syntactic patterns
from contexts in which those two entities co-occur. Our
proposed method is inspired by the observation that
different semantic relations share some lexical and syntactic
patterns. For example, the lexical pattern X direct Y holds
between a company Y and its CEO X, as well as between a
country Y and its leader (e.g., prime minister or president)
X. We designate patterns that appear in different relation
types as relation-independent (RI) patterns, whereas patterns
that appear only in a particular relation type are called
relation-specific (RS) patterns. To identify relation-specific
and relation-independent patterns, we propose the use of
the entropy of a pattern over the distribution of entity pairs.
If a pattern is distributed uniformly over entity pairs that
belong to numerous semantic relations, then such patterns
will have a high entropy. We then create a bipartite graph
between relation-specific and relation-independent patterns
and perform spectral clustering on this graph to compute a
lower dimensional mapping between relation-specific and
relation-independent patterns. Spectral clustering attempts
to minimize the normalized cut on the bipartite graph
between relation specific and relation independent patterns,
thereby aligning the two types of patterns in a lower
dimensional space. The clusters formed by this process
capture lexical patterns from source relation types as well as
the target relation type. Consequently, we can use the lower
dimensional mapping created from this process to project
feature vectors to train a relational classifier.

In the second stage, we train a classifier for the target
relation type using training instances for both source and
target relation types. A fundamental problem in training a
relational classifier for a target relation type for which only a
few labeled instances are available is that, because of the
numerous source relation instances, the finally trained
classifier becomes biased toward the source relation types.
Any information related to the target relation type is
overshadowed by the numerous source relation instances.
To solve this problem, we propose a method that first
samples a subset of source relation instances. Then we use
that subset to train a classifier for the target relation type. This
method reduces the imbalance between source and target
relation data sets, thereby improving the classification
accuracy for the target relation type.

To evaluate the performance of the proposed method to
adapt to numerous relation types, we create a data set that
contains 2,000 entity pairs for 20 different relation types
such as actedIn (between an actor and a movie), leaderOf
(between a leader and an organization/country), directedIn
(between a film director and a movie), etc. We compare the
proposed method against various baselines and a pre-
viously proposed weakly supervised relation classification

method. In our experiments, the proposed method sig-
nificantly outperforms other methods compared herein,
thereby demonstrating its capability of adapting accurately
to numerous relation types.

The remainder of this paper is organized as follows: in
Section 2.1, we formally define the relation adaptation
problem. We provide a motivating example for the
proposed method in Section 2.2. The procedure for
representing semantic relations using lexical and syntactic
patterns is described in Section 2.3. Three strategies to
identify relation-specific and relation-independent patterns
are presented in Section 2.4. In Section 2.5, we construct a
bipartite graph between relation-specific and relation-
independent pattern. In Section 2.6, we perform spectral
clustering on the created bipartite graph to compute a latent
relational mapping between relation-specific and relation-
independent features. A one-sided under sampling method
is proposed in Section 2.7 to select a subset of source
relation instances which are used together with target
relation instances to train a classifier. In Section 3, we
conduct a series of experiments using a data set that
contains numerous relation types to evaluate the ability of
the proposed method to classify novel target relation types.
Finally, we present the related work in Section 4 and
conclude the paper.

2 RELATION ADAPTATION

2.1 Problem Definition

Given two entities A and B, we define relation extraction as
the task of selecting the relation R, that exists between A
and B, from a given set of relation types. Note that this
definition of relation extraction is different from that used,
for example in bootstrapping and Open IE systems
(discussed later in Section 4), because we assume that we
already know the set of relation types from which we must
select a relation type for a given entity pair. Moreover,
entity pair ðA;BÞ is regarded as an instance of the relation R.
For example, the entity pair (Steven Spielberg, Firelight) is an
instance of the relation directed. According to our defini-
tion, relation extraction can be modeled as a multiclass
classification problem. For instance, we can label entity
pairs for each of the relation types that we want to extract,
and use the labeled entity pairs to train a supervised
multiclass classifier.

Definition. We define Relation Adaptation as the
problem of learning a classifier for a target relation type
T , for which we have a few entity pairs as training
instances, given numerous entity pairs for some N source
relation types, S1; . . . ; SN . We use the notation � ¼
fS1; . . . ; SN; T g to denote the set of all relations. A particular
relation type from this set is denoted by R (i.e R 2 �). An
entity pair that consists of two entities A and B is denoted
as ðA;BÞ. Moreover, we use the notation ðA;BÞ 2 R to
indicate that the relation R exists between two entities A
and B.
The above-mentioned definition of relation adaptation
assumes the availability of labeled data for source relations
as well as for the target relation. However, the amount of
labeled data available for the target relation is assumed to
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be very small, limited to several seed instances. We do not
assume the availability of unlabeled data in this work.

Note that there might exist more than one relation
between an entity pair. For example, both the ceoOf and
founderOf relations exist between the two entities Steve Jobs
and Apple. It is possible to extend our definition of relation
adaptation to incorporate multiple relations between
entities by considering multiclass multilabel classifiers.
In this paper, we limit ourselves to assigning a single
relation type to a given entity pair.

On the other hand, there might not exist any semantic
relation between two entities. One solution to this problem
of filtering out entity pairs that are not related is to train a
binary classifier as a preprocessing step that determines
whether a semantic relation exists or not between two
entities. Subsequently, entity pairs that are marked to be
related by this binary classifier can be further processed by
a relation adaptation method to assign a relation type. In
this paper, we assume that all entity pairs contain some
semantic relation and do not attempt filter out entity pairs
with no relations.

2.2 A Motivating Example

Before we explain the proposed method in greater detail, let
us first consider a motivating example that portrays the
intuition underlying the proposed method. Consider two
relations, leaderOf and ceoOf, as shown in Table 1. The
leaderOf relation exists between a country and its current
leader, whereas the ceoOf relation exist between a company
and the chief executive officer of that company. Assuming
that we are given contexts in which instances of the relation
leaderOf occurs, we intend to train a relational classifier for
the ceoOf relation. The two relations under consideration
have very different distributions. Consequently, a relational
classifier trained on one relation might not correctly
identify the other relation. In Table 1, two contexts are
provided for the leaderOf relation instance entity pair
(George Bush, US) and for the ceoOf relation instance entity
pair (Steve Jobs, Apple).

To represent a semantic relation, we extract lexical and
syntactic patterns as described later in Section 2.3. To
illustrate our example, we assume that we extract the
lexical patterns shown within brackets alongside with
contexts in Table 1. The pattern, X direct Y appears in both
relation types. We designate such patterns as relation-
independent patterns. However, patterns such as Y president
X and X ceo Y appear in only one of the two relation types.
We designate such patterns as relation-specific patterns. For
relation adaptation, we assume that we have sufficiently
numerous source relation entity pairs, but only a few entity

pairs for the target relation. Therefore, it is particularly
challenging to learn proper weights for the target relation-
specific patterns such as X ceo Y. However, relation-specific
patterns in the target relation are extremely useful when
determining whether a particular entity pair belongs to the
target relation.

As a solution to this mismatch between source and target
relation-specific patterns, we propose a method to find a
mapping between source relations and the target relation
using relation-independent patterns as pivots. First, Fig. 1
shows that we create a bipartite graph between relation-
specific patterns and relation-independent patterns. Each
pattern is represented as a vertex in the bipartite graph.
Two vertices are connected by a weighted undirected edge
if the corresponding patterns are extracted from the same
entity pair. For instance, in Table 1, the two patterns X direct
Y and Y president X are extracted from contexts for the entity
pair (George Bush, US). Therefore, those patterns are
connected by an edge in the bipartite graph portrayed in
Fig. 1. Similarly, the relation specific pattern X ceo Y and the
relation independent pattern X direct Y are connected by an
edge because those two patterns are extracted from the
contexts for the same entity pair (Steve Jobs, Apple). Next,
we perform spectral clustering on this bipartite graph to
compute a latent mapping between relation-specific and
relation-independent patterns. This mapping is then used to
project feature vectors to train a relation classifier.

Several important points must be discussed. We must
determine how to extract lexical and syntactic patterns to
represent the semantic relations expressed by an entity pair,
how to identify relation-specific and relation-independent
patterns, how to weight the edges on the bipartite graph
and how to construct a low-dimensional mapping using
relation-specific and relation-independent patterns, and
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TABLE 1
Example Contexts for Two Relation Types: leaderOf and ceoOf

Entities between which the specified relation exist are marked in boldface. Words that contribute to important lexical patterns are shown in italic.
Some lexical patterns extracted by the proposed method are shown within squared brackets.

Fig. 1. A bipartite graph between relation-specific patterns and
relation-independent patterns shown in Table 1.
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how to train a classifier with a few target relation instances.
The following sections present discussions of these points.

2.3 Relation Representation

The contexts in which two entities A and B co-occur on the
Web provide useful clues to the relations existing between
those entities. We use the term context to refer a window of
text in which two entities co-occur. A context might not
necessarily be a complete sentence. Retrieving contexts in
which two entities co-occur has been studied in previous
works investigating the relations between entities on the
Web [7], [8], [9]. Two main approaches are identifiable.
First, given a large Web crawl, we can select textual
windows that contain the two entities A and B in web
documents [7], [9] However, disadvantages of this method
include the high costs of crawling, storing, and processing a
large text corpus [10]. Moreover, if the crawled data is
insufficient, then the entities might not co-occur, which in
turn engenders data sparseness. A second approach is to
issue various queries including the two entities to an
existing Web search engine and to retrieve search engine
snippets (or entire web pages) that contain both entities [8].
This approach is cheaper because it obviates the need to
crawl, store or index Web documents. Unfortunately
however, the results that can be retrieved from a Web
search engine are often of a limited number. Numerous
solutions have been proposed in previous work to
circumvent this problem [8], [10]. In our work, we assume
that we are provided with contexts in which entities co-
occur and only specifically examine the relation adaptation
problem. For the experiments described in this paper we
use the Yahoo BOSS API to retrieve contexts from the Web
following the method described in [8].

Given a pair of entities (A, B), the first step is to express
the relation between A and B using some feature repre-
sentation. Lexical or syntactic patterns have been success-
fully used in numerous natural language processing tasks
involving relation extraction such as extracting hypernyms
[11], [12] or meronyms [13], question answering [14], and
paraphrase extraction [15]. Following the previous work on
relation extraction between entities, we use lexical and
syntactic patterns extracted from the contexts in which two
entities co-occur to represent the semantic relation that
exists between those entities.

First, we lemmatize and part-of-speech (POS) tag the
contexts using Python Natural Language Processing Tool
Kit (NLTK).1 Table 2 presents an example in which we
extract patterns from a context selected for the two entities,
Adobe Systems and Macromedia, between which the relation

acquiredBy exist. Next, both in the surface form and POS
tag sequence, we replace the first entity (i.e., Adobe Systems)
with a placeholder variable X, and the second entity
(i.e., Macromedia) with a different placeholder variable Y.
In relation adaptation, the entity pairs are given as input.
We need only to detect the relations between those entities.
Therefore, we need not recognize entities in a context. We
use the subsequence pattern extraction algorithm proposed
by Bollegala et al. [16] to extract lexical and syntactic
patterns from contexts. Next, we briefly outline the steps in
this algorithm. (refer to [16] for additional details).

We select subsequence patterns from both surface forms
of the sentences and POS tag sequences that satisfy the
following conditions as patterns.

1. A subsequence must contain exactly one occurrence
of each X and Y (i.e., exactly one X and one Y must
exist in a subsequence).

2. The maximum length of a subsequence is � tokens.
3. A subsequence is allowed to have gaps (i.e., one or

more skipped tokens). However, we do not allow
gaps of more than g tokens. Moreover, the total
length of all gaps in a subsequence should not
exceed G tokens.

4. We expand all negation contractions in a sentence.
For example, didn’t is expanded to did not. We do not
skip the word not when generating subsequences.
For example, this condition ensures that from X is
not a Y, we do not produce the pattern X is a Y.

We designate the subsequences of surface forms pro-
duced by the procedure described above as lexical patterns.
The corresponding POS tags of a lexical pattern is called a
syntactic pattern. The values of parameters � , G, and g are
set respectively to 5, 2, and 4 following [16].

The above-described subsequence pattern extraction
algorithm presents several interesting properties. First, it
considers all the words in a context, and is not limited to
extracting patterns only from the mid-fix (i.e., the portion of
text in a context that appears between a pair of entities).
Moreover, the consideration of gaps enables us to capture
relations between entities located at some distance in a
context. We use prefixspan algorithm [17] to generate the
subsequences efficiently. The constraints (1)-(4) listed above
are used to prune the search space, thereby reducing
the number of subsequences generated by prefixspan. Some
lexical and syntactic patterns extracted using the proposed
method are shown in Table 2 (not all patterns are shown
because of the limited availability of space). Finally, all
lexical and syntactic patterns extracted from all contexts in
which two entities A and B co-occur are arranged in
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a pattern frequency vector ~xAB to represent the entity pair
(A, B). The elements of ~xAB correspond to, fð�;A;BÞ, the
total number of times a pattern � is extracted from contexts
in which A and B co-occur. It is analogous to the term
frequency vector used in IR.

2.4 Relation-Specific versus Relation-Independent
Patterns

Once we express the relations that exist between entities
using lexical and syntactic patterns as described in the
previous section, we compute the correspondence between
patterns that express different semantic relations. First, we
must identify which patterns are specific to a particular
relation type. We present three strategies to identify
relation-specific patterns.

The first strategy is to select patterns that occur more
than � times in all relation types as relation independent
patterns. Here, the total frequency of a pattern � in a
particular relation type R is defined as the sum of the
frequencies of � in all entity pairs that belong to R
(i.e.,

P
ðA;BÞ2R fð�;A;BÞ). Given the number l of relation

independent patterns to be selected, we set � to the largest
number such that we can get at least l relation-independent
patterns. Given l, � is uniquely determined.

The second strategy for selecting relation-independent
patterns is based on the mutual information (MI) between a
pattern and a relation type. Mutual information is a
measure of the mutual dependence between two random
variables. In previous works examining cross-domain
sentiment classification, mutual information between a
feature and a domain label is used as a criterion to select
domain-independent features [18], [19]. The (pointwise)
mutual information Ið�;RÞ between a pattern � and a
relation type R is defined as follows:

Ið�;RÞ ¼ pð�;RÞ log2

pð�; RÞ
pð�ÞpðRÞ

� �
: ð1Þ

Here, pð�;RÞ is the joint probability of a pattern � and a
relation R; it is given as

pð�;RÞ ¼
P
ðA;BÞ2R fð�;A;BÞP

�2�

P
R2�

P
ðA;BÞ2R fð�;A;BÞ

: ð2Þ

Here, we use � to denote the set of all (lexical and syntactic)
patterns extracted for all entity pairs in all relations in �.
Moreover, the total number of patterns in � is denoted by n.
We can compute the marginal probabilities pð�Þ and pðRÞ in
(1) by marginalizing the joint probability pð�;RÞ in (2),
respectively over R and �. To select relation-independent
patterns, we consider the sum of mutual information given
by (1) over the set of relations � (i.e.,

P
R2� Ið�;RÞ) for each

pattern. The smaller this value is, the more likely that the
pattern � is relation-independent. We select the l number of
patterns with the lowest mutual information as relation-
independent patterns.

We propose a third strategy for selecting relation
independent patterns using the entropy of a pattern over
the distribution of entity pairs. The proposed strategy is
inspired by the fact that if a pattern is relation-independent,
then its distribution over the entity pairs tends to become
more uniform. However, if a pattern is relation-specific,

then its distribution is concentrated over a small set of
entity pairs that belong to a specific relation type. The
entropy of a pattern increases as its distribution becomes
more uniform. The entropy, Hð�Þ, of a pattern � is
computed as

Hð�Þ ¼
X
R2�

X
ðA;BÞ2R

pð�;A;BÞ log2 pð�;A;BÞ: ð3Þ

Here, the joint probability between a pattern � and an entity
pair ðA;BÞ is given as

pð�;A;BÞ ¼ fð�;A;BÞP
�2�

P
R2�

P
ðA;BÞ2R fð�; A;BÞ

: ð4Þ

Fig. 2 presents an example in which we plot the distribu-
tions over entity pairs (numeric ids are assigned to entity
pairs and grouped by their relation types for illustrative
purposes) for four lexical patterns. From Fig. 2, it is
apparent that relation-specific patterns such as Y directed
by X (directed relation), and Y wife X (isMarriedTo relation)
are concentrated over a small set of entity pairs, whereas
relation-independent patterns such as Y from X, and Y for X

are distributed over a large set of entity pairs. Conse-
quently, relation-independent patterns have higher entropy
values than relation-specific patterns do.

2.5 Bipartite Graph Construction

For the set of all patterns � (total no. of patterns, j�j ¼ n)
extracted by the pattern extraction method described in
Section 2.3 for all entity pairs in source relations and the
target relation (i.e., �), we can use one of the strategies
described in Section 2.4 to identify a set �RS � � of
relation-specific patterns, and a set �RI � � of relation-
independent patterns. Here, �RS [ �RI ¼ � and �RS \
�RI ¼ �. In this section, we construct a bipartite graph,
G ¼ ðVRS [ VRI; EÞ between relation-specific and relation-
independent patterns to represent the intrinsic relationship
between those patterns. Each vertex in VRS corresponds to
a relation-specific pattern, and each vertex in VRI corre-
sponds to a relation-independent pattern. A vertex in VRS
(corresponding to a relation-specific pattern �i 2 �RS) is
connected to a vertex in VRI (corresponding to a relation-
independent pattern �j 2 �RI) by an undirected edge
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eij 2 E. Note that there are no intraset edges connecting
vertices in VRS and VRI . Moreover, each edge eij 2 E is
associated with a nonnegative weight mij, that measures
the strength of association between the corresponding
patterns �i and �j. We set mij to the number of different
entity pairs from which both �i and �j are extracted. If two
patterns are extracted from numerous entity pairs, then
those patterns can be considered as semantically similar
according to the distributional hypothesis [20]. Previous
work on pattern clustering [21] and relation extraction [16]
have modeled patterns using their distributions over entity
pairs to compute distributional similarity. Edge weights
mij are represented collectively by an edge-weight matrix
M of the bipartite graph G. Fig. 1 portrays a bipartite
graph constructed from the example shown in Table 1. We
use the constructed bipartite graph to model the intrinsic
relationship between relation-specific and relation-inde-
pendent patterns.

It is noteworthy that, aside from using the number of
different entity pairs from which two patterns are extracted,
we can use numerous other methods to measure the
strength of association, mij, between two patterns. For
example, we can use the distributional similarity between
the two patterns over the entity pair distributions, or use
popular co-occurrence measures such as pointwise mutual
information, Jaccard coefficient, Dice coefficient, etc. In this
paper, for simplicity, we use the number of different entity
pairs from which two patterns are extracted as the edge-
weighting measure. We want to show that by constructing a
simple bipartite graph and applying spectral clustering
techniques on it, we can accurately map patterns from
source relations to the target relation.

2.6 Relational Mapping

In this section, we propose an algorithm based on spectral
graph theory [22] to find a lower dimensional mapping for
patterns extracted from different relation types. This lower-
dimensional mapping is used to project pattern frequency
vectors created for entity pairs, thereby reducing the
mismatch between patterns extracted for source relations
and the target relation. There are two main assumptions in
spectral graph theory: 1) if two vertices in a graph are
connected to many common vertices, then those two
vertices must be similar, and 2) there exists a low-
dimensional latent space underlying a complex graph, in
which two vertices are mutually similar if they are also
similar in the original graph. Based on those two assump-
tions, spectral graph theory has been applied to widely
various problems such as document clustering [23],
dimensionality reduction [24], [25], and object recognition
[26], [27]. In relation adaptation, we assume that: 1) if two
relation-specific patterns are connected to many common
relation-independent patterns, then those relation-specific
patterns must be mutually similar, 2) if two relation-
independent patterns are connected to many common
relation-specific patterns, then those relation-independent
patterns must be mutually similar, and 3) there exist a lower
dimensional latent space in which similar patterns in the
original space are located close together in this lower
dimensional space. Under those assumptions, we can use
spectral graph theory to find a latent mapping between

patterns extracted for source and target relation types, as
shown in Algorithm 1.

Algorithm 1. Mapping patterns extracted from source
relations and the target relation to a lower dimensional

space.

Input: An edge-weight matrix, M 2 IRðn�lÞ�l of a bipartite

graph GðVRS [ VRI; EÞ, and the number of clusters

(latent dimensions) k.

Output: A projection matrix, U 2 IRn�k.

1: Compute the affinity matrix, A 2 IRn�n, of the bipartite

graph G as A ¼
�

0 M
MT 0

�
.

2: Compute the Laplacian, L, of the bipartite graph G as

L ¼ I�D�1A, where the diagonal matrix D has

elements Dii ¼
P

j Aij, and I 2 IRn�n is the unit matrix.

3: Find the eigenvectors corresponding to the k smallest

eigenvalues of L, ~u1; . . . ; ~uk, and arrange them in
columns to form the projection matrix

U ¼ ½~u1; . . . ;~uk� 2 IRn�k.

4: return U

Given as input an edge-weight matrix M for the
bipartite graph G constructed in Section 2.5, and dimen-
sionality kð< nÞ of the latent space, Algorithm 1 returns a
projection matrix from the original n dimensional pattern
space to a k-dimensional latent space. The ði; jÞ element of
the edge-weight matrix M represents the weight of the
edge that connects a relation-specific pattern �i to a
relation-independent pattern �j. The first step in Algo-
rithm 1 is to construct the affinity matrix A of the overall
bipartite graph G. Because no edges exist among vertices
that belong to VRS and VRI , the affinity matrix A for the
entire bipartite graph can be constructed using M and the
zero matrix 0 as shown in Line 1 in Algorithm 1. Next, we
compute the normalized Laplacian L for the bipartite graph
(Line 2) and compute the eigenvectors corresponding to the
k smallest eigenvalues of L (Line 3). In previous work on
spectral clustering [28], it has been shown that the
k smallest eigenvectors of the Laplacian matrix can be
used to cluster a set of data points by mapping them into a
k-dimensional space spanned by those eigenvectors. More-
over, the k smallest eigenvectors act as the continuous
solution of the cluster membership indicators. Conse-
quently, we arrange the k smallest eigenvectors, ~u1; . . . ;~uk
in columns to construct a projection matrix U (Line 3). It is
noteworthy that the smallest eigenvector of L is always a
constant unit vector and does not provide any useful
information related to the cluster membership. Conse-
quently, we ignore this constant eigenvector when selecting
the k smallest eigenvectors to construct U. Once the
projection matrix U is computed as described in Algo-
rithm 1, we use it to project entity pairs that belong to
different relation types into a common latent subspace.
Specifically, for an entity pair ðA;BÞ represented by a
pattern-frequency vector ~xAB, its projection into the
k-dimensional latent space is given as U~xAB.

We implemented the stochastic matrix decomposition
algorithm proposed by Halko et al. [29] to find the smallest
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k eigenvectors directly without computing the entire
spectrum of the Laplacian and then selecting only the
smallest k eigenvectors. Moreover, it can be shown that
the eigenvectors of the Laplacian L 2 IRn�n can be con-
structed by computing the left and right singular vectors in
the singular value decomposition of the matrix
M 2 IRðn�lÞ�l, which has much smaller dimensions than L

(see [23] for the proof). Together these techniques enable us
to compute the projection matrix U efficiently from
numerous lexical and syntactic patterns.

2.7 Relation Classification

The low-dimensional projection computed in the previous
section reduces the mismatch between patterns in source
and target relation types, thereby enabling us to train a
classifier for the target relation type using labeled entity
pairs for both source and target relation types. However, we
must overcome two challenges before we can use the
projected vectors to train a classifier for a target relation
type: loss of information because of imperfect projections, and
imbalance between source and target relation training data sets.
Next, we discuss each challenge in detail and propose
solutions to overcome them.

First, the criterion for selecting relation-independent and
relation-specific patterns might not be perfect, thereby
introducing some noise to the created bipartite graph. For
that reason, the computed projection matrix might not
accurately project features in the dimensionality reduction
step. To compensate for the loss of information because of
imperfect feature projection, we augment all the patterns in
the original vector ~xAB 2 IRn�1 to the projection U~xAB 2
IRk�1 to construct a new representation ~~xAB � IRðnþkÞ�1 for
an entity pair ðA;BÞ as

~~xAB ¼ ½~xAB; �U~xAB�: ð5Þ

The single scalar parameter � is useful to balance the
tradeoff between original and projected features in the new
representation. Using a set of heldout data, we set � such
that the average L1 norm on the source relation projection
vectors U~x is equal to that of the original vectors ~x. This
new representation retains all the features (pattern frequen-
cies) in the original vector in addition to the projected
features, thereby overcoming any disfluencies attributable
to potential imperfect projections.

Second, in relation adaptation, the number of target
relation training instances (entity pairs) is significantly
smaller than that of the source relations. Given such an
unbalanced training data set, most supervised classification
algorithms treat the minority class (target relation) instances
as noise or outliers. Therefore, learning a classifier for a
target relation type which has only a few instances is
difficult in practice. To overcome this problem, we use a
one-sided undersampling algorithm (Algorithm 2), which
first selects a subset of the source relation training data and
then uses that subset to train a multiclass classifier. This
algorithm was first proposed by Tomek [30] as a modifica-
tion to the condensed nearest neighbor (CNN) method in
pattern recognition. One-sided undersampling methods
have been used to select a subset of the majority class in

previous work investigating the problem of machine

learning with unbalanced data sets [31], [32].

Algorithm 2. One-sided undersampling algorithm to select

a subset of source relation instances.

Input: Set � that contains entity pairs for all source

relations S1; . . . ; SN and the target relation T .

Output: A set � � �.
1: Initialize � to the set containing all entity pairs of T .

2: Randomly select an entity pair from each source

relation Si and add to �.

3: Classify � with the 1-NN rule using the instances in �,

and compare the assigned relation labels with the

original ones.

4: Move all misclassified instances from � into �.

5: return �

Algorithm 2 takes a set, � ¼ fðA;BÞjðA;BÞ 2 R; 8R 2
�g, of all the entity pairs for source relations and the target

relation, and creates a set � � � that contains all target

relation entity pairs and a subset of the source relation

entity pairs. In Algorithm 2, we first select all target

relation entity pairs as the set � (Line 1). In relation

adaptation problem setting, the number of target relation

entity pairs is small and we do not sample from the target

relation (hence the name one-sided sampling). Next, we

randomly select an entity pair from each source relation

type and include those entity pairs in � (Line 2). We then

use the single nearest neighbor (1-NN) rule to classify the

entity pairs in � using the entity pairs in � as the labeled

instances (Line 3). We use the augmented representation

given in (5) to represent an entity pair and measure the

euclidean distance between feature vectors to identify

the nearest neighbors. All misclassified entity pairs in �

are then moved to � (Line 4). After this operation, we

obtain a set � that is consistent with the set �, although it

contains fewer source domain entity pairs, thereby decreas-

ing the imbalance between source and target relation entity

pairs. Note that the sampling process is conducted once for

each target relation type.
After selecting a subset of entity pairs from each of the

source relation types, we train a multiclass classifier for the

source and target relation types. Specifically, we represent

each entity pair by a feature vector where we use lexical

and syntactic patterns that co-occur with that entity pair as

features. For example, given an entity pair ðA;BÞ, we use

the co-occurrence frequencies fð�;A;BÞ for each pattern �

as features. Feature vectors are normalized to unit length

(L2 norm) so that we can equally represent both entity pairs

that co-occur a lot as well as entity pairs that co-occur only

a few times. Each feature vector is assigned a relational

label according to the relation that exist between the two

entities in the entity pair. We then train a multiclass

classifier to learn a classification model to classify each of

the source relation types and the target relation type. In

general, any classification algorithm can be used to train

from the feature vectors. For simplicity, we use multiclass

logistic regression as our classifier.2 The L2 regularization
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parameter is set to its default value of 1 and is not tuned for
any of our experiments.

3 EXPERIMENTS

3.1 Data Set

To evaluate the proposed method, we select 20 relation
types that have been used frequently for evaluating relation
extraction systems [2], [16], [33] from the Yet Another Great
Ontology (YAGO) ontology.3 YAGO is a large semantic
knowledge base that includes over two million entities such
as persons, organizations, and cities. Moreover, it contains
over 20 million facts about those entities. YAGO is
automatically created from Wikipedia and uses WordNet
to structure information. The YAGO ontology has a high
level (on average 95 percent) of manually confirmed
accuracy, which makes it a suitable gold standard for
evaluating relations between entity pairs on the Web [34].
For each selected relation, we randomly selected 100 entity
pairs listed for that relation in the YAGO ontology. Overall,
the data set contains 2,000 (20 relations� 100 instances)
entity pairs. Some of those relation types are: actedIn
(actor-movie), ceoOf (ceo-company), acquiredBy (company-
company), and directed (director-movie).

The data set contains various relations that exist between
entities of numerous types on the Web. We use the Yahoo
BOSS search API4 to download contexts for the entity pairs
in the data set. Specifically, we construct numerous
contextual queries that include the two entities in an entity
pair and download snippets that contain those entities
using the method proposed in [8]. On average, we have
about 7,000 snippets for a pair of entities in the data set. The
data set and the source code for the proposed method is
publicly available.5

3.2 Experimental Settings

For each relation type R, we randomly allocated its
100 instances (entity pairs) into three groups: 60 instances
as training instances when R is a source relation,
10 instances as training instances when R is a target
relation, and 30 instances as test instances for R. For each
target relation type, therefore we have 1,140 (19� 60) source
relation training instances and 10 target relation training
instances, which well simulates the problem setting in
relation adaptation. We call this the train data set for a
particular target relation type, and the 30 instances set aside
for that target relation type combined with the 30 instances
set aside from each of the source relation types (19� 30) as
the test data set for that target relation type.

For each target relation, we use the pattern extraction
algorithm presented in Section 2.3 and extract lexical
patterns from all the contexts from its train data set.
However, because of misspellings and fragmented snippets,
patterns extracted from Web texts can be noisy. To remove
noisy patterns, we select those patterns which occur at least
five times in the data set. We then use the entropy-based
relation-independent pattern selection criterion and select

the top 1,000 ranked patterns as relation-independent
patterns (l ¼ 1;000). The remaining patterns are selected as
relation-specific patterns. Next, we construct a bipartite
graph following the procedure described in Section 2.5 and
apply Algorithm 1 on the created bipartite graph to
compute feature vector projections. We set the number of
clusters to k ¼ 1;000 in our experiments. Later in Section 3.4,
we investigate the effect of the parameters l and k on the
proposed method.

To evaluate the performance of a relation adaptation
method, we select one relation type in the data set as a
target relation and train a multiclass classifier as described
in Section 2. We compute precision, recall, and F -score on
the selected target relation type T as follows:

precision ¼ no: of correctly classified entity pairs

total no: of entity pairs classified as T
;

recall ¼ no: of correctly classified entity pairs

total no: of entity pairs in T
;

F ¼ 2� precision� recall

precisionþ recall
:

This process is repeated with a different relation type as the
target relation and the remaining relation types as the
source relations. We report the macroaverage scores over
the 20 relation types in our benchmark data set. Note that
the macro-averages computed here consider only the target
relations and not source relations, because in relation
adaptation the objective is to obtain high performance on
a target relation and not on source relations.

3.3 Overall Results of Comparisons

Table 3 presents the results obtained using the proposed
method, 12 baselines, and a previously proposed weakly
supervised relation extraction system on our data set as
described next.

. Random. This baseline randomly infers a relation
for an entity pair out of the 20 relation types in the
data set. The probability of randomly guessing
the correct relation is as low as 0.05. Consequently,
the macroaverage F -measure for this baseline is the
lowest in Table 3. This method can be considered as
a lower baseline.
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. RS patterns. We use the frequencies of relation
specific patterns as features to represent an entity
pair to train a multiclass classifier.

. RI patterns. We use the frequencies of relation
independent patterns as features to represent an
entity pair to train a multiclass classifier.

. All patterns. We use all (relation-specific and
relation-independent) patterns and represent an
entity-pair by the frequency of the patterns with
the entity pair. This baseline is expected to show the
level of performance we would obtain if we did not
use the lower dimensional mapping (Algorithm 1) or
the one-sided undersampling (Algorithm 2).

. Projected. We use the entropy-based relation-inde-
pendent pattern selection criterion and construct a
bipartite graph as described in Section 2.5. We then
run Algorithm 1 to compute a projection matrix U
and project a feature vector ~xAB for an entity pair
ðA;BÞ to a lower dimensional vector U~xAB. We use
the projected feature vectors to train a multiclass
classifier. This baseline is expected to show the level
of performance we would have obtained if we had
used only the lower dimensional representation.

. Combined. We use both the original feature vectors
as well as their projection into the k-dimensional
latent space according to (5) and train a multiclass
classifier using those augmented feature vectors.
This baseline is expected to demonstrate the level of
performance that we would obtain if we did not
perform the one-sided undersampling (Algorithm 2).

. We perform one-sided undersampling to select a
subset of source relation type entity pairs. For RS
patterns, RI patterns, All patterns, and Projected
baselines we denote their sampling enabled versions
respectively by RS patterns + Sampling, RI
patterns + Sampling, All patterns + Sampling,
and Projected + Sampling.

. Jiang [35]. This is the current state-of-the-art cross-
domain relation classification method [35]. In this
method, first, an entity-pair is represented as a set of
lexical and syntactic features. Second, a multiclass
logistic regression model is trained using those
feature vectors. Some features are shared across
different relations and the weight parameters for
those features are learned in a joint fashion. This
method is further detailed in Section 4. We ran the
original implementation that is publicly available6

on our data set.
. PROPOSED. This is the method proposed in this

paper. This corresponds to Combined + Sampling.
. Full graph. As an alternative to using a bipartite

graph model, we construct a full graph that does not
distinguish between relation-independent patterns
and relation-specific patterns. All remaining proces-
sing steps in the proposed method are conducted
exactly the same way on this full graph. This
baseline is expected to demonstrate the importance
of identifying relation independent patterns and
using a bipartite graph for relation adaptation.

. Supervised upper bound. The supervised upper
bound corresponds to the level of performance that
we would obtain, if we had access to not only a few
seeds (i.e., 10 training seed instances) for the target
relation, but an equal amount of training instances as
we have for each source relation type (i.e., 60 training
instances). The proposed method (combined þ
sampling) is run using this training data set to
simulate a fully supervised relation extraction
scenario. Note that this is not the relation adaptation
scenario that we consider in this paper, where we
assume only a few seed training instances for the
target relation type.

From Table 3, we see that the proposed method has the
best macroaverage precision, recall, and F -measure among
all the different methods, except for the supervised upper
bound. In particular, the improvement against the pre-
viously proposed state-of-the-art weakly supervised rela-
tion extraction method [35] is statistically significant
(paired t-test with p < 0:05 inferred as significant). The
Random baseline on this balanced data set only yields a
very low F -score of 7.25. The RI patterns baseline that uses
only relation-independent patterns outperforms the RS

patterns baseline that uses only relation-specific patterns
(9.99 percent improvement in F-score). This result is
particularly interesting considering that there exist only
1,000 relation-independent, whereas on average there exist
67,822 relation-specific patterns. Even with a few relation-
independent patterns, we can learn a better relational
adaptation model than using many relation-specific pat-
terns. Relation-specific patterns occur in only a few relation
types. Therefore, a model trained using those patterns
alone does not generalize well to a novel target relation
type. Moreover, on average, for all target relation types,
among the 1,000 relation-independent patterns, we have
454 lexical patterns and 546 syntactic patterns, whereas
among the 67,822 relation-specific patterns we have
65,771 lexical patterns and 2051 syntactic patterns. Con-
sidering the fact that part-of-speech tags abstract individual
words, it is not surprising that a major proportion of the
relation-independent patterns are indeed syntactic patterns.

Using all the patterns (i.e., All patterns baseline) per-
forms slightly worse than when using only relation-
independent patterns (3.46 percent drop in F-score). One
reason for this is that the overall performance of the All

patterns baseline is dominated by the numerous relation-
specific patterns, which adapt poorly to a target relation. As
explained already in Section 2.7, there can be errors in
identifying relation-independent patterns using strategies
such as mutual information, which engender some noise in
the constructed bipartite graph. Consequently, using only
the Projected features is not satisfactory (6.54 percent drop
in F-score compared to RI patterns). However, by augment-
ing the original features to the projected features
(i.e., Combined baseline), this problem can be overcome
(5.59 percent improvement of F-score over RI patterns).

Next, we evaluate the effect of the one-sided under-
sampling method presented in Section 2.7 on top of the
numerous baselines discussed above. From the experimen-
tal results presented in Table 3, it is apparent that, by
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sampling, we consistently improve all the baselines: RS

patterns (8.37 percent increase in F-score), RI patterns

(3.43 percent increase in F-score), All patterns (9.68 percent
increase in F-score), and Projected (2.75 percent increase in
F-score). In fact, the proposed method, which uses
augmented feature vectors with sampling, shows a 5.78 per-
cent improvement in F-score over not using sampling (i.e.,
Combined). A paired two-tailed t-test shows that the
improvements in all measures due to sampling is statisti-
cally significant under the 0.05 significance level. This
underscores the importance of selecting a subset of source
relation instances when training a classifier for a target
relation. In relation adaptation, the number of source
relation labeled instances significantly outperforms that
for a target relation. Without proper sampling, any
information related to the target relation, encoded in the
small number of target relation instances, get “washed-out”
during training.

The Full Graph baseline has low performance (F-score of
49.18 percent), which is roughly equal to the All patterns

baseline in terms of performance. This result shows that it is
important to use a bipartite graph structure as done by the
proposed method for relation adaptation instead of using a
full graph that does not distinguish between relation-
specific and relation-independent patterns. From a domain
adaptation point-of-view, it is the existence of common
features (i.e., relation-independent patterns in our case) that
enables us to transfer the weights learned from the source
relation types to the target relation type. The bipartite graph
structure enforces this constraint explicitly, thereby yield-
ing a lower dimensional latent space that helps towards
relation adaptation.

It is noteworthy that the Supervised Upper Bound

reports the highest F-score of 74.57 in Table 3. From this
result we can see that there is still sufficient room for
improvement for the proposed method. However, it is
encouraging to observe that the proposed method attains
an F-score of 62.77 merely using one sixth (10 versus 60)
training instances for the target relation as used by the
Supervised Upper Bound.

A future research direction in relation adaptation is how
to improve recall without loosing precision. In fact, for most
of the methods compared in Table 3, we see that the
macroaveraged recall is much lower than the macroaver-
aged precision. This behavior can be understood consider-
ing the fact that we have only a few seed training instances
for the target relation type in relation adaptation. Therefore,
the classifier only learns a limited set of properties
regarding the target relation and is unable generalize
beyond this small set of training instances. Consequently,
it cannot recognize most of the target relations in the test
set, resulting in low recall. On the other hand, it will predict

any test instance as belonging to the target relation if that
test instance is highly similar to any of the training target
instances, resulting in high precision.

In Table 4, we compare the three strategies presented in
Section 2.4 to select a set of relation-independent patterns.
With each of the three strategies, we select 1,000 relation-
independent patterns and created a bipartite graph as
described in Section 2.5. Next, we use Algorithm 1 with
dimensionality k ¼ 1,000 to augment the feature vectors to
train a multiclass classifier with sampling as described in
Section 2.7. Table 4 shows that the proposed entropy-based
relation-independent pattern selection method outperforms
both frequency-based and mutual information-based ap-
proaches. The frequency-based method tends to ignore low-
frequent relation-independent patterns, whereas the MI-
based approach sometimes select patterns that has a high
mutual information with only a subset of relation types.
Entropy-based relation-independent pattern selection ad-
dresses the entire distribution of a pattern over entity pairs
and is less affected by the disfluencies described above.

For each target relation in our data set, we use multiple
source relation types with the proposed method and
evaluate the effect on performance as shown in Fig. 3. We
see that as we increase the number of source relation types,
the macroaverage F-score improves steadily up to a certain
point (ca. 8 sources) and then saturates. This result shows
that we can improve the performance on a target relation up
to a certain level simply by using multiple source relations.

Fig. 4 depicts the performance of the proposed method
as a function of the number of training instances for the
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target relation. The figure shows that the performance
increases steadily with the number of training instances
we have for the target relation. This result emphasizes the
importance of target relation instances for relation adapta-
tion, and justifies our decision to retain all target relation
instances during sampling.

3.4 Parameter Sensitivity

We experimentally study the effect of the two parameters
in our proposed method: the number of relation-indepen-
dent patterns l, and the dimensionality k of the latent
space. To study the effect of the number of relation-
independent patterns l on the proposed method, we use
the entropy-based strategy to select different quantities of
relation-independent patterns and use those patterns in the
proposed method. The dimensionality k of the latent space
is fixed at 1,000. In Fig. 5, we present the performance of
the proposed method against the number of relation-
independent patterns used. We see that the proposed
method is stable against the varying quantities of relation-
independent patterns.

Next, we study the effect of varying the dimensionality
k of the latent space by executing Algorithm 1 with
different k values. The set of relation-independent features
is fixed throughout this experiment (i.e., the total no.
relation-independent patterns l ¼ 1,000). Fig. 6 shows the
performance of the proposed method against the value of
k. From Fig. 6, it is apparent that the performance of the
proposed method remains almost constant across the range
of k values.

4 RELATED WORK AND DISCUSSION

The relation adaptation method proposed in this paper is
motivated by work in three fields: relation extraction,
domain adaptation, and transfer learning. Next, we discuss
previous work in those fields and compare it to our
proposed method.

Traditionally, relation extraction is framed as a binary
classification problem: given a sentence S and a relation R,
does S assert R between two entities in S? Kernel-based
supervised methods such as dependency tree kernels [5],
subsequence kernels [36], and convolution tree kernels [37]
have been successfully used to learn relation extraction
systems. In particular, kernel methods allow the use of a
large set of features without the need to extract them

explicitly. However, supervised relation extraction methods
assume the availability of sufficient labeled training data,
which is problematic when we want to extract new relation
types, as we do in this paper.

Bootstrapping methods [9], [33], [38], [39], [40] to relation
extraction are attractive because they require markedly
fewer training instances than supervised approaches do.
Bootstrapping methods are initialized with a few instances
(often designated as seeds) of the target relation [9], [33],
[39] or general extraction templates [38]. During subsequent
iterations of the bootstrapping process, new extraction
patterns are discovered and are used to extract new
instances. However, the quality of the extracted relations
depends heavily upon the initial seeds provided to the
bootstrapping system [41]. Different from bootstrapping,
we not only use target relation seeds, but also use the
existing training instances for numerous source relations to
train a robust relation extractor for a target relation. In
information extraction, lexical patterns have been used for
extracting class instances [40] and entity pairs with specific
relations [33]. However, unlike those works that use vector
space model-based patterns, the subsequence patterns used
in our work can both preserve the relative ordering of
words as well as consider long range dependencies.

Open Information Extraction (Open IE) [2], [7], [42] is a
domain-independent information extraction paradigm that
has been studied in both a natural language document
corpus [42], and the Web environment [2], [7] to extract
relation tuples. Open IE systems are initialized with a few
manually provided domain independent extraction pat-
terns. To produce training data for the algorithm, depen-
dency parsing is conducted on a text corpus; domain-
independent extraction patterns are used to identify correct
extractions. Using the created training data, a classifier is
trained to identify the correct instances of target relations.
In contrast, we learn the domain-independent relation
patterns using source and target relation instances. We do
not require them to be provided manually. Moreover, open
IE systems attempt to extract all relations that exist in a
corpus; users cannot specify in advance which relation
types (targets) they want to extract. Therefore, it is not
guaranteed that we will be able to extract instances for the
target relation type in which we are interested.

Domain adaptation methods can be classified broadly
into fully supervised [43], [44] and semi-supervised
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adaptation [18], [19], [45], [46] . In the fully supervised
scenario, we have labeled data for the source domain and
also invest in labeling a few instances in the target domain
whereas, the semi-supervised version does not assume the
availability of labeled data from the target domain to use
unlabeled data from the target domain. Domain adaptation
methods first identify a set of common features in source
and target domains and then use those features as pivots to
map source domain features to the target domain.
However, relation adaptation differs from domain adapta-
tion because, in domain adaptation, it is assumed that the
class labels remain the same in both source and target
domains, only the distribution of data is different whereas,
in relation adaptation, the source and target relation types
are considered to be different.

Transfer learning is intended to transfer knowledge
learned from one or more tasks to a new task. In the
alternating structure optimization (ASO) [47] framework, a
learning algorithm is first trained on a set of auxiliary
problems. The linear prediction vectors for those problems
are arranged as a matrix. Next, Singular Value Decomposi-
tion is performed on this matrix to compute a lower
dimensional mapping between the features. The working
hypothesis in ASO is that by jointly learning a set of related
problems (auxiliary problems), we can learn some useful
information related to the structure of the data, which is
useful when learning a new task. Relation adaptation can be
seen as a special instance of transfer learning, where the
source relations act as auxiliary problems. We must transfer
the structural knowledge about source relations to a target
relation type. However, relation adaptation necessitates that
we overcome the additional challenge of learning the target
relation using only a few seed instances.

Spectral clustering of bipartite graphs have been studied
in [23] and in this case it turns out to be producing
coclusters. If we represent the vertices of one partite of the
bipartite graph in rows of a matrix and the vertices of the
other partite in columns (the matrix M in Section 2.5 is such
an example), then spectral clustering of the original
bipartite graph gives co-clusters for the newly formed
matrix. If we translate this result back to our scenario where
we have relation specific patterns in one of the partites and
relation independent patterns in the other partite of the
bipartite graph, then we retrieve clusters which group
relation specific and relation independent patterns that are
semantically similar. The coclusters can be considered as
providing an alignment between relation specific and
relation independent patterns. This enables us to perform
relation adaptation because relation specific patterns
(features) in both source relations and the target relation
can be first mapped to relation independent patterns and
then train a classifier in this common (lower dimensional)
feature space.

Methods proposed for learning from an unbalanced data
set can be broadly categorized into two: undersampling
methods and oversampling methods. Undersampling meth-
ods, such as the method described in Algorithm 2, attempt
to select a subset of training instances from the majority
class, whereas oversampling methods synthetically gener-
ate instances from the minority class. For example,

DataBoost-IM method [48] first detects hard-to-classify
examples for each class and then separately generates
synthetic instances for each class. More synthetic instances
are generated for the minority class. Next, the frequency of
classes in the combined (original + synthetic) data set are
rebalanced to alleviate the learning algorithm’s bias
towards the majority class. Finally, the total weights of
instances of different classes are rebalanced so that the final
classifier will focus on hard as well as minority class
examples. Above procedure is iterated for a user specified
number of iterations unless the error term exceeds some
threshold value.

Synthetic minority oversampling technique (SMOTE)
[49] is an oversampling method that generates new minority
class instances by interpolating between existing minority
class instances. For example, with 200 percent sampling
rate, for each minority class instance, two of its neighbors
are selected uniformly at random from its neighborhood.
Next, the difference vector between the selected two
neighbors is multiplied by a random number between
0 and 1 and is added to the original minority class instance
to generate a new minority class instance. One problem of
oversampling methods is that the synthetically generated
instances might not bring in new information to the training
data set. Moreover, it can lead to overfitting to the minority
class. On the other hand, the 1-nearest neighbor-based one-
sided undersampling method used in this paper does not
generate any synthetic instances and has also shown to be
robust to the noise in the training data [30].

The most computationally demanding steps in our
proposed method are the bipartite graph construction
and eigenvalue decomposition of the graph Laplacian. It is
noteworthy that the bipartite graph that we construct
contains lexical-syntactic patterns as its vertices. Therefore,
the size of the affinity matrix of the bipartite graph (hence,
the size of the Laplacian) directly depends on the number
of patterns we extract. In practice, the computational
complexity of eigenvalue decomposition of an n� n square
matrix is Oðn3Þ. Therefore, there is a cubic time complexity
dependence on the number of patterns we extract.
However, it must be emphasized that the size of the
affinity matrix does not depend on the number of relation
types nor the number of entity pairs. For example, if we
use a fixed set of patterns to represent all entity pairs, then
the complexity of this step will remain constant regardless
of the number of relation types or the entity pairs used in
the system. We consider this is to be a desirable property
of the proposed method that makes it scalable to thousands
of relations and/or many source examples. Moreover, the
stochastic matrix decomposition algorithm [29] that we use
in our proposed method produces an approximate trun-
cated eigenvalue decomposition in quadratic (Oðn2Þ) time
complexity, which is sufficiently accurate for our task.

5 CONCLUSION

We proposed and investigated a method to learn a
relational classifier for a target relation using multiple
source relations. Our experimental results show that the
proposed method significantly outperforms 11 baselines
and a previously proposed weakly-supervised relation
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extraction method on a data set that contains 2,000 entity

pairs for 20 different relation types. Both feature projection

and sampling positively contribute to the proposed

method. Moreover, the proposed method performs consis-

tently under different parameter settings. An interesting

future research direction of relation adaptation is to extend

the current method to handle entities that are not related as

well as entities with multiple semantic relations. Moreover,

in our future work we intend to apply the proposed relation

adaptation method in real-world relation extraction sys-

tems and evaluate its effectiveness in detecting novel

relation types.
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