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PAPER

Combining Human Action Sensing of Wheelchair Users and
Machine Learning for Autonomous Accessibility Data Collection

Yusuke IWASAWA†a), Nonmember, Ikuko EGUCHI YAIRI††, Member, and Yutaka MATSUO†, Nonmember

SUMMARY The recent increase in the use of intelligent devices such
as smartphones has enhanced the relationship between daily human behav-
ior sensing and useful applications in ubiquitous computing. This paper
proposes a novel method inspired by personal sensing technologies for col-
lecting and visualizing road accessibility at lower cost than traditional data
collection methods. To evaluate the methodology, we recorded outdoor ac-
tivities of nine wheelchair users for approximately one hour each by using
an accelerometer on an iPod touch and a camcorder, gathered the super-
vised data from the video by hand, and estimated the wheelchair actions as
a measure of street level accessibility in Tokyo. The system detected curb
climbing, moving on tactile indicators, moving on slopes, and stopping,
with F-scores of 0.63, 0.65, 0.50, and 0.91, respectively. In addition, we
conducted experiments with an artificially limited number of training data
to investigate the number of samples required to estimate the target.
key words: street-level accessibility, wearable sensor, assistive technology,
machine learning

1. Introduction

Lifeloggers are no longer burdened by heavy computers and
large devices; modern lifelogging equipment is sufficiently
compact and accessible for capturing all or a large portion of
the life activities of wearers. Human action sensing is one of
the research topics in this area. Many applications inspired
by these technologies, such as context-aware services, fall
detection, and daily healthcare management, have been in-
troduced [1]–[4]. Both from the research and social points
of view, lifelogging has been incorporated into many appli-
cations, many of which are available from the Android and
iTunes stores [5].

This paper proposes a methodology, inspired by the
recent spread of lifelogging, for the development of mo-
bility support systems. Keeping the pedestrian pavement
safe is obviously important, but outdoor environments are
frequently inadequate for people with mobility impairment.
One solution to the problem of reducing the burden of mov-
ing around for people with mobility impairment is to de-
velop large-scale accessibility maps for providing acces-
sibility information regarding the pedestrian pavement [6].
Many researchers have proposed accessibility data collec-
tion methodologies aimed at developing such maps. Most
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classical and current data collection methods use official re-
views by experts regarding road access. The use of geo-
crowdsourcing to reduce the expense is a more recent trend.
However, road accessibility information sharing has been
restricted to narrow spaces, such as station yards and cam-
puses, owing to manpower limitations.

The proposed methodology overcomes this restriction
by sensing accessibility information through a combination
of human action sensing technologies on wheelchairs with
smartphone-embedded sensors [7], [8], and machine learn-
ing [9], with the aim of developing autonomous accessibil-
ity data collection and visualization. A large-scale acces-
sibility map can be created using machine learning algo-
rithms that estimate accessibility information from sensor
data recorded on a smartphone. Recent popular smartphones
are embedded with rich sensors, such as accelerometers and
gyro sensors, and their time-series data include useful hu-
man behavior patterns. If wheelchair users sense and record
their driving behavior with smartphone-embedded sensors
as lifelogs, then their actions, such as stopping, moving, and
falling, and the status of the ground surfaces, such as smooth
or bumpy, can be estimated from the time-series patterns of
three-axis accelerometers. Human behavior information re-
garding locations at which near-falling accidents have oc-
curred is very important in preventing wheelchair accidents
while driving. Information regarding the environment sur-
rounding wheelchairs, such as bumpy roads, is also neces-
sary to enable users to choose maneuverable routes.

We evaluated the proposed methodology by develop-
ing a prototype system that senses outdoor activities of
wheelchair users using a three-axis accelerometer mounted
on an iPod touch, and then classifying sensed data using su-
pervised learning. As estimation targets, we followed five
wheelchair activities, curb climbing, driving on tactile in-
dicators, driving on slopes, driving on flat pavements, and
stopping, as indications of accessibility. Nine users were
asked to drive through outdoor environments near Tokyo
station with their own wheelchairs for approximately one
hour each, with no limitation of action during the experi-
ments, except driving along a designated route.

One major contribution of this paper is to propose a
novel methodology for collecting and visualizing the ac-
cessibility of a pedestrian pavement using human behavior
sensing technologies and machine learning. Another con-
tribution is that we evaluate the methodology qualitatively
to classify wheelchair driving performance data. We ad-
dress feature extractor design and window size optimization
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to improve the classification of wheelchair driving accelera-
tion data and to determine the training data size required for
maintaining classification accuracy. The remainder of this
paper is organized as follows. Section 2 summarizes the pro-
posed methodology and emphasizes its novelty by review-
ing related work. A brief introduction to the prototype sys-
tem for estimating the ground surface from acceleration data
recorded from outdoor activities of nine wheelchair users,
focusing on the dataset and estimation flow, is presented in
Sect. 3. The results of ground surface estimation are pre-
sented in Sect. 4. In Sect. 5, we discuss the effectiveness of
the proposed methodology and future directions in which to
extend the prototype system for collecting and visualizing
rich accessibility information, considering the experimental
results and related work. Section 6 concludes the paper and
suggests ideas for future work.

2. Street-Level Accessibility Data Collection

2.1 Proposed Method

Mobility is an essential element for well-being, but urban
spaces and/or pedestrian environments frequently respond
inadequately to the demands of people with disabilities. Ac-
cording to the International Classification of Functioning,
Disability and Health (ICF), “Disability is the interaction
between individuals with a health condition (e.g., cerebral
palsy, Down syndrome, and depression) and personal and
environmental factors (e.g., negative attitudes, inaccessible
transportation and public buildings, and limited social sup-
ports” [10]. Approaches to supporting the mobility disabled
include helping them avoid danger or uncomfortable sites by
providing accessibility information on maps [11], [12], bet-
ter routes considering accessibility [13], [14], or notification
regarding dangerous sites when driving. Accessibility maps
are the most popular application that are useful to provide
decision support for urban planners and to help wheelchair
users access and select maneuverable routes in advance of
driving. Karimi proposed the concept of personalized acces-
sibility maps (PAMs) that suggest routes considering acces-
sibility information [13]. If accessibility information is con-
sidered for routing, users can avoid uncomfortable routes.

To establish such support systems, a low-cost accessi-
bility data collection method that requires little or no man-
power is crucial. Figure 1 shows an overview of the pro-
posed methodology with human sensing of wheelchair users
and machine learning for estimating and digitizing accessi-
bility information. A sensing application installed on smart-
phones records daily activity with location information as
low-level sensor data. An analysis server analyzes the data
according to the designed procedures, mines accessibility
information, and stores it as geo-referenced accessibility in-
formation in a database. A service manager could access
the accessibility database and use the data to meet the ser-
vice requirements. For example, a mapping module could
visualize the accessibility information on web maps, and a
routing module could consider it for evaluating routes. Fi-

Fig. 1 Overview of the proposed methodology for accessibility data col-
lection supporting people with disabilities

nally, a user could receive the benefits of advanced services.

2.2 Related Work

Most frequently used or studied accessibility data collection
methods are based on either official reviews or crowdsourc-
ing. The most classical data collection method is official
reviews, with local accessibilities assessed by experts, and
most accessibility maps of station yards and campuses have
been created in this manner [15]. This method provides very
accurate information for only a small area, but checking
and collecting information of large areas comprehensively
is more difficult. One new trend for data collection is geo-
crowdsourcing [16], [17], a methodology for collecting geo-
graphic knowledge based on crowdsourcing with little pay-
ment [18]. Many studies have proposed systems based on
geo-crowdsourcing [19]–[23]. It has an advantage regarding
monetary costs compared with official reviews, but it still
requires substantial manpower to create large-scale accessi-
bility maps.

This paper proposes a novel methodology for col-
lecting accessibility information through lifelogging of
wheelchair driving, benefiting from recent technological de-
velopment of human behavior sensing and increasing social
acceptance of lifelogging. The estimated result from hu-
man sensing data of wheelchair users who are moving along
walkways, climbing curbs, or falling, might be regarded as
less accurate than data collected manually, but accumula-
tion of such results for long periods helps to increase es-
timation accuracy. Although many sensing apps, architec-
tures, and algorithms have been proposed to recognize hu-
man activity from smartphone sensing data, [24]–[27], as
far as the authors know, there has been no research that uti-
lizes it in the accessibility mining context. Prandi et. al pro-
posed a concept combining three available sources, official
reviews, crowdsourcing, and sensing, and useful architec-
tures to achieve it; however, they do not attempt to mine
accessibility data from sensor data [28].

The simplest type of accessibility visualization utiliz-
ing human sensing is simple wheelchair trails. Such trails
provide practical information for wheelchair users regard-
ing wheelchair accessible areas. The information is useful
but not sufficient, because such trails provide no information
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regarding road accessibility; hence, users cannot determine
whether a route is usable. Accessibility information can be
extracted by estimation using human behavior and environ-
mental information from wheelchair driving logs with time-
series data from accelerometers. If wheelchair trails and in-
formation extracted from driving logs, such as near-falling
accidents and bumpy roads, are mapped on web maps,
essential support will be provided to expand wheelchair
user mobility. Fukushima and colleagues [29] tried to es-
timate accessibility using wheelchair driving acceleration
data. They converted acceleration signals into vibration ac-
celeration levels (VALs), a route mean average of three axis
acceleration values, ax, ay, and az. The VALs were aver-
aged for 0.1 s each and then assigned one of 13 colors to be
mapped onto Google Maps. The authors checked the rela-
tionships between path states, subjective feeling, and VAL
mapping, and reported that VAL conversion detects uneven
pavements effectively. Our study is presented as an exten-
sion of that research to provide more objective information
using machine learning technologies.

3. Prototype System

3.1 Sensing Outdoor Actions of Wheelchair Users

As a first step in the computational estimation of accessi-
bility information, this paper developed a prototype system
with a three-axis accelerometer embedded on iPod touch
and supervised machine learning for accessibility visualiza-
tion. Nine wheelchair users were asked to drive their own
wheelchairs with an iPod touch attached below the sheet,
which sensed activity and ground surface information. The
data are a combination of three-dimensional acceleration
signals commonly used in human activity recognition re-
search [30], location information, and annotation data from
careful human judgment. Figure 2 shows a sensing system
for the experimental data collection. The iPod touch units
were attached to the right and left wheelchair tires and un-
der the sheet and recorded the users’ outdoor activities using
three-axis accelerometers mounted on them. A Quasi Zenith
Satellites System (QZSS) receiver was attached to the back
of each wheelchair for recording locations. A video camera
recorded all activities from the back of each wheelchair. The
sampling rate of the accelerometer and video were 50Hz and
30Hz, respectively.

Research participants included nine wheelchair users,
seven male and two female, six manual-wheelchair users,
and three powered-wheelchair users, between 20 and 60
years of age. Each participant drove three laps on a des-
ignated route in the Tokyo. Figure 3-(a) is a schematic of
the route, with the path inclination angle highlighted in red
boxes. The route consisted of ten paths with a total length
of approximately 1.5 km. To keep the experiment as natural
as possible, the route was designed to cover various types
of terrain without overtiring the participants. Participants
traversed concrete and tile pavements, slopes, and sections
with curbing stones, tactile indicators, and rough pavement

Fig. 2 Experimental sensing system and driving environment

Fig. 3 (a) Route, (b) flat pavement, (c) tile pavement, (d) slope, (e) curb-
ing stone between pavement and roadway, (f) section with rough tile pave-
ment, and (g) section with rough concrete pavement.

Fig. 4 Modeling and utilizing phase

(Fig. 3 (b)-(g)). Each participant drove approximately one
hour to complete the route. We placed no limits on users’
activities, including driving speed and positioning on walk-
ways. Two collaborators ran parallel to the wheelchairs to
ensure the safety of the experiments.

3.2 Classification of Wheelchair Driving Actions

Our prototype system estimates wheelchair actions as a in-
dication of accessibility information with a hand-made fea-
ture extractor (FEX) and a machine-made estimation model,
as shown in Fig. 4 The prototype system consists of model-
ing and utilizing phases. The modeling phase is the step
for learning correspondence relations between sensor data
and the estimation target through supervised learning. The
utilizing phase is the step for applying learned rules to new
data for estimating ground surfaces. In the utilizing phase,
the system automatically estimates ground surfaces by in-
putting fixed-size sensor data.
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Fig. 5 Detailed flowchart of the modeling phase

Figure 5 is a detailed flowchart of the modeling
phase. Similar to other human activity recognition pro-
cesses, ground surface estimation consists of four processes,
preprocessing, segmentation, feature extraction, and classi-
fication [31]. To evaluate the efficacy of acceleration data for
ground surface estimation, we follow general procedures for
every process. The predominant approach to activity recog-
nition is based on a sliding window procedure, in which a
fixed-length analysis window is shifted along the signal se-
quence for frame extraction.

For estimating target, we selected five wheelchair
activities as indications of the accessibility where the
wheelchair drove on: curb climbing, driving on tactile in-
dicators, driving on slopes, driving on flat pavements, and
stopping. The first three actions directly indicate the exis-
tence of an uncomfortable environment. Although such a
physical barriers on ground surfaces have been recognized
one of the causes of wheelchair accidents and incidents,
information on risky or difficult sites have not easily been
digitized and consequently remained unavailable. The stop-
ping action is an example of a human action that interferes
with road accessibility. For example, frequent stopping by
wheelchair users might indicate danger. Videos were used
for data annotation regarding terrain condition. Every frame
of a video was categorized into one of five classes accord-
ing to the ground surface on which the wheelchairs drove,
and on whether the wheelchairs moved or was stationary: 1)
climbing up curbs between a roadway and a sidewalk (class
Curb), 2) moving on tactile indicators (class TI), 3) mov-
ing on slopes (class Slope), 4) stopping (class Stop), and 5)
others (class Others). Note that, though the route includes
other type of a physical barriers, such as section with rough
pavement (Fig. 3 (g)), in this paper we didn’t estimate them
because they are rare and hard to annotated with the video
data.

4. Evaluation

4.1 Evaluation Setup

We estimate accessibility information using general activity
recognition procedures with a sliding window method and
classifying feature vectors corresponding to fixed-size ac-
celeration data. There are free parameters for classification,
preprocessing, classifiers, segmentation window size, and
feature extraction. Based on the results of preliminary ex-
periments, we preprocessed the data with a moving average
filter of length ten. Determining an optimal classifier is im-
portant for improving estimation accuracy. For the moment,
we compare three classifiers that are widely used for action
recognition tasks, support vector machine (SVM), random
forest (RF), and k-nearest neighbor (KNN). Segmentation
using a sliding window involves two parameters, window
size w and overlap ratio p. Window size is the number of
frames for each segment. Overlap ratio is the fraction of
overlapping between S k−1 and S k, assuming that S k is the
k-th segment. Although window size affects classification
accuracy [32], the selection of a size is difficult and requires
experimental evaluation. To find an optimal window, we
tested different window sizes from 50 to 1,000 and investi-
gated the relationships among the effects of window size.

Several studies have addressed the importance of de-
signing appropriate sensor data feature representations [30],
[33], [34], with no obvious winner yet. In this paper, based
on activity recognition research [33], [34], we tested four
features. The first is raw data (Raw Data), concatenating
three sources of acceleration signals as [xT

k , y
T
k , z

T
k ], where

xk, yk, and zk are the vectors of k-th segment correspond-
ing to each axis of acceleration signals respectively. Raw
Data yields 3w-dimensional representation of a segment,
where w is a window size. The second (AveSTD) and
third (Heuristic) are time-domain features. Time-domain
features provide the basis for the most common approach
to feature extraction in human activity recognition research.
Given 3w (w × 3) provided by the segmentation procedures,
AveSTD calculates the mean and standard deviation for
each source channel. This yields a six-dimensional time-
domain representation of a segment. In addition, given
the length of 3w sensor data, Heuristic first calculates the
difference sequences of each source channel, xkd, ykd, zkd.
Subsequently, we calculated the mean, standard deviation,
maximum, and minimum for each source channel (i.e.,
xk, yk, zk, xkd, ykd, zkd). The last feature is the frequency do-
main feature (Fd). The difference sequences emphasize high
frequency component; the feature is expected to well cap-
ture the high frequently changes in acceleration signals by
rough terrains. Fd converts the data into the coefficients of
a fast Fourier transform (FFT) by applying FFT for each
channel.
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4.2 Classification Result

4.2.1 Overall

The first experiment was devoted to evaluation of classifica-
tion performance when using particular feature extractors.
Figure 6 shows the relationships between F-score and fea-
ture extractors for each classification task. In the all of be-
low experiments, the classifications were conducted for each
of four tasks Curb vs. Other, TI vs. Other, Slope vs. Other,
and Stop vs. Other, for each participant individually. We
have not conducted multi-class classification because it is
a multi-label classification task, i.e., some segments are la-
beled as both Curb and TI, or another combination. The
F-score of each classification was the average for nine par-
ticipants, and F-score of each participant was calculated by
general 10-fold cross validation procedures. Window size
was set to 400 samples without overlapping, and the classi-
fier was an SVM with a radial basis function (RBF) kernel.

On average, the F-score of Raw Data, AveSTD, Heuris-
tic and FFT were 0.35, 0.64, 0.67, and 0.60, respectively.
The best feature extractor was Heuristic, which estimated
four actions with the F-scores (ranks) of 0.63 (1), 0.65 (1),
0.50 (2), and 0.91(3), respectively. The worst feature ex-
tractor was Raw Data, which estimated four actions with the
F-scores (ranks) of 0.25 (4), 0.31 (4), 0.00 (4), and 0.87(4),
respectively. Especially for the Curb and TI classifications,
Heuristic highly exceeds other features. The results seem
natural because difference sequences emphasize high fre-
quency component and both actions require capturing high
frequency changes of acceleration signals caused by sudden
shaking. Another important point is that the Heuristic did
not work well for all every cases, and slightly decreased the
performance on recognition of long term actions Stop and
Slope. These results suggest that using feature extractors
suitable for each classification target is important to improve
classification performance in the operations.

Figure 7 is a comparison between the F-scores of three
classifiers, SVC, RF, and KNN when using the Heuristic
feature extractor. The x-axis indicates the estimation tar-
get, and the y-axis indicates the F-score differences on the
basis of the SVM classifier. The results indicate that in most
cases, SVC outperforms the others. The least effective clas-
sifier is KNN, with a difference of −0.08 on average. Both
SVM and RF take the importance of features into account
for classification, but KNN does not; this suggests that the
features are not equally important. For improving the clas-
sification accuracy, feature selection might be of use.

The second set of experiments addressed the label data
collection problem. For supervised classification, the anno-
tation step incurs a cost for human judgment. We evaluated
classification accuracies that can be achieved when the train-
ing sets used for estimating are limited artificially. Figure 8
shows the relationship between F-score and number of train-
ing data. The x- and y-axes indicate fractions of the origi-
nal dataset and relative changes in F-score, respectively. As

Fig. 6 Relationships among F-score, estimation targets, and features

Fig. 7 Comparison of classifiers

Fig. 8 Experimental evaluation of labeled data collection problem

a result, except for the Slope classification, sample size did
not affect classification accuracy significantly. In the total of
nine participants, the number of samples of Curb, TI, Slope,
and Stop were 326, 661, 145, and 648, respectively; hence,
the system maintains its estimation performance even with
only 8, 15, or 3 samples for combinations of users and esti-
mation targets.

4.2.2 Parameter Sensitivity

We evaluated the sensitivity of window size w and overlap
ratio p of segmentations. Figure 9 shows the relationships
between F-score and window size. The x-axis indicates win-
dow size ranging from 50 to 1,000 with steps of 50, and the
y-axis indicates F-score. The general trend shows that the
F-score of Curb and TI improves steadily and that of Stop
worsens throughout. The fact that the F-score improves as
the window size expands, even though the duration of the
Curb action was approximately 1.0 s (50 samples), is of in-
terest. As the larger window size leads to a window contain-
ing the overall pattern of action without splitting it into two
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Fig. 9 Influence of window size w on F-score

Fig. 10 Influence of overlap ratio p on F-score

windows, the results might imply that the overall pattern is
required for detection of the actions of climbing and moving
on tactile indicators.

In contrast to the above three actions, the trend of slope
classification had an obvious maximum point at 200 sam-
ples. Figure 10 shows the relationships between F-score and
overlap ratio. The x-axis indicates overlap ratio p between
0.0 and 0.75 with a 0.25 step size, and y-axis indicates rela-
tive change in the F-score on the basis of p = 0. As shown
in Fig. 10, the relative change in the F-score of Slope was
1.28 instead of the result of other classifications. The larger
window yields a smaller number of samples, and the larger
overlap ratio yields a larger number of samples. Further in-
vestigation of this result is necessary, but both results sug-
gest that the slope classification requires more samples to
improve classification performance.

4.2.3 Geo-Mapping Evaluation

Figure 11 shows a web mapping of estimated curbs (red),
tactile indicators (yellow), and slopes (green) and a compar-
ison with a mapping of correct actions. Window size was
400 without overlapping, the feature extractor was Heuris-
tic, and the classifier was SVM for temporal evaluation. In
total, 1,414 estimated data results from 27 laps (9 users
times 3 laps) were simply mapped using Google Maps API
v3. The rough tendency of roads was captured through vi-
sualization, even though tactile indicators were regarded as
less accurate. The visualization was performed simply by
mapping all 1,414 estimated results of data from 27 laps;
hence, there is a great potential to improve visualization by
using long-period data and statistical methods that consider
multi-time estimations. Further work is required to address

Fig. 11 Visualization of estimated results of 27 laps. Ground surfaces
were mapped as red (Curb), yellow (TI), and green (Slope).

these issues.

5. Discussion

The experimental results show that the system with iPod
touch attached to below the sheet of wheelchairs and ma-
chine learning is capable of detecting useful actions that in-
dicates accessibility of roads: curb climbing, moving on tac-
tile indicators, moving on slopes, and stopping. Though the
question “which are the optimal features a what is the op-
timal classifier for the wheelchair datasets?” requires more
comprehensive experiments using large-scale datasets, the
experimental results here showed that the SVM and Ran-
dom Forest that accommodate the importance of features
were comparatively superior to K-NN. As for feature de-
sign, the heuristically-designed features (Heuristic) lead to a
better performance for detecting actions when compared to
other features, capturing high frequency changes in accel-
eration such as the ones appearing in “rough terrains”, i.e.
those with curbing stones or tactile indicators. However, it
harmed the classification performance when the estimation
target is long-term. These results implied that we required
to design appropriate features suitable for each classification
targets or to develop sophisticated algorithms that adaptively
extract the appropriate feature representations for each task.

At the end of this paper, we describe future directions
considering the limitations of the prototype system, the eval-
uation results, and related work. We summarize future di-
rections from the perspective of feasibility and extensibility.

5.1 Feasibility

This paper shows that the prototype system had the abil-
ity to visualize at least rough trends of the ground surface.
The system is based on supervised machine learning; there-
fore, obtaining annotation data will become a bottleneck.
Although the result shows that the system requires few an-
notation data, it is better if we reduce the training data fur-
ther. One possible solution is to create a model that is useful
for most users: impersonal model. In general, interclass va-
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riety arising from differences among users is recognized as
one of the major problems for developing such a model [31],
and how to handle that issue is a further research question.
The most straightforward solution is to develop a large-scale
action database. Kawaguchi et al. proposed the concept
of gathering a human activity corpus for real-world activ-
ity understanding [35]. A large-scale activity corpus is im-
portant not only for developing a personal estimation model
but also for understanding impersonal characteristics. Once
such characteristics are found, we can develop an imper-
sonal model that can be applied for every user. A more so-
phisticated solution is to model the differences in actions be-
tween users using machine learning. Recent experiments on
audio recognition tasks affected by speaker differences show
that deep [36], helps in developing an impersonal speech
recognition model [37].

Another constraint of the prototype system is sensor
location. An iPod touch was attached below the sheet of a
wheelchair in our system, but we would like to retain esti-
mation performance regardless of sensor location, including
users’ pockets. Approaches for dealing with variations in
device placement include 1) using robust features, 2) com-
bining models specifically to detect device location, and 3)
applying a transformation matrix as preprocessing [38].

5.2 Extensibility

The other limitation of the prototype system is that we esti-
mate only general and rough-grained actions of wheelchair
users, climbing up curbs, moving on tactile indicators, mov-
ing on slopes, stopping, and others. Accessibility visual-
ization in cases in which wheelchair users take rare actions,
such as falling or collision with pedestrians, is also of value,
as is fine-grained action recognition as an indication of how
dangerous or uncomfortable a site is. For example, whether
a user handled the wheelchair effectively after climbing up
bumps provides an indication of whether he or she felt in
danger, and detecting such subtle differences in how the
wheelchair was handled is important in evaluating the dan-
gerousness of a bump. Addressing these issues requires
modeling wheelchair driving actions and detecting rare ac-
tions using anomaly detection technologies [39], obtaining
fine-grained features of sensor data by applying representa-
tion learning, such as that described in [34], and developing
a large-scale action database.

6. Conclusion

This paper proposed a novel approach to accessibility data
collection and visualization benefiting from recent expan-
sion in human action sensing using smart devices and ac-
tion recognition through machine learning. The strength
of the proposed method is its low-cost data collection, a
key to overcoming the problem that accessibility maps cur-
rently apply only to limited areas. We developed a prototype
system that uses acceleration data of nine wheelchair users
and supervised machine learning, and we evaluated the effi-

ciency of the methodology qualitatively and quantitatively.
We found that the system detects curb climbing, moving on
tactile indicators, moving on slopes, and stopping, with F-
scores of 0.63, 0.65, 0.50, and 0.91, respectively. Mapping
results of curb climbing, moving on tactile indicators, and
moving on slopes showed that rough trends of maps can be
captured using our methodology. Future work will be con-
cerned with extending the estimation target for mapping rich
accessibility information and reducing the constraints of the
prototype system.

Acknowledgements

We are deeply grateful to all participants of experiments,
Dr. Fukushima, Mr. H. Uematsu, and Mr. Y. Uematsu. This
study was supported by JPSP KAKENHI Grant Number 26-
5331 and Tateishi Science and Technology Foundation in
FY 2011–12, “Personal Sensing Technologies for Road Sur-
face Survey toward Comfortable Wheelchair Driving.”.

References

[1] Y. He, Y. Li, and S.-D. Bao, “Fall detection by built-in tri-accelerom-
eter of smartphone,” Biomedical and Health Informatics (BHI),
2012 IEEE-EMBS International Conference on, pp.184–187, IEEE,
2012.

[2] Y.-J. Hong, I.-J. Kim, S.C. Ahn, and H.-G. Kim, “Activity recogni-
tion using wearable sensors for elder care,” Future Generation Com-
munication and Networking, 2008. FGCN’08. Second International
Conference on, pp.302–305, IEEE, 2008.

[3] Y.-J. Hong, I.-J. Kim, S.C. Ahn, and H.-G. Kim, “Mobile health
monitoring system based on activity recognition using accelerom-
eter,” Simulation Modelling Practice and Theory, vol.18, no.4,
pp.446–455, 2010.

[4] P. Wu, H.-K. Peng, J. Zhu, and Y. Zhang, “Senscare: Semi-automatic
activity summarization system for elderly care,” in Mobile Comput-
ing, Applications, and Services, vol.95, pp.1–19, Springer, Berlin,
Heidelberg, 2012.

[5] M.N.K. Boulos, S. Wheeler, C. Tavares, and R. Jones, “How smart-
phones are changing the face of mobile and participatory healthcare:
an overview, with example from eCAALYX,” BioMedical Engineer-
ing OnLine, vol.10, no.1, p.24, 2011.

[6] M. Laakso, T. Sarjakoski, and L.T. Sarjakoski, “Improving accessi-
bility information in pedestrian maps and databases,” Cartographica:
The International Journal for Geographic Information and Geovisu-
alization, vol.46, no.2, pp.101–108, 2011.

[7] N.D. Lane, M. Mohammod, M. Lin, X. Yang, H. Lu, S. Ali, A.
Doryab, E. Berke, T. Choudhury, and A. Campbell, “Bewell: A
smartphone application to monitor, model and promote wellbeing,”
5th international ICST conference on pervasive computing technolo-
gies for healthcare, pp.23–26, Citeseer, 2011.

[8] D.W. Kang, J.S. Choi, J.W. Lee, S.C. Chung, S.J. Park, and
G.R. Tack, “Real-time elderly activity monitoring system based on
a tri-axial accelerometer,” Disability & Rehabilitation: Assistive
Technology, vol.5, no.4, pp.247–253, 2010.

[9] R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, Machine learn-
ing: An artificial intelligence approach, Springer Science & Busi-
ness Media, 2013.

[10] “World health organisation: International classification of function-
ing, disability and health,” June 2015.

[11] E.S. Bocato, E.R. Zorzal, and V. de Almeida, “Augmented reality as
an accessibility tool for wheelchair users,” 2012.

[12] H. Matthews, L. Beale, P. Picton, and D. Briggs, “Modelling access

http://dx.doi.org/10.1109/bhi.2012.6211540
http://dx.doi.org/10.1109/fgcn.2008.165
http://dx.doi.org/10.1016/j.simpat.2009.09.002
http://dx.doi.org/10.1007/978-3-642-32320-1_1
http://dx.doi.org/10.1186/1475-925x-10-24
http://dx.doi.org/10.3138/carto.46.2.101
http://dx.doi.org/10.4108/icst.pervasivehealth.2011.246161
http://dx.doi.org/10.3109/17483101003718112
http://dx.doi.org/10.1111/1475-4762.00108


1160
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.4 APRIL 2016

with GIS in urban systems (MAGUS): capturing the experiences of
wheelchair users,” vol.35, no.1, pp.34–45, 2003.

[13] H.A. Karimi, L. Zhang, and J.G. Benner, “Personalized accessibility
map (PAM): a novel assisted wayfinding approach for people with
disabilities,” dx.doi.org, vol.20, no.2, pp.99–108, April 2014.

[14] M.M. DiGiovine, R.A. Cooper, M.L. Boninger, B.M. Lawrence,
D.P. VanSickle, and A.J. Rentschler, “User assessment of man-
ual wheelchair ride comfort and ergonomics,” Archives of Physical
Medicine and Rehabilitation, vol.81, no.4, pp.490–494, April 2000.

[15] C. Ponsard and V. Snoeck, “Objective accessibility assessment of
public infrastructures,” Computers Helping People with Special
Needs, vol.4061, pp.314–321, Springer, 2006.

[16] H.A. Karimi, Advanced location-based technologies and services,
CRC Press, 2013.

[17] C. Heipke, “Crowdsourcing geospatial data,” ISPRS Journal of Pho-
togrammetry and Remote Sensing, vol.65, no.6, pp.550–557, 2010.

[18] J. Howe, “The rise of crowdsourcing,” Wired Magazine, vol.14,
no.6, pp.1–4, 2006.

[19] C. Cardonha, D. Gallo, P. Avegliano, R. Herrmann, F. Koch, and
S. Borger, “A crowdsourcing platform for the construction of acces-
sibility maps,” Proceedings of the 10th International Cross-Disci-
plinary Conference on Web Accessibility, p.26, ACM, 2013.

[20] T. Miura, K.-I. Yabu, S. Ikematsu, A. Kano, M. Ueda, J. Suzuki,
M. Sakajiri, and T. Ifukube, “Barrier-free walk: A social sharing
platform of barrier-free information for sensory/physically-impaired
and aged people,” pp.2927–2932, 2012.

[21] K. Shigeno, S. Borger, D. Gallo, R. Herrmann, M. Molinaro, C.
Cardonha, F. Koch, and P. Avegliano, “Citizen sensing for collabo-
rative construction of accessibility maps,” Proceedings of the 10th
International Cross-Disciplinary Conference on Web Accessibility,
W4A ’13, New York, NY, USA, pp.24:1–24:2, ACM, 2013.

[22] K. Hara, V. Le, and J. Froehlich, “Combining crowdsourcing and
google street view to identify street-level accessibility problems,”
pp.631–640, 2013.

[23] K. Hara, “Scalable methods to collect and visualize sidewalk acces-
sibility data for people with mobility impairments,” Proceedings of
the adjunct publication of the 27th annual ACM symposium on User
interface software and technology, pp.1–4, ACM, 2014.

[24] M. Mubashir, L. Shao, and L. Seed, “A survey on fall detection:
Principles and approaches,” Neurocomputing, vol.100, pp.144–152,
Jan. 2013.

[25] X. Yang, A. Dinh, and L. Chen, “Implementation of a wearerable re-
al-time system for physical activity recognition based on naive bayes
classifier,” Bioinformatics and Biomedical Technology (ICBBT),
2010 International Conference on, pp.101–105, IEEE, 2010.

[26] D.W. Kang, J.S. Choi, J.W. Lee, S.C. Chung, S.J. Park, and G.R.
Tack, “Real-time elderly activity monitoring system based on a
tri-axial accelerometer,” dx.doi.org, vol.5, no.4, pp.247–253, June
2010.

[27] A. Pantelopoulos and N.G. Bourbakis, “A Survey on Wearable Sen-
sor-Based Systems for Health Monitoring and Prognosis,” Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol.40, no.1, pp.1–12, Jan. 2010.

[28] C. Prandi, P. Salomoni, and S. Mirri, “mPASS: Integrating people
sensing and crowdsourcing to map urban accessibility,” Proceed-
ings of the IEEE International Conference on Consumer Commu-
nications and Networking Conference, pp.591–595, 2014.

[29] Y. Fukushima, H. Uematsu, R. Mitsuhashi, H. Suzuki, and I.E. Yairi,
“Sensing human movement of mobility and visually impaired peo-
ple,” The proceedings of the 13th international ACM SIGACCESS
conference on Computers and accessibility, pp.279–280, ACM,
2011.

[30] O.D. Lara and M.A. Labrador, “A survey on human activity recogni-
tion using wearable sensors,” Communications Surveys & Tutorials,
IEEE, vol.15, no.3, pp.1192–1209, 2013.

[31] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activ-
ity recognition using body-worn inertial sensors,” ACM Computing

Surveys (CSUR), vol.46, no.3, p.33, 2014.
[32] O. Banos, J.-M. Galvez, M. Damas, H. Pomares, and I. Rojas, “Win-

dow size impact in human activity recognition,” Sensors, vol.14,
no.4, pp.6474–6499, 2014.

[33] D. Figo, P.C. Diniz, D.R. Ferreira, and J.M.P. Cardoso, “Prepro-
cessing techniques for context recognition from accelerometer data,”
Personal and Ubiquitous Computing, vol.14, no.7, pp.645–662,
2010.
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and G. Dı́az, “An automatic data mining method to detect abnormal
human behaviour using physical activity measurements,” Pervasive
and Mobile Computing, vol.15, pp.228–241, 2014.

Yusuke Iwasawa is currently a Ph.D Can-
didate at Tokyo University under the supervision
of Dr. Yutaka Matsuo. He received his M.S. de-
gree from Sophia University, Japan in Artificial
Intelligent Application. He obtained his B.S. de-
gree with computer engineering major from the
faculty of information and science, Sophia Uni-
versity, Japan.

Ikuko Eguchi Yairi received B.S., M.S.,
and Ph.D. degree in mechanical engineering
from University of Tokyo in 1994, 1996 and
1999, respectively. She previously worked at
National Institute of Information and Communi-
cations Technology (NICT) from 1999 to 2008.
She is currently an associate professor at Sophia
University. Her interests are human factors in
artificial intelligence, artificial intelligence for
computer human interaction, and assistive tech-
nologies for impaired people.

http://dx.doi.org/10.1111/1475-4762.00108
http://dx.doi.org/10.1053/mr.2000.3845
http://dx.doi.org/10.1007/11788713_47
http://dx.doi.org/10.1016/j.isprsjprs.2010.06.005
http://dx.doi.org/10.1145/2461121.2461129
http://dx.doi.org/10.1109/icsmc.2012.6378238
http://dx.doi.org/10.1145/2461121.2461153
http://dx.doi.org/10.1145/2470654.2470744
http://dx.doi.org/10.1145/2658779.2661163
http://dx.doi.org/10.1016/j.neucom.2011.09.037
http://dx.doi.org/10.1109/icbbt.2010.5479000
http://dx.doi.org/10.1109/tsmcc.2009.2032660
http://dx.doi.org/10.1109/ccnc.2014.6940491
http://dx.doi.org/10.1145/2049536.2049606
http://dx.doi.org/10.1109/surv.2012.110112.00192
http://dx.doi.org/10.1145/2499621
http://dx.doi.org/10.1145/2499621
http://dx.doi.org/10.3390/s140406474
http://dx.doi.org/10.1007/s00779-010-0293-9
http://dx.doi.org/10.1109/tpami.2013.50
http://dx.doi.org/10.1109/icassp.2013.6639344
http://dx.doi.org/10.1109/bsn.2011.8
http://dx.doi.org/10.1016/j.pmcj.2014.09.007


IWASAWA et al.: COMBINING HUMAN ACTION SENSING OF WHEELCHAIR USERS AND MACHINE LEARNING
1161

Yutaka Matsuo received the B.S., M.S., and
Ph.D degrees from the University of Tokyo in
1997, 1999, and 2002, respectively. He is an as-
sociate professor at the Institute of Engineering
Innovation, The University of Tokyo, Japan. He
joined National Institute of Advanced Industrial
Science and Technology (AIST) from 2002 to
2007. He is interested in social network mining,
text processing, and semantic web in the context
of artificial intelligence research.


