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Abstract
Recently, attention mechanisms have significantly boosted the performance of natu-
ral language processing using deep learning. An attention mechanism can select the 
information to be used, such as by conducting a dictionary lookup; this informa-
tion is then used, for example, to select the next utterance word in a sentence. In 
neuroscience, the basis of the function of sequentially selecting words is considered 
to be the cortico-basal ganglia-thalamocortical loop. Here, we first show that the 
attention mechanism used in deep learning corresponds to the mechanism in which 
the cerebral basal ganglia suppress thalamic relay cells in the brain. Next, we dem-
onstrate that, in neuroscience, the output of the basal ganglia is associated with the 
action output in the actor of reinforcement learning. Based on these, we show that 
the aforementioned loop can be generalized as reinforcement learning that controls 
the transmission of the prediction signal so as to maximize the prediction reward. 
We call this attentional reinforcement learning (ARL). In ARL, the actor selects the 
information transmission route according to the attention, and the prediction signal 
changes according to the context detected by the information source of the route. 
Hence, ARL enables flexible action selection that depends on the situation, unlike 
traditional reinforcement learning, wherein the actor must directly select an action.

Keywords  Natural language processing · Deep learning · Self-attention · 
Situatedness · Thalamocortical loop · Basal ganglia · Actor–critic model · Predictive 
coding · Brain-inspired refactoring

Introduction

Natural language is data configured as a sequence of letters and words. Since 
the development of deep learning, natural language processing technology 
using recurrent neural networks, suitable for handling sequences, has become 

 *	 Hiroshi Yamakawa 
	 ymkw@wba‑initiative.org
	 https://wba-initiative.org/

1	 The Whole Brain Architecture Initiative, Tokyo, Japan
2	 The University of Tokyo, Tokyo, Japan

https://orcid.org/0000-0002-6981-0349
http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-019-00081-z&domain=pdf


50	 New Generation Computing (2020) 38:49–64

123

mainstream. However, the heightened effectiveness of using attention in such pro-
cessing methods [1] was recognized several years ago; after that, a group of tech-
nologies was developed, termed transformers using attention [2, 3]. In a specific 
range of tasks, transformers that use attention demonstrate performance beyond 
that of humans. This technology has a function that calls attention to the part 
of the language-processing method by a dictionary-like mechanism. For exam-
ple, with the task of translating the German “Ich gehe zur Schule” into the Eng-
lish “I go to school” as an example, the mechanism of this dictionary-like atten-
tion is simplified as follows. First, associative relations such as {“I”, “go”, “to”, 
“school”} corresponding to the input German words are activated. In English, 
there are grammatical rules such as “the subject is placed at the beginning of the 
sentence” and “the verb follows the subject.” For this reason, the verb, “go”, is 
then selected immediately after the subject, “I”, is spoken.

In neuroscience, the foundation for speech function is thought to be the cor-
tico-basal ganglia-thalamo-cortical loop (CBGTC loop). The “response-release 
semantic feedback (RRSF) model” has been proposed as an explanation of its 
function [4–6]. The basal ganglia appearing in this loop are known to achieve 
reinforcement learning as an actor–critic model in the brain [7–10].

Recently, empirical results that support the predictive coding theory [11, 12], 
have increased [13]. The predictive coding theory hypothesizes that prediction 
signals propagate a recognition hierarchy from the top-down. It has also been sug-
gested that basal ganglia may select the prediction signal flowing through the thal-
amus [14]. These are used as fundamental assumption for subsequent discussion.

In Sect.  2, we first demonstrate that the attention mechanism used in deep 
learning is associated with the CBGTC loop. In Sect. 3, attentional reinforcement 
learning (ARL), which controls the transmission of the prediction signal to max-
imize the prediction reward, is proposed as a computational model integrating 
attention mechanisms and reinforcement learning for natural language process-
ing. Then, the actor–critic model-based ARL, which has high affinity with brain 
architecture, is examined. In Sect. 4, we describe how the process of promoting 
the merging of multiple programs because of constraints, referring to the brain 
architecture discussed here, can be regarded as a brain-inspired AI development 
method. We call this process brain-inspired refactoring and assert that there are 
more opportunities to develop and apply it in the future.

Dictionary‑Like Attention in the Brain

In this section, we focus on the mechanism used to select next words with appro-
priate timing for sentence generation in natural language processing. First, we 
explain that in deep learning, this word selection is achieved via an attention 
mechanism. Next, we state that this is explained by the RRSF model based on the 
CBGTC loop in the brain. Additionally, we show that the attention mechanism 
used in deep learning is associated with this neural loop.
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Attention in Deep Learning for Natural Language Processing

As a recent development in language processing using deep learning, the diction-
ary-like mechanism achieved via a neural network model is called attention. The 
dictionary mechanism is an abstract data type that is common in computer program-
ming. Specifically, this mechanism finds a key, K, that matches the input query, Q, 
and outputs an arbitrary memory, V, corresponding to the key, K. This output can be 
regarded as an array that can use data types other than scalar numeric values as sub-
scripts. A dictionary is also called an associative array, associative list, associative 
container, hash, map, etc. [15].

Even using a neural network, an operation similar to the above-described diction-
ary method can be implemented. In that case, an output value, O, is obtained for the 
input query, Q. Inside, key, K, and value, V, are implemented as numeric vectors. 
This mechanism is expressed as follows:

Here, attention is a mechanism used to increase the weight of the value, V, corre-
sponding to the key, K, similar to the query, Q. Therefore, the attention-calculating 
part, A, is expressed, as follows:

Next, the operation of gating V using this attention, A, is expressed by the following 
equation.

In a system built with deep learning, interpreting the meaning explicitly is diffi-
cult. However, it is possible to conceptually examine the process in which a natu-
ral language processing system using deep learning performs a German-to-English 
translation task using attention. The system will have acquired at least two pieces of 
knowledge from large amounts of data in advance. The first is grammatical rules as 
procedural knowledge, such as “subject followed by the verb”, acquired from a large 
volume of English corpora. In fact, it is suggested that the Bidirectional Encoder 
Representations from Transformers (BERT) contains knowledge related to lexical 
categories [16]. The second type of information acquired in advance is the various 
German–English associative-word relationships as declarative knowledge, learned 
from a large translation corpus. The translation task involves a generation of English 
words in an appropriate order (e.g., “I go to school”) corresponding to a given Ger-
man sentence (e.g., “Ich gehe zur Schule”). The behavior in a simple case is shown 
in Fig. 1. First, in the system encoder, {{“Ich”, “I”}, {“gehe”, “go”}, {“zur”, “to”}, 
{“Schule”, “school”}} is used to interpret the German sentence, and in the expres-
sion V with the output word candidate, a context is formed in which English expres-
sions such as {“I”, “go”, “to”, “school”} are activated. At the first step of English 
sentence generation, the “subject” is formed as attention A by the grammatical rule 
that “the subject is placed at the beginning of a sentence”. Then, a possible can-
didate word “I” is selected depending on attention A. In the next step, by entering 

(1)O(Q,K,V) = softmax(QKT)V .

(2)A(Q,K) = QKT.

(3)O(V ,A) = softmax(A)V .
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a query that the decoded “I” is the subject in the grammatical rule “the verb fol-
lows the subject,”attention A to the verb is formed. Then, a possible candidate word 
“go” is selected depending on attention A. After this, the same procedure is repeated 
until the end of the sentence. The above process is summarized as the repetition of 
the following two operations alternately: first, attention A of the lexical category is 
formed according to the grammatical rules (accumulated as key–value relationships) 
from the previous utterance as the query; second, a word that matches the attention 
A is selected from the candidate set V that matches the context. 

Natural Language Processing in the Brain

The mechanism of human natural language processing has been researched since 
the nineteenth century via the study of aphasia with various symptoms; from 
this, it seems as though natural language processing functions are achieved in 
networks localized in multiple neocortical areas of the left hemisphere. The Lich-
theim brain anatomy model, which was particularly influential, linked the poste-
rior superior temporal gyrus (Wernicke area) to auditory language understanding, 
and the inferior frontal gyrus (Broca area) to speech function [17]. Geschwind 
then incorporated a bundle of nerve fibers from the Wernicke field to the Broca 
field (an arcuate bundle) into the model, positioning the language’s repetitive 
function there, and induced visual input. It is known that the ventral and infe-
rolateral aspects of the anterior temporal lobe play an essential role in language 

Q

OV

A = QKT

softm
ax(A) V

gate 

1 step before

Fig. 1   Conceptual process of German–English translation: After outputting the word “I”, attention is 
given to the lexical category of the verb (v) according to grammar rule K, and “go” is selected from the 
activated word beyond the gate. Later in this paper, it will be shown how the generation of attention A 
from query Q corresponds to the actor part of the basal ganglia, and the role of the gate to the thalamic 
relay cells
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understanding; this is supported by neuroscientific research [18, 19] and by case 
studies such as those investigating semantic dementia in patients with brain inju-
ries [20]. Following these developments in proposed models of natural language 
processing, a model called Lichtheim 2 [21], which consists of a double circuit of 
the dorsal and ventral pathways of the left hemisphere, has been proposed.

However, since about 1950, it has been considered that the mechanism of 
human natural language processing should include the thalamus and basal gan-
glia as opposed to the neocortical view, with the following remarks by Lieberman 
[22]:

The traditional theory equating the brain bases of language with Broca’s 
and Wernicke’s neocortical areas is wrong. Neural circuits linking activity 
in anatomically segregated populations of neurons in subcortical structures 
and the neocortex throughout the human brain regulate complex behaviors 
such as walking, talking, and comprehending the meaning of sentences. 
(Lieberman, 2002)

The background associated with these remarks by Lieberman involved clinical 
studies of many aphasias caused by the thalamus [23–26]. However, in the case 
of thalamus aphasia, the symptoms are more complex than neocortical aphasia, 
and it is difficult to identify the correspondence with the damaged site in the 
brain (due to bleeding, etc.). The RRSF model [4–6] is known as a computational 
model related to utterances considering the subcortical function. In the RRSF 
model, the basal ganglia controls the signal that flows through the thalamocorti-
cal loop, such that a word is selected according to the context of the text, and a 
phoneme or character is selected according to the word selected.

The following points (A)–(C) explain the following, respectively: “the selec-
tive engagement model” that models the function of the thalamocortical loop, the 
function of the basal ganglia, and “the RRSF model” based on the CBGTC loop.

(A)	 Selective engagement model of the thalamocortical loop:

The thalamocortical loop circuit has a hub-like connection structure that receives 
excitatory neural projection from a wide range, namely from the cerebral neo-
cortex to the thalamus, and simultaneously projects from the thalamus to various 
areas of the neocortex. In other words, it has an anatomical structure suitable for 
relaying information between areas of the neocortex. The thalamus contains relay 
cells for this function. The function of the thalamocortical loop is considered in 
light of the “selective engagement model” hypothesis, which posits that thalamic 
cells monitor the activity state of widely dispersed neocortical areas and control 
their functional connections through connections with the hypothalamus [4, 27]. 
This hypothesis is supported by the fact that the thalamic relay nucleus plays an 
important role in changing the dynamics of cortical processing by setting differ-
ent frequency-synchronous vibration patterns [28–36]. Predictive coding theory 
[11, 12] states that the prediction signal propagates from the higher-level related 
region to the lower-level sensory cortex, in a top-down manner. Since brain 



54	 New Generation Computing (2020) 38:49–64

123

organs that can flexibly exchange prediction signals between various neocortical 
regions can be assumed only in the thalamus, the prediction signals are thought to 
pass through the thalamus.

(B)	 Function of basal ganglia:

Basal ganglia receive information by projection from the fifth layer in a broad 
neocortical area. Basal ganglia have been modeled as reinforcement learning that 
selects actions from a wide range of external prediction signals [7–10]. Specifi-
cally, basal ganglia have long been considered in actor–critic-type reinforcement 
learning. A circuit in which the striatum (patch) receives a projection from the 
neocortex and projects it to the substantia nigra pars compacta (SNc), and a cir-
cuit in which dopamine projection from the SNc feeds back to the projection from 
the neocortex to the striatum plays the role of a critic. Here, dopamine projection 
is considered a predictive reward error and controls both actor and critic learn-
ing. In the circuit corresponding to the actor, the striatum (matrix) receives an 
excitatory projection from the neocortex; this part of learning is controlled by 
dopamine. The projection from the striatum (matrix) to the internal globus pal-
lidus (GPi)/substantia nigra pars reticulata (SNr) is inhibitory. Furthermore, pro-
jection to a thalamic relay cell that transmits a prediction signal from the GPi/
SNr is also inhibitory. In this manner, information transmitted between neocorti-
cal areas through the thalamic relay cells is gated by basal ganglia control. On 
the actor side of the basal ganglia, the projection path from the striatum (matrix) 
to the GPi/SNr has a direct path as well as an indirect path. Additionally, there is 
a hyper-direct path projected from the neocortex. That mechanism coordinates 
the timing of deactivating the GPi/SNr and releasing thalamic relay-cell transmis-
sion. This is consistent with the lexical selection model [37] related to language 
generation, wherein the basal ganglia are regarded as the machine that aligns 
word-related input with ongoing language plans.

(C)	 Response-release semantic feedback model:

In the above thalamocortical loop, there is a CBGTC loop as a pathway for gating 
the output of the basal ganglia to relay the thalamocortical loop. In basal ganglia, 
there are parallel loops related to the control of movement and thought; these are 
mainly divided into a skeletomotor loop, oculomotor loop, prefrontal-cortex loop, 
and limbic loop [38]. The RRSF model is known as a computational model based on 
the hypothesis that the CBGTC loop is responsible for language processing [4–6]. 
For language processing, the left hemisphere language-related areas (Broca area, 
Wernicke area, etc.) are mainly used in the above loop. Klostermann [27] stated:

In the specific context of language processing, the “Response-Release Seman-
tic Feedback model” claims thalamic and [basal ganglia (BG)] functions in 
language production [4–6, 39]. As in the Selective Engagement model, tha-
lamic nuclei are posited to control the interaction between fronto-opercular and 
temporo-cortical cortices for the integration of lexico-syntactic with seman-
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tic information. The resulting signal is further passed on to the BG which are 
thought to coordinate the release of the provided language plan into speech.

The above model is consistent with the “declaration/procedure model” [40] that 
executes the combination of declarative knowledge accumulated in the neocortex 
through the procedural function of applying grammatical rules.

Dictionary‑Like Attention Mechanism in the Brain

In this section, we build a hypothesis regarding the neural foundation of the diction-
ary-like attention used in deep learning for language processing. In the proposed 
hypothesis (Fig.  2), the output of the striatum (matrix), which corresponds to the 
actor part of the basal ganglia, is assigned to the output of attention A. Next, by con-
trolling thalamic relay cells through disinhibition based on attention A, the outputs 
of value V from the cortical areas are gated and action O is produced.

Actor

Environment

top-down prediction
(decoder)

bottom-up (encoder)

local cortical circuit

attention

Lower 

Higher

Critic

Cortex

Striatum
(matrix)

Striatum
(patch)

SNcGPi/SNr

Sensor/
actuator

prediction

TRN

TRN

Reward

Q

K
V

A
O

Fig. 2   Schematic relationship between the cortex, thalamus, and basal ganglia: the neocortex is com-
posed of multiple areas and has a hierarchical structure that extends from the lower-order areas close 
to sensors/actuators in contact with the environment to the abstract higher-order areas. Encoding is per-
formed in the flow up the hierarchy, in a bottom-up manner, and decoding is performed in the flow in 
which the prediction signal descends the hierarchy, in a top-down manner. The striatum of basal ganglia 
receives the prediction signals from the neocortex. In the basal ganglia, the actor part in the actor–critic 
model is a path from the striatum (matrix) to the GPi/SNr, and the critic part corresponds to a loop of the 
striatum (patch) and the SNc. The SNc receives a reward calculated based on inputs from sensors. The 
dopamine output by the SNc is a prediction reward error and controls the learning of actors and critics. 
The output of the GPi/SNr selects the signal by disinhibiting the thalamic relay cell (TRN) that mediates 
the prediction signal
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“The mapping hypothesis, between the dictionary-like attention and brain cir-
cuit, involves the following:”

•	 The cortex sends the previous word as a query (potentially including lexical 
category) to the striatum (matrix).

•	 The striatum (matrix) calculates attention A according to grammatical rules 
acquired from long-term experience.

•	 Learning, such as the above-mentioned grammar rules, is based on the fact 
that the plasticity of projections from the cortex to the striatum is modulated 
by dopamine projection from the SNc.

•	 The activation of attention A disinhibits thalamic relay cells through the GPi/
SNr, and part of value V is transmitted as the output value O.

The following explains the rationale that supports the validity of this hypothe-
sis. First, disinhibition mechanisms, which release the suppression of the relay, 
achieve a pure gating function needed for the dictionary-like mechanism. These 
mechanisms are positioned at thalamic relay cells to control transmissions 
between areas of the neocortex.

Second, timing is considered. The timing at which attention A acts, which 
determines the next word in deep learning, corresponds to the timing at which the 
basal ganglia release speech output in the RRSF model. Therefore, it is reason-
able to associate the GPi/SNr output with attention A.

Third, basal ganglia are considered to comprise a circuit that exhibits proce-
dural functions, wherein they apply empirically acquired grammatical rules in the 
declaration/procedure model [40]. It is, thus, reasonable to assign the function of 
generating attention A to basal ganglia, as they contain the grammatical rules.

There are three possibilities in regard to which part of the neural circuit the 
softmax function (Eq.  3) is associated. The first possibility, which directly cor-
responds to Eq. 3, is that softmax function stay within the striatum (matrix), and 
these activities are controlled sparsely by means of interneurons. The second pos-
sibility is that the disinhibition mechanism from the striatum (matrix) through the 
GPi/SNr to the thalamus has an unknown effect. Third, it may be brought about 
by the regulation of thalamic relay-cell output [39] as a function of the thalamic 
reticular nucleus (RTN) effectively, which comprises inhibitory neurons that sur-
round the thalamus, as shown in Fig. 3.

The feature of this hypothesis is that the basal ganglia output lexical category, 
as attention comprised of a set of words, is gated. This is different from selecting 
a specific word. With this feature (shown in Fig. 1), it is possible to achieve the 
function of further narrowing down a candidate set of next words weighted sepa-
rately according to context.

The prediction signal in the brain is often transmitted top-down (see Fig. 2). 
However, in natural language processing, as shown in Fig. 1, attention is gener-
ated and used in the same representation hierarchy, such as in the selection of 
words. In deep learning research, this attention generation and utilization corre-
sponds to a mechanism called self-attention.
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Attentional Reinforcement Learning (ARL)

Defining Attentional Reinforcement Learning (ARL)

A mechanism for giving attention to a lexical category, i.e., a set of words as 
actions, can be generalized as a mechanism for gating a specific information 
path. Contrastingly, as previously noted in Sect. 2.2, the mechanism of reinforce-
ment learning repeatedly appears as a loop in which various neocortical areas 
include the basal ganglia and the thalamus. Therefore, the mechanism for gating 
the flow of information between areas of the neocortex with an attention signal is 
not restricted to language processing and will be widely diverted. With regard to 
the aspect of this attention-giving mechanism, attentional reinforcement learning 
(ARL) is defined as follows:

ARL is a kind of reinforcement learning. ARL maximizes the expected 
reward by modulating the flow of prediction signals.

In this case, the “action output” part in reinforcement learning is limited to 
the form of the “predictive signal gating.” We can say that gating is one of the 
types of action outputs of reinforcement learning. Agents with ARL will be 
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Fig. 3   Overview of attentional reinforcement learning: a Conventional actor–critic model. b ARL model 
based on actor–critic. The TD error output by the critic is used for learning the actor that outputs atten-
tion. Value V is the whole output of candidate values by multiple actors; V is gated by attention A and 
output to the environment as action O 
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able to generate context-dependent output through gating. This is different from 
typical reinforcement learning that outputs a specific action (or action selection 
probability).

In the act of uttering, the information used by the actor to determine the next 
lexical category has been simplified as the previous word (i.e., the query Q). How-
ever, even in this case, the words before the most recent should be taken into con-
sideration, and generally, the action is determined by factors from various external 
environments. It is not rare that the influence on the next action from the external 
environment becomes larger than that of its own actions. Metaphorically, when a 
person looks at a door with a knob, they intuitively want to turn it. In other words, 
candidate actions appear in the relationship between a person and an object. Gibson 
called this “affordance,” according to which action is embedded in the environment 
[41]. However, even in this example, it is often assumed that the act of moving in 
front of the door is performed before the door is recognized. In many cases, the pre-
vious action influences the next action.

Attentional Actor–Critic Model (AAC Model)

In this section, we examine ARL based on the actor–critic model, which is com-
patible with brain architecture, heretofore referred to as the attentional actor–critic 
(AAC) model. In the following, we explain the AAC model in terms of its imple-
mentation in the brain. As shown in Fig. 3, the actor–critic model is a function that 
calculates rewards to be acquired in the future from the state S and learning from 
data based on the temporal difference error (TD error) calculated by the model itself. 
The actor learns a function that performs a mapping from state S to action O using 
TD error. However, from the discussion in the latter half of Sect. 3.1, the informa-
tion that the actor should use is generally regarded as the state S. For state S, sensor 
inputs may be used directly, or information after preprocessing (for example, in deep 
learning) may be used. The AAC model assumes that there are multiple actors that 
generate specific actions for a state. These actors generate concrete action candidates 
V from state S and may be constructed by human design or by learning from data. 
The actor for attention in the actor–critic model outputs attention signal A, as shown 
in the following equation.

Here, Q (in Eq. 2) was replaced with S. Furthermore, since the key K is an internal 
parameter determined through learning, it is considered to be incorporated in the 
policy function � . This function corresponds to the part in which basal ganglia out-
put the attention A according to state S in the brain.

Next, using attention A, gating the candidate value V (Eq. 3) is used as it is. This 
function corresponds to thalamic relay cells in the brain. In Fig. 3, an actor that out-
puts V is depicted as a plurality of modules for intuitive understanding. However, 
it should be noted that when the system is constructed with a neural network, each 
actor outputs from multiple neurons. Below is a list of descriptions for operating 
the AAC model. Although the definitive descriptions are given here, they may be 

(4)A = SKT = �(S).
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extended to a probabilistic description; i.e., the AAC model described below is one 
example of the ARL model.

•	 Critic: same as standard actor–critic model
•	 A = �(S)

•	 O = softmax(A)V

Effective Application Scenarios for ARL

As previously described, there are two operations for selecting the next word in 
machine translation. First, grammar rules are applied to the word that was spoken 
immediately before, and attention for the lexical category of the next word is gener-
ated. Next, from the possible word candidates in the context obtained from the input 
source text, a word that matches the generated attention is selected and output.

A generalization of these operation is the ARL operation. In other words, the 
actor function is applied to the immediately preceding state to generate attention as 
an output category. The advantage of this model is that the output of reinforcement 
learning can be made dependent on the situation.

Considering the characteristics of ARL, ARL is effective if applied to scenarios 
that require both rapid and timely responses as well as flexibility, depending on the 
context. If the previous information does not affect the decision or if the response 
does not require timeliness, the immediacy provided by ARL is less effective 
because agents can make time-consuming inferences. Even if the response to the 
immediately preceding information needs to be rapid, regular reinforcement learn-
ing can be used if the response is not flexible, whereby the characteristics of ARL 
are not sufficiently utilized.

In terms of daily life, many tasks require both real-time operations and flexibility, 
and are, thus, suitable for ARL.

As a first example, the process for a singer to achieve a praiseworthy performance 
can be considered to consist of two operations. First, deliberate attention to volume, 
voice type, tempo, pitch, etc. is generated based on singing skills. Next, utterances 
that match the attention are selected and output in the context of lyrics.

As a second example, the process for hitting an effective shot in tennis can also 
be considered to consist of two operations. First, intentional attention about the pos-
sible hitting method, speed, spin, and course is selected by considering hitting an 
opponent’s ball according to his or her technique. Next, the action is selected that 
matches the attention from the possible racket swing movements within the context, 
such as the position and posture of the player and the opponent, and is output.

As a third example, the process of safely operating a car is also composed of 
two operations. First, based on the driver’s skill, intentional attention is selected for 
the direction of travel, speed, etc. from the current surrounding conditions. Next, an 
operation that matches the attention is selected, and an output is generated from the 
possible steering, acceleration, and deceleration operations in view of the driving 
context, such as road surface conditions and vehicle performance.
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Discussion

Here, prediction signals were assumed to pass through thalamic relay cells, and gated by 
attention signals outputted by the basal ganglia. Indeed, there are many reviews regard-
ing the cognitive importance of predictions in the brain [42–49]. It is also assumed that 
the top-down information gated by ARL is the prediction signals. The concept of rein-
forcement learning, which selects the desired behavior based on rewards, is reasonable. 
In contrast, selecting a prediction based on rewards in the ARL looks to do something 
different. However, this gap is solved by the emulation theory described below.

Emulation theory has important implications for predictive coding. The theory 
assumes the cognitive mechanisms in the brain with multiple internal represen-
tations (emulators) that predict specific actions and the resulting expected sen-
sor information (including the effect copy) [47]. By acting based on the emula-
tion theory, the agent can control the sensor information that is expected to be 
obtained in the future within the range of freedom of action selection. This idea 
has been studied in some fields, such as in motion control [50, 51].

Similarly, the generative character of perception using neural architecture can 
also resolve the gap between cognition and action generation [52]. In the simi-
lar idea of a “generalized state,” in which prediction representations are always 
placed in parallel with state representations, the merit, that preparing a represen-
tation only for action output is unnecessary, is emphasized [53, 54]. The reason 
behind this is that it is difficult to acquire representations for action from reward 
signals and/or teacher signals with little information.

In general, an intelligent agent generates an action to achieve desired situations 
by following the orientation, such as a value function, reward function, goals, 
or purposes. For agents based on emulation theory, this desired orientation is 
achieved by controlling the predictions so as to be useful to the agent. In ARL, 
the desired prediction is selected by a mechanism that directs attention to a predic-
tion signal with high future value. In the brain, it is achieved by a mechanism that 
selects information transmission in the thalamus by the output of basal ganglia.

Conclusion

Here, the following hypothesis was outlined and explained: the dictionary-like 
attention mechanism used for language processing using deep learning is an 
attention mechanism that controls information transmission between one cortex 
area and another cortex area. Specifically, it was shown that the basal ganglia 
output an attention signal and control the thalamic relay cells as a gate. In gen-
eral, the basal ganglia operate as reinforcement learning. However, the output act 
is attention, such that a flexible action corresponding to the context becomes the 
output. Here, reinforcement learning that outputs attention in this way is called 
attentional reinforcement learning (ARL). This mechanism is particularly effec-
tive when it is necessary to have a response that is both timely, according to the 
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immediately preceding information, and flexible, according to the context. In 
addition to natural language utterances, this ability is required for various action 
skills. In other words, ARL is a model that provides some degree of situatedness 
to the nature of reinforcement learning and can react quickly.

Since ARL has a high affinity with brain mechanisms, it is promising for use 
in designing brain-inspired AI (including natural language processing models), 
together with the reference model of the neocortical local circuit [55]. Practically 
speaking, a mechanism that adjusts the timing at which the basal ganglia GPi/SNr 
release the transmission of thalamic relay cells in the brain may help to achieve 
more human-like responsiveness, especially if such a mechanism can be incorpo-
rated into a real-time dialog system. Top-down action generation is performed hier-
archically in the brain, and the prediction of desirable sensor signals emerges as the 
actuator in contact with the environment. Therefore, ARL-based hierarchical rein-
forcement learning, that functions as brain architecture, can be built. However, it 
can be said that language processing is characterized by a self-attention mechanism, 
which gives attention to information transmission in the same hierarchy. Feedback to 
the same hierarchical level within the animal cognitive architecture may have been 
enabled in humans only through evolutionary mutations.

Lastly, the idea of ARL was built on the nonscientific fact that both the deep 
learning models of attention mechanisms and reinforcement learning are function-
ally realized in the basal ganglia. In other words, model merging was facilitated 
by the constraint that different computational models were implemented on the 
same brain organ. Thus, in the development of brain-inspired AI, a method that 
encourages the integration of multiple programs using the restriction of referring 
to the brain as an existing unique model is called brain-inspired refactoring. This 
idea was conceived through AI development activities of the Whole Brain Archi-
tecture Initiative.1 In the development of an integrated AI system that references 
the brain, opportunities to use such a brain-inspired refactoring method are likely 
to increase, while keeping pace with the development of machine learning and 
neuroscience.
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