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To understand the function of the neocortex, which is a hierarchical distributed network,

it is useful giving meaning to the signals transmitted between these areas from the

computational viewpoint. The overall anatomical structure or organs related to this

network, including the neocortex, thalamus, and basal ganglia, has been roughly

revealed, and much physiological knowledge, though often fragmentary, is being

accumulated. The computational theories involving the neocortex have also been

developed considerably. By introducing the assumption “The signals transmitted by

interarea axonal projections of pyramidal cells in the neocortex carry different meanings

for each cell type, common to all areas,” derived from its nature as a distributed

network in the neocortex, allows us to specify the computational meanings of interarea

signals. In this paper, first, the types of signals exchanged between neocortical areas are

investigated, taking into account biological constraints, and employing theories such as

predictive coding, reinforcement learning, representation emulation theory, and BDI logic

as theoretical starting points, two types of feedforward signals (observation and deviation)

and three types of feedback signals (prediction, plan, and intention) are identified. Next,

based on the anatomical knowledge of the neocortex and thalamus, the pathways

connecting the areas are organized and summarized as three corticocortical pathways

and two thalamocortical pathways. Using this summation as preparation, this paper

proposes a hypothesis that gives meaning to each type of signals transmitted in the

different pathways in the neocortex, from the viewpoint of their functions. This hypothesis

reckons that the feedforward corticocortical pathway transmits observation signals, the

feedback corticocortical pathway transmits prediction signals, and the corticothalamic

pathway mediated by core relay cells transmits deviation signals. The thalamocortical

pathway, which is mediated by matrix relay cells, would be responsible for transmitting

the signals that activate a part of prediction signals as intentions, due to the reason that

the nature of the other available feedback pathways are not sufficient for conveying plans

and intentions as signals. The corticocortical pathway, which is projected from various IT

cells to the first layer, would be responsible for transmitting signals that activate a part of

prediction signals as plans.

Keywords: core and matrix thalamocortical circuit, corticocortical circuit, predictive coding, emulation theory of

representation, BDI logic, intention, plan

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2020.00074
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2020.00074&domain=pdf&date_stamp=2020-08-18
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ymkw@wba-initiative.org
https://doi.org/10.3389/fncom.2020.00074
https://www.frontiersin.org/articles/10.3389/fncom.2020.00074/full
http://loop.frontiersin.org/people/336861/overview


Yamakawa Revealing Neocortical Interarea Signals’ Meaning

1. INTRODUCTION

Understanding the neocortex, which is responsible for cognition
and behavior generation in the brain, is of major interest in
neuroscience. At the same time, it is useful as a reference for
constructing systems with human-like intelligence. The cerebral
neocortex, if one considers a large number of areas (dozens, if
human) to be nodes, is organized as a hierarchical, distributed
network that operates in a highly parallel manner (Felleman and
Van Essen, 1991; Mountcastle, 1995; Haberly, 2001; Nassi and
Callaway, 2009; Markov et al., 2011, 2014a). The neocortex is also
a network of decentralized memory, since each area has its own
representation and can maintain its own internal state.

In this interarea network, there are feed-forward paths
from lower-order areas that are relatively close to the outer
environment to higher-order areas that are more distant, and a
feedback path in the opposite direction. Anatomically, most of
the former is rostrally directed and most of the latter caudally
directed. In addition, in the laminar projection structure, the
former mainly originates in the supra- and infra- granular layer
and terminates in layer 4 in the higher areas, while the latter
mainly originates in the infra granule layer and terminates in
the lower area by avoiding layer 4. This opposing directionality
brings a hierarchy to the connections among areas (Rockland and
Pandya, 1979; Maunsell and van Essen, 1983; Markov et al., 2013,
2014b).

All areas in the neocortex typically have similar microcircuits
consisting of six layers, sometime called canonical circuits
because of their regularity (Gilbert and Wiesel, 1979; Douglas
et al., 1989; Douglas and Martin, 2004; Dhruv, 2015). For
computational neuroscience researchers and brain-inspired AI
developers, the simplistic hypothesis of a canonical circuit model
that treats all areas of the neocortex in the same way is very
appealing. The neocortical microcircuit also has the specificity
of each area. For example, depending on the change in the
thickness of the granular layer in the laminar structure, it
is classified as a granular, dysgranular, or an agranular area
(Beul and Hilgetag, 2014). It has also been known that the
extent to which pyramidal cells receive and integrate inputs,
how the inputs are integrated within the dendrites, and the
extents of connectivity between neurons vary in different areas
(Jacobs and Scheibel, 2002; Elston, 2003; Elston and Fujita,
2014). In light of these facts, there is an argument that the
pyramidal cells of the neocortex cannot be a generic component
(Luebke, 2017). However, much of the differences among areas
are quantitative. Therefore, the possibility of an emergence of
a generalized canonical model in the future that treats the
differences between areas as differences of parameters has not
been ruled out. However, the hurdle to designing such a model
in microcircuits, where various types of neurons are densely
coupled, is still considerable.

As already mentioned, the neocortex is a distributed
network consisting of a number of nodes called areas.
In order to achieve communication between nodes, it
is necessary to share information representation among
them. The following assumptions are plausible for satisfying
that requirement.

Canonical interarea protocol assumption:
The signals transmitted by interarea axonal
projections of pyramidal cells in the neocortex
carry different meanings for each cell type, common
to all areas.

This assumption states that neuron types specify information
representations of protocols for interarea communication. The
validity of that assumption is discussed below.

In general, a protocol, which is a rule for communication,
should be shared among all the nodes to operate a many-to-many
communication system. The basic structure of that protocol is a
layer composed of a physical transmission channel, an encoding
method, identification of a peer, and information representation.
In neocortical circuits, there is a common mechanism for
the first three: the first transmission pathway is the interarea
axon of pyramidal neurons; the second method is realized by
neural spiking; the third, identification of a peer, is defined
by a connectome.

Therefore, a mechanism to specify information representation
is necessary for interarea communication. This communication
layer corresponds to the application layer of the TCP/IP model
and defines the meanings of the signal being conveyed. In the
brain neural circuit, receiving-side neurons can distinguish cell
types of sending-side neurons. Therefore, the signals carried
by the interarea axonal projections of pyramidal neurons can
carry different meanings for each cell type. Moreover, such
meanings can be shared across all neocortical areas. There is
no other plausible candidate mechanism suitable for sharing
information representation through all areas. Therefore, the
canonical interarea protocol assumption is plausible. This
hypothesis is consistent with the findings of axonal bifurcation
(Kennedy and Bullier, 1985; Markov and Kennedy, 2013; Markov
et al., 2013), which suggests that groups of FF and FB neurons
form a different flow of information.

However, in light of several hypotheses related to the
computational function of the neocortex, several types
of meanings for signals exchanged between all domains
can be identified. In this paper, the meaning of interarea
signals is identified as Observation, Deviation, Prediction,
Planning, and Intention by comprehensively considering the
representative theories of predictive coding (Rao and Ballard,
1999), The emulation theory of representation (Grush, 2004),
Reinforcement learning, and BDI logic (Bratman, 1987), taking
into account some biological constraints (Detailed discussion
in Chapter 2.). Of course, on the neocortex, there are also
properties of information that differ from area to area, such as
visual, auditory, and motor modalities, but there are orthogonal
meanings to the above. For example, if it is visual information,
there are visual observation signals, visual deviation signals,
visual prediction signals, visual planning signals, and visual
intention signals.

In this paper, general meaning of the signals used for interarea
communication in the neocortex are identified. Specifically, five
theoretically meaningful signals will be assigned to interarea
pathways including the corticocortical and thalamocortical
circuits, under the canonical interarea protocol assumption.
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In the next chapter, several computational theories of
neocortical networks for cognition and execution are explained,
and the five types of signals required for this network are
explained. In chapter 3, the types of connections between areas
are summarized, based mainly on anatomical findings of the
neocortex and of the thalamus. In chapter 4, anatomical
findings and computational findings are integrated by
mapping five types of signals to five different pathways. In
chapter 5, the proposed hypothesis is discussed from several
aspects. Finally, in chapter 6, we summarize the results of
this paper.

2. FUNCTIONAL TYPES OF INTERAREA
SIGNALS IN THE NEOCORTEX

In this chapter, we identify five types of signals that are supposed
to be exchanged among areas of the neocortex. First, an overview
of the five types of signals exchanged among areas of the
neocortex will be presented. Taking into account biological
constraints, we will show that existing theories, such as predictive
coding, reinforcement learning, representation emulation theory,
and BDI logic, can support this classification of signals.

2.1. A Hypothesis for Five Types of Signals
Exchanged Between Areas
As a preparation, we have provided a brief overview of the
basic structure of the neocortex. The neocortex forms a system
that consists of hierarchical representations (see Figure 1). Areas
that are near sensors that called “lower-order” layers, and those
farther from them are called “higher-order” layers. We will call
signals that go up the order feedforward signals, and those that
go down the order feedback signals. The representation of an area
has beliefs, namely, inferred states that correspond to the current
sensor and are updated constantly. Here the word “belief” is used
in the context of a belief network or in a Bayesian network.

The neocortex is a large, parallel and distributed network
system consisting of a large number of hierarchically connected
areas. The connections have a complex branching and converging
structure that allow for jumping areas while conserving direction
(Felleman and Van Essen, 1991; Mountcastle, 1995; Markov et al.,
2011, 2014a). In Figure 1, a simple three-level cascade network is
drawn as an example, in order to illustrate the classification of
signals transmitted between areas in a straightforward manner.

Observation signals are feedforward signals that transmit
the belief state of a representation toward a higher order.
Prediction signals are feedback signals that transmit beliefs
in a representation to a lower order. Deviation signals are
feedforward signals that transmit to a higher order the degree
of which the belief in a representation deviates from observation
signals. Plan signals and intention signals transmit beliefs that
are desirable to be realized. Since the last two types of signals
are both prediction signals, they are sent as feedback to a
lower order. Plans are part of predictions that are desirable
to be realized. Intentions are part of plans that the agent is
committing to execute.

FIGURE 1 | Five types of signals exchanged among areas of the neocortex. In

this figure, the complex structure of a real neocortical network is left out in

order to show the types of signals that travel in both directions along

the hierarchy.

2.2. Cognition by Discriminative Models
In engineering, cognition systems have traditionally adopted
discriminative models. These systems recognize the world by
step-by-step processing of inputs, which are observational
information obtained by its sensors. In a discriminative model,
only observation signals, among the five types of signals
mentioned above, are used for information processing. In
neuroscience, similarly, it has been generally assumed that
observation signals are transmitted feedforwardly through the
neocortex hierarchy.

In object cognition of images, the Convolutional Neural
Network (CNN) Model, a deep learning method, has been
successfully engineered (Yamashita et al., 2018). It is also known
that the information representations acquired by CNN models
are similar to that of the visual cortex (Yamins and DiCarlo,
2016). In view of the current technical situation, it seems
reasonable to assume that in the neocortex, some hierarchical
discriminative model that feedforwardly transmits observation
signals is implemented.

2.3. Cognition by Generative Models
The Bayesian brain hypothesis (Doya et al., 2007; Friston,
2012) regards functions of the neocortex as computations
executed on the basis of Bayesian inference. Bayesian inference
forms, using an internal model, a probability distribution
that can appropriately generate observation signals obtained
from sensors.

Predictive coding is a model that uses artificial neural
networks and realizes almost the same computational function
with Bayesian inference (Rao and Ballard, 1999). This model, too,
feedforwardly generates prediction signals so that the signals fit
the information obtained by sensors. It then calculates prediction
error signals, which are discrepancies between prediction signals
and observation signals, and feedforwardly transmits them to
modify beliefs.
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For the reason discussed below, given the biological
constraints, it is difficult to construct a plausible model
that recognizes the external world using prediction signals
and prediction error signals. We therefore explain how the
combination of feedforward signals—observation and deviation
signals—and feedback signals—prediction signals—can realize a
similar function in a biologically plausible way.

Signal transmission between neurons can only convey positive
(or negative) values because of the use of neural activity spikes.
However, in order to realize prediction coding, it is necessary
to use a prediction error signal with both positive and negative
codes. Although the mechanism for transmitting error signals
between the neocortical areas has been investigated (Keller and
Mrsic-Flogel, 2018), this mechanism is not easy to implement in
a biologically plausible way.

Humans, on the other hand, have the ability to show bottom-
up attention that keenly detects any unexpected stimulation in
the things observed (Treisman and Gelade, 1980; Duncan and
Humphreys, 1989; Nothdurft, 1993). It allows us to assume that
prediction errors are being dealt with in some way or other in
the brain. Thus, we assume that deviation signals, which are not
prediction errors themselves but the absolute values of prediction
errors, serve as feedforward signals. In the neural circuits of the
brain, deviation signals can be implemented naturally since they
take only positive values.

If a representation receives a deviation signal that is without
a positive nor negative sign, the representation can know that its
beliefs should be changed, but it cannot know in what direction
its beliefs should be modified. Therefore, using only unsigned
deviation signals as feedforward signals in a given representation
cannot be an appropriate way for modification of beliefs. Of
course, if an observation signal is transmitted as a feedforward
signal at the same time, then the representation obtaining it will
be able to correct its belief into the right direction. Moreover,
as discussed in section 2.2, it is highly plausible to count the
observation signal as a kind of feedforward signal. Therefore, it
is biologically plausible to use both the deviation and observation
signals as feedforward signals.

2.4. Execution by Generative Models
In this section, the feedback signals related to generation
of execution are construed and summarized by employing
background theories such as reinforcement learning,
representation emulation theory, and BDI logic.

Reinforcement learning provides an agent some evaluation
function in the form of reward, and the agent utilizes it to
select actions and maximize the expected reward. Reward is the
measure of desirability of things for the agent in question, and
though in many cases its setting has to be given externally and in
advance, it is possible this setting takes into it other factors, such
as the novelty of information obtained and the difference between
observation and prediction.

The emulation theory of representation (Grush, 2004),
suggests a perspective that generation of action signals is a part of
the generation of prediction signals. That is, of all the prediction
signals that express some desirable belief state for the agent in
the future, the operable ones in some actuators are regarded as

actions. This idea has a long history, originating in the Helmholtz
machine and feedforward control. The active inference (Friston
et al., 2012), which is closely related to predictive coding, can be
regarded as a subtype of this theory.

In the light of the above ideas, it can be assumed that the
agent selects signals that are expected to be highly rewarding
in the future, and outputs the operable part of these signals
through the actuator. However, such an agent can only address
a single task, and humans, whose daily lives involve multiple
tasks, focus on one (or a few) task at a time properly while
concentrating resources on it. This form of human behavior is
based on the belief-desire-intent (BDI) logic (Bratman, 1987),
as well as an implementation as an architecture (Rao et al.,
1995). In this theory, the agent retains a series of actions that
it believes can realize its goal as a “plan.” Then, the agent
selects a plan to commit to and retains it as an “intention.”
It also distinguishes between present-directed intentions that
can be realized at a certain point in time and future-directed
intentions that can be implemented in the future. The affordance
competition hypothesis (Cisek, 2007) can be said to be an idea
more analogous to BDI logic related to brain mechanisms.

Taken together, reinforcement learning has provided a
framework for value-addition using reward in the generation of
action. The emulation theory of representation has shown that
action is part of prediction, and the BDI logic has distinguished
what is committed in the plan as an intention and what is
immediately executable in the intention as a present-directed
intention. Notably, plans and intentions in BDI theory implicitly
include predictions for the future, since they are used by agents
when they are feasible.

Considering the above information, the feedback signals
involved in the generation of action can be summarized as follows
(see Figure 2). Prediction signals are signals that convey the
inferred content of the external world as feedback. Plan signals
are a part of prediction signals that convey the content that
provides a desirable value to the system. Intention signals are a
part of plan signals that convey the content that are committed to
execution. Action signals are a part of intention signals that are
transmitted to actuators at the present time (Corresponds to the
present-directed intentions of BDI logic).

FIGURE 2 | Hierarchy of signals.
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Finally, Figure 2 shows all relevant signals. Feedback signals
have been discussed in the previous paragraph. Feedforward
signals have been defined in this paper as follows. Observation
signals are signals that transmit beliefs about the external world
feedforwardly toward a higher-order layer. Sensor signals are
a part of observation signals that are directly obtained from
sensors. Deviation signals are signals that convey deviation of
prediction signals from observation signals. Note that sensor
signals and action signals are not exchanged between the
neocortex areas. Thus, there are five types of signals exchanged
among neocortical areas: observation signals, prediction signals,
plan signals, intention signals, and deviation signals.

3. TYPES OF PATHWAYS BETWEEN
NEOCORTICAL AREAS

In this chapter, based on anatomical findings for the neocortex
and thalamus, all types of interarea pathways will be identified
(see Figure 3). Although the internal structures of neocortical
local circuits are not of interest in this paper, we review excitatory
pyramidal cells, which are the basis of interarea pathways.

Excitatory cells of the neocortex are categorized into
three major classes based on differences in axonal projection
patterns and information coding (Greig et al., 2013; Shepherd,
2013; Harris and Shepherd, 2015). First, with respect to the
corticocortical pathway, we consider it as three pathways that
connect areas of the neocortex involving intratelencephalic(IT)-
type excitatory cells by direct neural projections. Secondly, for
the thalamocortical pathway, we consider it as two pathways, one
with corticothalamic (CT)-type neurons of the sixth layer and the
other with projections by pyramidal tract (PT)-type neurons of
the fifth layer. Thus, we will deal with these five types of pathways
that connect areas of the neocortex.

The basal ganglia loop, which is well-known, originates in
the neocortex and returns to the neocortex via the basal ganglia
and thalamus. However, this pathway performs the function of
gating information transfer of the thalamocortical pathway (fbTC
pathway), which we will mention later. For this reason, we do not
consider it as a pathway that transmits information between areas
of the neocortex, and exclude it in this paper.

In this paper, the directionality of hierarchy are described
as “ff” for feedforward and “fb” for feedback. Furthermore,
corticocortical connections are abbreviated to “CC,” and
thalamocortical connections are abbreviated to “TC.” For
example, the feedforward corticocortical pathway is written
“ffCC pathway.” In Figures 3, 4, the characteristic of interarea
pathways should be described compactly, since these figures
include not only neocortex but also the basal ganglia and the
thalamus. Therefore, we use the abbreviations mentioned above
to denote the direction of hierarchy and their transit points.

3.1. IT Neurons and the Corticocortical
Pathway
The largest class of excitatory neurons is intratelencephalic (IT)
neurons, which project axons only within the terminal brain (the
neocortex, striatum, amygdala, and cortical structures such as

claustrum). Projection of IT neurons allows rapid information
transfer by forming corticocortical connections that directly
exchange signals between different areas, and by utilizing spike
timing of neural activity. These IT neurons are the only type of
excitatory cells that project to the contralateral cortex (Harris
and Shepherd, 2015). Hereinafter, IT neurons in layers 2–6 are
abbreviated as L2IT, L3IT, L4IT, L5IT, and L6IT, respectively.
In addition, the flow of information among the areas may be
controlled by synchronization of activities, and we discuss this
possibility later, in the discussion part (ref. 5.3).

L4 IT neurons are special in that they are, in local circuits
of the neocortex, located upstream of other IT neurons. Since
L4 IT neurons do not have long-range projections toward other
areas, they cannot be the starting point of a pathway that connects
different areas. Although L6 IT neurons projecting to claustrum
form recurrent circuits with each area of the neocortex (Baker
et al., 2018), the number of cells in the claustrum is too small
to exchange information between areas and is therefore omitted
from consideration in this paper.

3.1.1. fbCC1 Pathway
L2IT neurons seem to be functioning as a corticocortical feedback
input system (Solari and Stoner, 2011). In macaque monkey
experiments, in the V2 and V3 areas, the feedback projections
targeting the V1 area is concentrated in the laminar where the
L2IT are located (Markov et al., 2014b). This suggests that there
is a feedback-type corticocortical connection from higher L2IT to
lower L2IT, which we will call the fbCC1 pathway.

3.1.2. ffCC Pathway
L3IT neurons receive projections from L4IT and simultaneously
project strongly to L4 IT in other areas of the ipsilateral cortex
(DeFelipe et al., 1986; Rockland, 1992; Douglas andMartin, 2004;
Barbas et al., 2005; Medalla and Barbas, 2006; Markov et al.,
2013). In the granular cortex with the L4 layer, for example,
signals projected feedforward from lower areas are transmitted
to L3 IT via L4. On the basis of these findings, it is likely that
there exists a feedforward corticocortical pathway that conveys
the outputs to L4 cells in other areas, which we will call the ffCC
pathway. In the early visual cortex, for example, it is a pathway
in which information from observations from the external world
is transmitted as gamma-band signals toward higher-order areas
(Melloni et al., 2007; Bosman et al., 2012; Bastos et al., 2015;
Hermes et al., 2015; Michalareas et al., 2016).

L3IT neurons receive not only indirect feedforward
projections as described above but also direct feedforward
projections from the lower L3IT (Lund et al., 1981; Markov et al.,
2014b). It is known from indirect evidence that the activity of the
third layer is controlled by the projections from the mediodorsal
thalamus (MD) to the anterior cingulate cortex (ACC) in the
third layer (Delevich et al., 2015). In the granular cortex, where
the L4 layer is largely absent, this direct feedforward pathway
would be responsible for most of the signal transmission.

3.1.3. fbCC2 Pathway
Layer 1 of the neocortex, which is also called the molecular
layer, has few neurons, and forms connections of axons from
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FIGURE 3 | Interarea pathways in the neocortex. The notations ffCC, fbCC, ffTC, and fbTC are used to describe the feedforward/feedback and direct/indirect

characteristics of the pathways connecting the neocortical areas. fbCC1, feedback corticocortical pathway 1; fbCC2, Feedback corticocortical pathway 2; ffCC,

Feedforward corticocortical pathway; ffTC, Feedforward thalamocortical pathway; fbTC, Top-down thalamocortical pathway. L1, Layer 1; L4, Layer 4; L2IT,

Intratelencephalic (IT) neurons in layer 2; L3IT, IT neurons in layer 3; L5IT, IT neurons in layer 5; L5PT, Pyramidal tract (PT) neurons in layer 5; L6CT, Corticothalamic

(CT) neurons in layer 6. TRN(core), Core type relay neuron in thalamus; TRN(matrix), Matrix type relay neuron in thalamus; STN, Substantia nigra.

outside and dendrites protruding from various pyramidal cells
(L2IT, L3, L5IT) in microcircuits. The axons projected into this
layer are diverse IT neurons L2IT, L3ITL5IT in a wide range of
neocortical areas and matrix-type thalamic relay cells (Felleman
and Van Essen, 1991; Pandya and Yeterian, 2003; Markov et al.,
2013). It can be supposed that, given these anatomical structures,
the projection of specific axons can easily affect or activate
different types of pyramidal neurons in microcircuits to control
function modules (Solari and Stoner, 2011).

As for the recipient pyramidal cells, because signals received
by the dendrites in layer 1 are accumulated as a neural
activity potential, the type of neuron from which these signals
originated cannot be distinguished. For this reason, it would
be reasonable to assume that the signals received in layer 1
fall within a single type of signal as far as their function
is concerned. Therefore, in this paper, we call collectively
these signals sent to L1 the ffCC2 pathway. These projections
would be, neuroanatomically, responsible for activating and
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FIGURE 4 | Meaning of signals in interarea pathways. The notations ffCC, fbCC, ffTC, and fbTC are used to describe the feedforward/feedback and direct/indirect

characteristics of the pathways connecting neocortical areas. fbCC1, feedback corticocortical pathway 1; fbCC2, Feedback corticocortical pathway 2; ffCC,

Feedforward corticocortical pathway; ffTC, Feedforward thalamocortical pathway; fbTC, Top-down thalamocortical pathway. L1, Layer 1; L4, Layer 4; L2IT,

Intratelencephalic (IT) neurons in layer 2; L3IT, IT neurons in layer 3; L5IT, IT neurons in layer 5; L5PT, Pyramidal tract (PT) neurons in layer 5; L6CT, Corticothalamic

(CT) neurons in layer 6; TRN(core), Core type relay neuron in thalamus; TRN(matrix), Matrix type relay neuron in thalamus; STN, Substantia nigra.

modulating information processing in the targeted areas
(Solari and Stoner, 2011).

3.2. Other Excitatory Neurons and
Thalamocortical Pathway
The thalamocortical pathways are an indirect connection of the
neocortex. The intervening thalamus can control the flow of
information between areas in the neocortex, as pointed out by
the Selective Engagement Model (Crosson, 2013) and others.
Conversely, however, when this pathway transmits information,

there is a delay due to mediation of activities of relay neurons
of the thalamus, and also because it is difficult to transmit
information using the spike timing of neural activity. In the
following subsections, we describe two pathways: the pathway
relayed by core relay neurons, and the pathway relayed by matrix
relay neurons (Jones, 1998; Piantoni et al., 2016).

3.2.1. ffTC Pathway
The first relay nuclei on the thalamus in the thalamocortical
pathway are parvalbumin-positive core thalamic relay cells.
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Corticothalamic (CT) neurons in the sixth layer that project
to these relay cells receive, in the local circuits, projections
from a number of IT neurons, including L5 IT, and project
mainly to the ipsilateral core-type thalamic relay cells. Core
relay neurons project to the fourth layer, targeting a single
cortical area (Rodriguez et al., 2004; Bonjean et al., 2012).
In addition, reticular nuclei, which receive projections from
L6 CT neurons themselves, have inhibitory projections to
relay neurons.

Much of the projection from core neurons to the neocortex is
consistent with the area receiving the projection and is known to
have a recursive structure. At the same time, it is known from
studies of visual attention that there is a feedforward indirect
pathway through the pulvinar, parallel to the ffCC pathway
(Jones, 2001; Shipp, 2003). In this paper, this path is referred
to as the ffTC path due to the attention to the feedforward type
connection structure.

3.2.2. fbTC Pathway
The second relay nuclei on the thalamus in the thalamocortical
pathway are calbindin-positive matrix thalamic relay cells. A
subtype of pyramidal tract (PT) neurons (L5 PT) in the fifth layer
project to these relay nuclei. This subtype is located downstream
of IT neurons in the local circuit, and this group of neurons
produces initial preparatory activities that last until the onset of
motions (Economo et al., 2018).

Matrix relay cells project mainly to the first layer of
a relatively broad neocortical area, simultaneously receiving
projections from neocortical L5 PT neurons and inhibitory
projections from the basal ganglia (Jones, 1998; Clascá et al.,
2012; Mitchell, 2015). Reticular nuclei, which receive projections
from L5 PT neurons and relay neurons themselves, have
inhibitory projections to relay neurons. GPi/SNR in the basal
ganglia dis-inhibit only a few matrix relay neurons at some
point in time. Thus, only a few relay cells are allowed
to transmit signals at each point in time. This mechanism
realizes the gating function of information transmission
between areas.

L5 PT cells also project to the striatum (patch). The other
sub-type of L5 PT projects to the spinal cord, etc., and outputs
pre-action preparatory activities and motor commands.

4. ASSIGNMENT OF SIGNAL MEANING
FOR EACH PATHWAY

In this chapter, five computationally meaningful signals (see
Chapter 2) are assigned to five pathways (see Chapter 3)
that connect the neocortex areas. Through this work, we
make computational sense of the signals exchanged through
each pathway.

4.1. Assignment of Signal Meaning for
Feedforward Pathways
For feedforward signals, we observe that it is reasonable to assign
observation signals to the ffCC pathway, and deviation signals to
the ffTC pathway.

4.1.1. Assign Observation Signal to the ffCC Pathway
Below is the rationale for assigning observation signals to the
ffCC pathway.

In order for a system to operate in response to the changing
external world, it is desirable to update its beliefs about the
state of the world with as little delay as possible. It should also
be capable of conveying the information of a rich observation
signal. Therefore, a feedforward corticocortical pathway should
be assigned to the transmission of the observed signal with less
delay and degradation of the information transmission. In other
words, it would be reasonable to assign the observed signal to the
ffCC pathway.

Neocognitron, which is a visual information processing
model, has alternating layers of S cells that extract features of
figures and C cells that absorb the misalignment of features. This
corresponds to L3 IT cells and L4 cells in the ffCC pathway, as
shown in Figure 3. Moreover, given the fact that this model was
a prototype in the development of deep learning, it would be
reasonable to assign observation signals to the ffCC pathway.

4.1.2. Assign Deviation Signals to the ffTC Pathway
We state the rationale that it is appropriate to assign deviation
signals to the ffTC pathway. The simple reason is that the only
remaining feedforward path to be assigned is the ffTC pathway.

As mentioned in section 2.3, the bottom-up attention realized
by deviation signals involves processes such as selection and
gain control of observation signals. These processes would be
realized as a modulation on the pathway to receive the observed
signal. The terminal end of the ffTC pathway mediated by core
relay neurons is suitable for achieving bottom-up attention, for it
projects to this fourth layer.

For bottom-up attention to perform its function of selecting
the observation signal, the deviation signal must be transmitted
a parallel feedforward pathway to the observation signal. It is
known that the ffTC path is a feedforward path that is roughly
parallel to the ffCC path that conveys the observed information
(Murray Sherman and Guillery, 2006). Therefore, it is reasonable
to assign a deviation signal to the ffTC pathway.

4.2. Assignment of Signal Meaning for
Feedback Pathways
As described in chapter 3, there are three types of feedback
pathways that connect neocortical areas: fbCC1, fbCC2, fbTC.
And, as described in chapter 2, there are three types of signals
to be transmitted as feedback: prediction, plan, and intention.
However, only the fbCC1 pathway is supposed to be able
to transmit these signals without degradation, and the fbCC2
and fbTC pathways are unsuitable. This is because, as already
mentioned, the fbCC2 pathway is suitable to play the role
of activating and modulating information processing in local
circuits. This is also because the fbTC pathway is not suitable for
transmitting rich information because it is an indirect pathway
that is relayed to the thalamus. Therefore, it is not possible to
transmit the prediction, plan, and intention signals among areas
using separate paths.

In the process described below, this issue is overcome by
the introduction of plannize and intentionize signals. Plannize
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signals are defined as signals that specify a desirable part of
the prediction signal. Intentionize signals are defined as signals
that specify a desirable and committed part of the prediction
signals. Here, the desired predictions are the belief states that the
agent wants to achieve in the future. Since the plan signals are a
desirable part of the prediction signals (see section 2.4), the plan
signals could be produced by activating a part of the prediction
signals with the plannize signals. Since the intention signal is
a desirable and committed part of the prediction signals (see
section 2.4), intention signals could be produced by activating a
part of the prediction signals with intentionize signals.

4.2.1. Assign Prediction Signals to the fbCC1

Pathway
Clearly, from the above discussion, it is appropriate to assign the
prediction signals to the fbCC1 pathway.

4.2.2. Assign Intentionize Signals to the fbTC

Pathway
We explain below the rationale for assigning the conversion of
plan signals into intention signals to the fbTC pathway.

It is traditionally known that in the brain, behavioral decisions
at various levels, such as the motor, oculomotor, prefrontal,
orbitofrontal, and cingulate levels, are made in the basal ganglia
loop that is governed by reward signals (Magrinelli et al.,
2016). The basal ganglia loop is often described as consisting
of the neocortex-basal ganglia-thalamus-neocortex. However, in
actuality, as explained in chapter 3, the GPi/SNR output of the
basal ganglia is a circuit that depresses thalamic matrix relay cells
on the fbTC pathway.

That is, the fbTC is a pathway that selects, from plan signals
generated in various neocortical areas at some point in time, as
intention signals that specify currently committed predictions
using long-term prediction awards that are calculated at the basal
ganglia (Colder, 2011; Yamakawa, 2020).

4.2.3. Assign Plannize Signals to the fbCC2 Pathways
We assign plan signals to the remaining one, the fbCC2 pathway.

The fbCC2 pathway can deliver a variety of signals, including
observation and prediction signals. Therefore, it is assumed that
the receiving side local circuits learn to control activation or
modulation to determine which part of prediction signals should
be plannize signals.

Within the neocortical local circuit, the mechanism that
determines the part of the prediction signal that is to be carried
forward into the plannize signals is not clear. However, it could
be assumed that the decision to activate is based on valorization
using dopamine projections from the ventral tegmental area. It
is assumed that through these learning processes, signals passing
through the fbCC pathway will be able to play a plannize role.

4.3. Summary of This Section
The overall picture of the mapping of signals with computational
meaning derived in Chapter 2 and this chapter to the interarea
pathway is shown in Table 1.

In the supragranular layer, the ffCC pathway transmitting
the observed signal and the fbCC1 pathway transmitting the
prediction signal are a relatively independent pair (Markov et al.,
2014b). This structure is fit for a counterstream theory (Ullman,
1995). In addition, this information flow pair is commonly
used in current machine learning: encoding and decoding
in deep generative models; inference and generation in the
Bayesian networks.

5. DISCUSSIONS

5.1. Correspondence of the Thalamic
Pathway
The proposed hypothesis is consistent with the following
statement by Piantoni et al. (2016) for the thalamus
(Piantoni et al., 2016).

TABLE 1 | Assignment of meaning to signals in interarea pathways.

Flow direct. Signals Description of signals Interarea pathway Description of pathway

Feed-forward Observation Signals that feedforward beliefs about the outside world to higher levels

of the hierarchy

ffCC L3IT → L4 or L3IT → L3IT

Sensor Signals that are part of the observation signals and are obtained directly

from the sensor

– Sensor → TRN(core)

Deviation Signals that convey the deviation of the prediction signals from the

observation signals

ffTC L6CT → TRN(core) → L4

Feed-back Prediction Signals that convey an inferred content about the outside world to the

feedback

fbCC1 L2IT → L2IT

Plan Signals that are parts of prediction signals that are desired to be realized – –

Intention Signals that are part of the plan signals that are committed to execution – –

Action Signals that are part of the intention signals and are currently transmitted

to the actuator

- L5PT → Actuator

Plannize Signals that specify parts of prediction signals that are desired to be

realized

fbCC2 L2IT, L3IT, L5IT → L1

Intentionize Signals that specify parts of prediction signals that are desired to be

realized and that are committed to execution

fbTC L5PT → TRN(matrix) → L1
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“The first role is the one in which sensory information is passed

through relatively faithfully to cortical areas, albeit amplified or

suppressed based on attentional mechanisms. The second role is

to maintain the state of the cortex and to support an appropriate

degree of activation, in either wakefulness or sleep.”

The “first role” in the above citation corresponds to the
amplification or suppression by the ffTC pathway for the
L4, which are terminals of the ffCC pathway that transmit
observation signals. This also corresponds to bottom-up
attention, which notifies when something in observation signals
deviates from prediction signals.

The “second role” involves facilitating neural activities as
intentions by transmitting intentionize signals to an area through
the fbTC pathway, as intentions that are to be executed in that
area. This corresponds to the fact that the feedback attention
in the visual cortex transmits attention, which is determined
in the frontal lobe according to the tasks to be dealt with,
toward the visual cortex as attention signals in the beta band
(Buschman and Kastner, 2015).

5.2. The Thalamus as the Pathway
Responsible for Input to the Telencephalon
In this paper, sensor inputs, which are related to the thalamic
pathway, and actuator outputs hold a special position, since
we focused on information exchange in areas in the neocortex.
However, for information processing in the telencephalon, the
role of the thalamus as an input pathway is rather essential.
Typically, thalamic core neurons are most strongly associated
with sensory relays, such as the lateral geniculate nucleus (Jones,
1998; Clascá et al., 2012).

In Figure 4, sensor inputs from the external world appear
like they are causing an interruption into the TRN(core) in the
ffTC pathway. However, in terms of phylogenetic development,
this pathway may convey sensor inputs to L4 neurons in the
primary sensory cortex has preceded, and the function of L6 CT
neurons to transmit deviation signals are a posterior addition
to that.

The pyramidal tract, which transmits action signals from
L5 PT neurons in the motor cortex to the spinal cord,
is indispensable as an output stream for the telencephalon.
The fbTC pathway would be a part of this pathway that
has been developed as the pathway that projects to L1
via TRN (matrix). This pathway is utilized in the basal
ganglia of the cerebrum, which appear only in vertebrates in
terms of phylogenetic development. Probably even before the
basal ganglia emerged, plannize signals had been transmitted
through the fbCC2 pathway that transmits from L5 IT
directly to L1 layers in other areas. However, this pathway
does not allow selection based on delayed reward and
timing-control of plans to be executed. The basal ganglia
and the fbTC pathway were probably added to improve
this point.

Therefore, both the role of the fbTC pathway in transmitting
deviation signals, and the role of the fbTC pathway in
transforming plan signals into intention signals, are likely to have
been added later in terms of phylogeny.

5.3. Dynamic Connection by Synchronous
Coupling of the ffTC/fbTC Pathways
Although the corticocortical pathway is a direct connection
that has sufficient capacity for transmitting observation and
prediction signals, this pathway has difficulty, as the other side of
it, in dynamically controlling the flow of information. To address
this weakness, a mechanism called the synchronous coupling
mechanism has been proposed (Canolty et al., 2006; Lakatos et al.,
2008).

Relying on the following reasons, the anatomical structure of
the thalamus is suitable for driving synchronization of neural
activities in a wide area of the neocortex. First, relay cells project
axons toward all areas of the neocortex. Second, the structure
of the thin nerve sheet, which surrounds the thalamus and is
made of inhibitory Reticular nuclei, has a structure that is suitable
to induce synchronized activity of the whole (or rather a wide
part) of the thalamus. The feedback of the reticular nucleus to
the thalamus is related to the overall synchronization of thalamic
neurons in slow-wave phases of sleep and in a certain form of
epilepsy (Steriade et al., 1993; Timofeev et al., 2012).

Models in which the thalamus produces brain waves that
appear in the spectrum from sleep to wakefulness, such as delta,
alpha, beta, and gamma waves, have also been explored (Li et al.,
2017), and the main brain waves in wakefulness are low gamma
waves of about 40 Hz (=25 ms) and beta waves. Vibrations
in the beta band increase feedback signals, and vibrations in
the gamma band increase feedforward signals (Buschman and
Kastner, 2015). In hearing, electrical stimulation to the reticular
nucleus of rats evokes gamma-band oscillations (40 Hz) in
the auditory cortex (Macdonald et al., 1998). In a visual space
selection task, an increase of synchronization in alpha waves in
the interconnected visual cortical areas (V4 and TEO) occurs
from the connection between a part of the thalamus (pulvinar)
and cortical areas (Saalmann et al., 2012).

Based on these findings, there is a possibility that the
coupling mechanism, which is mentioned above, is realized by
the coordination of both pathways, one involving low-frequency
oscillations (alpha or slow beta waves), which act as top-down
attention, and the other involving high-frequency oscillations
(gamma waves) of the ffTC pathway, which act as bottom-up
attention, in the reticular nucleus of the thalamus.

6. CONCLUSIONS

The neocortex is a system that recognizes and generates actions
by a hierarchical network of representation. In this paper, two
presuppositions are assumed. First, a neocortex consists of areas
formed by uniform local circuits. Second, different pathways that
connect areas transmit different meaning signals.

Several theories, such as predictive coding, reinforcement
learning, representation emulation theory, and BDI logic, are
used as starting points for the study, and signals exchanged
between domains are classified into five types, taking into
account biological constraints. The following types of signals
have been defined: observation signals that transmit information
about the external world feedforwardly, prediction signals
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that transmit inference about the external world as feedback,
deviation signals that transmit deviation of observation signals
from prediction signals feedforwardly, plan signals that transmit
desirable prediction to the system as feedback, and intention
signals that transmit prediction which are both desirable and
committed to its realization as feedback.

Then, based on the anatomical knowledge of the neocortex
and the thalamus, we identified the pathways connecting
areas as three types of corticocortical pathways and two types
of thalamocortical pathways. Then, as to the pathway for
feedforward, we reckoned that the corticocortical pathway, which
originates at IT cells in the third layer (L3IT) in an area and
projects to cells in the higher-order fourth layer(L4), transmits
observation signals, and the thalamocortical pathway, which
originates at cells in the corticothalamic cells in the sixth
layer(L6CT) in an area and connects to cells in the higher-order
fourth layer via thalamic core relay cells, transmits observation
signals. Of the three feedback pathways that exist, the one
with the properties required to convey prediction signals is the
corticocortical pathway, which originates at IT cells of the second
layer(L2IT) of an area and connects to IT cells in the lower-
order second layer. Therefore, we assigned prediction signals to
this pathway.

Thus, the thalamocortical pathway projecting from fifth-layer
pyramidal tract cells (L5PTs) in the area through thalamic matrix
relay cells to the lower first layer is assigned an intentional signal
that activates a part of the predicted signal as an intention. The
plannize signal, which activates a part of the prediction signals as
plans, was assigned to cortical pathways that project from various
IT cells in areas to the first layer in lower-order areas.

In this paper, based on the above examination, a hypothesis
that provides computational meaning to the five types of
interarea signals in the neocortex was proposed. In the future,
further examinations would be required to reveal the meaning
of signals exchanged in brain organs such as the neocortex,
thalamus, and basal ganglia from the perspectives of anatomy,

physiology, and computational theory, based on their meanings
in this hypothesis.

In this paper, study of projections from the layer 6 pyramidal
neurons, are limited only for projection to the matrix-type
relay cells in the thalamus (ffTC pathway). There exists various
subtypes of pyramidal neurons in layer 6 (Thomson, 2010;
Narayanan et al., 2017; Radnikow and Feldmeyer, 2018).
Pyramidal neurons are known to project to the first and
sixth layers of the lower area of the neocortex, as well as
into the striatum and claustrum (Rockland and Van Hoesen,
1994; Markov et al., 2014b; Baker et al., 2018). In the future,
investigations for specifying computational meanings (probably
the Deviation-like) and projection targets for every subtype of
pyramidal neuron in layer 6 should be addressed.
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