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Abstract

Predicting user location is one of the most important topics
in data mining. Although human mobility is reasonably pre-
dictable for frequently visited places, novel location predic-
tion is much more difficult. However, location-based services
(LBSs) can influence users’ choice of destination and can be
exploited to more accurately predict user location even for
new locations. In this study, we assessed the behavior dif-
ference for specific LBS users and non-users by using large-
scale check-in data. We found a remarkable difference be-
tween specific LBS users and non-users (e.g., check-in lo-
cations) that had previously not been revealed. Then, we pro-
posed a location prediction method exploiting the characteris-
tics of check-in locations and analyzed how specific LBS us-
age influences location predictability. We assumed that users
who use the same LBS tend to visit similar locations. The re-
sults showed that the novel location predictability of specific
LBS users is up to 43.9% higher than that of non-users.

Introduction

With the rapid adoption of smartphones, location-based ser-
vices (LBSs) are being widely used in daily life because
location information is easy to accurately and automati-
cally acquire through global positioning systems (GPS), Wi-
Fi, etc. For example, Pokémon Go1 released by Niantic
in July 2016 is played worldwide. Given the popularity
of LBSs, location prediction is one of the most active re-
search topics in data mining. Previous research noted that
human movement is highly predictable (Wang et al. 2015;
Song et al. 2010; Lian et al. 2015; Cho, Myers, and Leskovec
2011; Li et al. 2010). In other words, people spend most
of their time at home, in the workplace, and at a few fre-
quently visited places, and they periodically transfer back
and forth among these locations. However, location predic-
tion for novel places remains difficult (Wang et al. 2015;
Lian et al. 2015). Novel location prediction is an impor-
tant topic, because users need information of novel locations
more than that of regular places. In addition, it can be uti-
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lized to develop many exciting applications (e.g., personal
assistants such as Google Now, and urban planning).

The content of most LBSs is associated with real-world
locations. For example, in Pokémon Go, rare Pokémon types
are more frequent in particular areas, and PokéStops, where
a user can obtain items, are associated with real-world loca-
tions. Meanwhile, Instagram users tend to visit scenic spots
to take stylish pictures. Thus, content distribution is believed
to influence people’s visiting behavior. In other words, the
content of LBSs can make people to gravitate to specific lo-
cations. Therefore, there is a possibility that the performance
of predicting new locations for specific LBS users can be
improved by considering whether the target user uses a spe-
cific LBS or not and by mining app-specific places from the
user’s check-in history.

One possible solution for a novel location prediction
is location recommendation because recommender systems
calculate a prediction probability for each unvisited loca-
tion (Lian, Zheng, and Xie 2013). Although various factors
(such as geographical distance (Ye et al. 2011; Kurashima
et al. 2013), temporal factors (Yuan et al. 2013; He et al.
2016), and social relationships (Ma, King, and Lyu 2009;
Ye et al. 2011)) have been explored in existing studies of lo-
cation recommendation for location-based social networks
(LBSNs), the effect of mobile apps that a user uses has not
been revealed.

In this study, we conduct an extensive quantitative anal-
ysis on mobility patterns of specific LBS users by using
large-scale check-in data of LBSNs. We analyze the differ-
ences between particular LBS users and non-users regarding
the number of check-ins, check-in locations, temporal dy-
namics, and distance between successive check-ins. Check-
in data of Foursquare and Instagram from Twitter is used.
On the basis of this analysis, we propose a novel location
prediction method based on collaborative filtering (CF) that
exploits the characteristics of check-in locations. Then, we
analyze how specific LBS usage influences location pre-
dictability. We assumed that users who use the same LBS
tend to visit similar locations.

The contributions of this study are the following:

• We conducted a quantitative experiment to investigate
how LBSs influence mobility patterns by using large-
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scale check-in data. We selected Pokémon Go and Insta-
gram as examples and found that specific LBS users and
non-users have different mobility patterns.

• We proposed a novel location prediction method that ex-
ploits the characteristics of the tendency of check-in loca-
tions.

• We analyzed the effect of LBSs on location predictabil-
ity through CF. The results showed that we can achieve
20.0% and 43.9% higher novel location predictability for
users of Pokémon Go and Instagram, respectively, than
non-users in terms of recall@5.

Related Work

Analysis of the Relationship between Mobility
Behavior and Usage of Specific LBS

Existing studies can be categorized into quantitative and
qualitative analyses. A quantitative analysis uses check-in
data such as that of Foursquare or a wearable device to cap-
ture a user’s mobility behavior. On the other hand, a qualita-
tive analysis uses survey data based on questionnaires.

Quantitative Analysis of Mobility Behavior of Mobile
Users Noulas et al. (Noulas et al. 2012) investigated hu-
man mobility patterns regarding distance using Foursquare
check-in data and revealed that the point-of-interest (POI)
density is an important factor in urban human mobility.
Noulas et al. also investigated the temporal dynamics of a
place network using Foursquare check-in data (Noulas et
al. 2015). They revealed that place networks dynamically
change over time and leveraged this finding for a link pre-
diction task of a place network. Silva et al. (Silva et al.
2013) compared the distance between successive check-ins,
the popularity of regions in cities, and temporal patterns be-
tween Foursquare users and Instagram users. They found
that the popular regions are compatible, and the temporal
patterns are similar during the same day but distinct for dif-
ferent days of the week. Tasse et al. (Tasse et al. 2017) re-
ported that most people geotag in places they visit a few
times.

Althoff et al. (Althoff, White, and Horvitz 2016) reported
that Pokémon Go increases the physical activity of users.
They used wearable sensors (Microsoft Band) and Bing’s
search queries to conduct their experiment. They inferred
active Pokémon Go users from search queries and analyzed
these users’ activities. Based on estimation, active Pokémon
Go users walked 1,473 additional steps per day, thereby in-
creasing their average life expectancy by 41.4 days.

Qualitative Analysis of Mobility Behavior of Mobile
Users Colley et al. (Colley et al. 2017) conducted a
user survey of 375 Pokémon Go users and analyzed their
geographical activity. They reported that almost 60% of
Pokémon Go users had visited at least one new place when
playing Pokémon Go. Another survey (Paavilainen et al.
2017) of 1,000 Finnish Pokémon Go users reported the
same trend as regards visiting new locations.

However, no existing work has reported on the effect for
location prediction.

Location Recommendation as Novel Location
Prediction

In the recommender system community, novel location pre-
diction is the same as location recommendation because a
recommender system calculates the prediction probability
for each unvisited location (Lian, Zheng, and Xie 2013;
Wang et al. 2016). Thus, we use “recommendation” inter-
changeably with “prediction.”

Location recommendation has been widely studied be-
cause it is an active research area (Ma, King, and Lyu 2009;
Ye et al. 2011; Yuan et al. 2013; Kurashima et al. 2013;
He et al. 2016). These studies can be categorized into three
groups on the basis of the factors involved (Yu and Chen
2015): (1) Geographical, (2) Social, and (3) Temporal fac-
tors.

Geographical factors Ye et al. (Ye et al. 2011) used
the idea that human movement follows a power law for
POI prediction. They developed a combined user preference
through user-based CF, social influence from friends, and
geographical influence as mentioned above. Kurashima et
al. (Kurashima et al. 2013) proposed a method called Geo
Topic Model to simultaneously model a user’s interest and
activity area. They supposed that a user tends to visit loca-
tions geographically close to the locations he/she visited in
the past. In addition, the visited location is influenced by the
user’s interests (e.g., a user who is interested in art is more
likely to visit museums)

Social factors Ma et al. (Ma, King, and Lyu 2009) pro-
posed friend-based CF. They assumed that users are easily
influenced by their trusted friends. Hence a user balances
his/her own preference against the recommendations from
friends. Ye et al. (Ye et al. 2011) exploited the work of Ma
et al. (Ma, King, and Lyu 2009) for POI prediction. Based
on the hypothesis that friends are likely to go to similar lo-
cations, they weighted the check-in record on the basis of
social connections and similarity of their check-in locations.
Li et al. (Li et al. 2016) defined three types of friends: (1)
Social Friends who have a connection on an SNS, (2) Loca-
tion Friends who visit the same locations, and (3) Neighbor-
ing Friends who live in nearby homes. They integrated these
three types of friends to predict POIs and incorporated la-
tent check-in that is estimated because the user cannot visit
all POIs.

Temporal factors Yuan et al. (Yuan et al. 2013) proposed
a method to exploit temporal information for POI prediction
because people tend to visit various places at different times
of the day (e.g., people visit restaurants around noon). They
computed the similarity between time slots to permit inter-
polation given that a user-POI matrix created for each time
slot is very sparse. The POI recommendations of He et al.
(He et al. 2016) utilize the idea that human behavior is peri-
odic, and the visit frequency (days of the week) depends on
the POI category. For example, universities are often visited
on weekdays, whereas bars tend to be visited on Fridays and
weekends. They predict the POIs by using tensor decompo-
sition to extract such latent patterns.
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Figure 1: Screenshot of Pokémon Go. (a) Capturing the
Pokémon (left), (b) wandering the virtual world (center), and
(c) PokéStops (right)

In these studies, user-based CF is adopted as the basic
framework, and each influence (geographical, social, and
temporal) is added to improve the prediction accuracy. To
the best of our knowledge, no existing work has considered
applying specific LBS usage logs for location prediction.

Because some recent recommendation studies have aimed
at recommendations based on diversity, serendipity, etc.
rather than just accuracy (Kaminskas and Bridge 2016), ex-
isting studies can be categorized by not only the incorpo-
rated factors but also considered metrics such as diversity,
serendipity (Kunaver and Požrl 2017). Thus, we briefly re-
view the related work. Zhang et al. proposed a POI spe-
cific recommendation method by considering POI availabil-
ity and diversity (Zhang, Liang, and Wang 2016). The work
of Boim et al. (Boim, Milo, and Novgorodov 2011) and
Ho et al. (Ho, Chiang, and Hsu 2014) proposed diversity-
aware recommendation methods which can be combined
with any CF-based method. Because our proposed method
is CF-based method, we can integrate these diversity-aware
method with the proposed method.

Overview of Location-based Services

In our experiments, we selected Pokémon Go and Instagram
as our two LBSs because they have the highest number of
users. In addition, because Pokémon Go has digital content
and Instagram has real-world content, we adopted these two
services to investigate their content characteristics.

Pokémon Go

Pokémon Go is a location-based mobile game. Figure 1
shows a typical screenshot of the Pokémon Go game. Play-
ers are encouraged to wander around real world to capture
Pokémon creatures bound to real-world locations (Figure 1
(b)). GPS is used for matching the player’s real world loca-
tion with the virtual world. To capture a Pokémon, the player
needs to use items such as Poké Balls, and Berries (Figure
1 (a)) that can be obtained from PokéStops located at mon-
uments, landmarks, etc. (Figure 1 (c)). The player can fight
with other players at Gyms that are also located at real-world
POIs. Therefore, physical movement is an important charac-
teristic of this game.

Figure 2: Screenshot of geo-tagged post of Instagram.

Instagram

Instagram is a photo-sharing social network service. A user
can attach word-tags and geo-tags (i.e., location informa-
tion) to the photos as shown in Figure 2. One motivation
for the user to share photos is “Coolness,” that is, to become
popular or obtain more “Likes” (Sheldon and Bryant 2016).
Because of these characteristics, users tend to share “Insta-
grammable” photos (i.e., photogenic scenes).

Definition and Dataset

Definition

In this research, we define the behavior of a user as the
check-in history, which is a set of places he/she visited
within a certain period of time. Let U be the set of all users,
L be the set of locations, and T be the set of hourly-based
time slots (i.e., a day is divided into 24 time slots). If each
user is u ∈ U , each location is l ∈ L, and time is t ∈ T , then
we define check-in and check-in history as follows.
Definition (Check-in) Check-in vu is described by the

user-location-time tuple (u, l, t), which indicates the user
u visited location l at time t.

Definition (Check-in History) Assuming that the i-th
check-in of the user u is vu,i, then the check-in history of
u is defined as hu = {vu,1, vu,2, · · ·, vu,n}

Dataset

Strategy behind the data collection We assume that the
data must meet three requirements to validate our hypoth-
esis: (1) the volume of check-in data is large enough to
ensure statistical validity, (2) the data is publicly available
for research reproducibility, and (3) the data has POI names
for assured interpretation. Thus, Foursquare, Instagram, and
Twitter are reasonable candidates. The terms of use of all
these candidates, other than Twitter, prohibit data collection.
Twitter has place-name tagging but the amount of data is
small, whereas Foursquare and Instagram have POI names.
Therefore, we collected check-in data of Foursquare and In-
stagram from tweets as they meet all the requirements. In
addition, the location history data of Pokémon Go users is
not publicly available because Niantic does not publish the
API to access the data. Thus, we use service-related keyword
matching to identify Pokémon Go users from tweets.
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Details of dataset We use the check-in data of Foursquare
and Instagram for almost half a year (from January 4,
2018, to July 15, 2018). The check-in data is collected
from Foursquare and Instagram via Twitter. Figure 3 shows
the flow of data collection and filtering. We obtain geo-
tagged tweet data from Twitter API2. All geolocation is
converted into a geographic grid such as geohash (Geo-
hash 2008) and Grid Square (Japanese Statistics Bureau
1996). The reason we convert is that a POI integration
is needed for analysis because POIs of Foursquare and
Instagram are different. We used Grid Square (Japanese
Statistics Bureau 1996) defined by the Statistics Bureau of
Japan. The geolocation is represented by mesh code. We
used the grid with 250-meter-long sides by considering a
smartphone’s GPS noise (von Watzdorf and Michahelles
2010). Subsequently, we extract tweets that are posted by
Foursquare or Instagram on the basis of the source property
because all tweets have a source property that indicates the
client application of a tweeted post. Finally, we extract the
POI from the tweets by using regular expressions because
Foursquare tweets use the style of “I’m at POI NAME in
CITY swarmapp.com/xxx” or “USER COMMENT (@ POI
NAME in CITY) swarmapp.com/xxx”, whereas Instagram
tweets use the style of “USER COMMENT location: POI
NAME instagram.com/xxx”. The reasons we extract POI
names from check-in are (1) to extract representative POIs
from a geographic grid for interpretation, and (2) to filter
out posts that have no fine-grained check-in locations be-
cause the location names in several posts are broader loca-
tions such as city or prefecture names. Specific app users are
distinguished by the following rules:

• Pokémon Go Users: Users who meet at least one of the
following conditions:
(1) keywords such as “pokemon go” are in the user’s pro-
file text, or
(2) a user who issued at least K tweets that include
keywords such as “pokemon go,” “pokestop,” or several
other service-related words (e.g., character names such as
Pikachu and Eevee).

• Instagram Users: A user who has at least one tweet
posted via Instagram. That is, the user first posted on In-
stagram, and then the post was automatically posted to
Twitter.

We call the users who do not meet above conditions “others”
or “non-users.” Given the extraction of posts under these
conditions, a check-in posted by a Pokémon Go user does
not necessarily indicate a check-in posted while the user
was playing Pokémon Go. Thus, not all check-in spots of
Pokémon Go users are associated with Pokémon Go. On the
other hand, because check-in data of Instagram users is col-
lected by the source property, all check-in spots of Instagram
users are associated with Instagram. Our purpose is to pre-
dict the locations to which specific LBS users go, not the
locations where specific LBS users access a specific LBS.

Specifying app users based on keywords such as “poke-
mon go” might lead to false-positive cases. The number

2https://dev.twitter.com/rest/public

Number of tweets
1 2 3

Accuracy 56.7% 78.7% 84.0%

Table 1: Accuracy of identifying Pokémon Go users
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Figure 3: Flow of data collection and filtering

of tweets K can be regarded as the degree of interest for
Pokémon Go. Thus, we investigated the relationship be-
tween the number of tweets and accuracy of identifying
Pokémon Go users. To inspect the performance of identi-
fying Pokémon Go users using keyword matching, we ran-
domly sampled 150 users for each number of tweets (i.e.,
K = 1, 2, 3). Then, we manually checked whether the user
is actually a Pokémon Go user or not by viewing his/her
tweet timeline. There was two assessors, and the agreement
was 99.3%. From this result, we considered the annotation
to be reliable. Table 1 shows the results of specifying app
users on the basis of keywords. From this result, we used
three as the threshold for the number of tweets.

We collected Japanese tweets and extracted POIs in Japan
from the tweets. Hence, we collected a total of 7,118,598
check-ins from 161,963 users: 154,985 check-ins from 667
Pokémon Go users, and 1,517,121 check-ins from 86,897
Instagram users. Users who used both Pokémon Go and In-
stagram numbered 253 and made 46,279 check-ins. Users
who used both LBSs were counted in each LBS and were
not excluded. These datasets were used in the experiment in
Study 1 (subsequent section).

In evaluating POI predictions in Study 2, further filtering
was executed in accordance with previous research (Yuan et
al. 2013). First, we identified users who visited more than
five locations because 20% of the check-ins were randomly
deleted for the evaluation. Next, we filtered out the locations
that were visited by fewer than 20 users since places where
few users check-in cannot be regarded as app-specific loca-
tions. The remaining users numbered 542 for Pokémon Go
and 28,971 for Instagram, and locations numbered 12,063
for Pokémon Go and 22,513 for Instagram.

Study 1: Analysis of Specific LBS User

Check-in Behavior

In this subsection, we detail the experiment conducted to in-
vestigate the difference between particular LBS users and
non-users. We compare specific LBS users with non-users
regarding the number of check-ins, check-in locations, tem-
poral dynamics, and the distance between successive check-
ins. The former two factors have not been explored, whereas
the latter two factors, which corresponded to the factors con-
sidered in the existing work, are analyzed to verify that our
data indicates the same tendency as existing work.
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Figure 4: Number of check-ins of each LBS

Mean Median SD
Pokémon Go 232.4 43.0 523.4
Instagram 17.5 2.0 107.1
Others 69.1 15.0 192.9

Table 2: Statistics of the number of check-in counts

Comparison of the number of check-ins To investigate
how many users there are in each LBS user check-in, we
counted the number of check-ins from the collected data.
Generally, in CF, the higher the data (User-Location matrix)
density is, the better the prediction performance will be (Su
and Khoshgoftaar 2009). Figure 4 shows the histogram of
the check-in counts. Table 2 shows the mean, median, and
standard deviation of the number of check-in counts.

From these results, the User-Location matrices of
Pokémon Go players and Instagram users are expected to
be denser and sparser, respectively, than that of non-users.

The density of the User-Location matrix was 5.58×10−3

for Pokémon Go users, 5.30×10−4 for Instagram users, and
1.26×10−3 for other users. The density of the User-Location
matrix of Instagram was 2.38 times sparser than that of non-
users, whereas that of Pokémon Go users was 4.43 times
denser than that of non-users. Therefore, the novel location
predictability of Pokémon Go users is also expected to be
higher than that of non-users.

Comparison of the check-in locations In this subsection,
we compare the check-in location ranking of specific LBS
users and non-users to investigate whether the check-in lo-
cation of specific LBS users is biased or not. Table 3 lists the
top 10 check-in spot rankings (determined by the number
of visits) of (a) Pokémon Go, (b) Instagram, and (c) Other
users. The number of visits was normalized on the basis of
the maximum value.

In the ranking of Pokémon Go users, the top ranked
sites include major stations such as Tokyo Station, and the
tendency of Pokémon Go user completely resembles that
of non-users. Meanwhile, a remarkable difference was ob-
served in the ranking between Instagram users and non-
users, specifically for “Tokyo Disneyland” and “Tokyo Dis-
neySea.” Generally, Instagram users do not remain at only a
scenic place all day but go to commonly visited places such
as stations. Therefore, the ranking of Instagram users con-

sists of both commonly visited places (i.e., major stations)
and places visited for LBS-specific reasons such as Tokyo
Disneyland. To quantitatively compare these rankings, we
calculated the Spearman rank-order correlation coefficient
(Kokoska and Zwillinger 1999). The correlation coefficient
was 0.333 (p-value of 0.214) between Pokémon Go users
and others and -0.430 (p-value of 0.346) between Instagram
users and others.

We further investigated whether a bias exists in the check-
in locations of particular LBS users. To reveal the character-
istics of the check-in locations of particular LBS users, we
calculated the lift value (Geng and Hamilton 2006) of check-
in location l by using Equation (1).

LiftUX
(l) =

p(l|UX)

p(l|UY )p(UY ) + p(l|UX)p(UX)
(1)

where UX denotes the Pokémon Go or Instagram users, UY

denotes non-users, and Lift denotes the ratio of p(l|UX)
over the average. Table 4 shows the visited sites ranked by
normalized lift value. Many Pokémon Centers, which are
Pokémon shops, and parks were presented in the upper rank
for Pokémon Go users. The service introduction page of
Pokémon Go3, public notes that parks are good places for
PokéStops. In addition, some special parks such as Tsuruma
Park, are very famous as Pokémon Go locations in Japan4.
Hence, the ranking probably reflected the influence of this
phenomenon. Meanwhile, scenic sights (e.g., Mount Fuji)
and historical places (e.g., Nagoya Castle) are top in the
ranking of Instagram users. Thus, the ranking of Instagram
users also reflected the characteristics of Instagram.

Comparison of the check-in time of a day Human mo-
bility has an obvious temporal pattern in a day (Silva et al.
2013; Noulas et al. 2015). This corresponds to the tempo-
ral factor of novel location prediction (Yuan et al. 2013;
He et al. 2016). Figure 5 shows the number of user check-
ins for each time of the day. Generally, the tendency of
Pokémon Go users resembles that of non-users except dur-
ing late evening and nighttime (i.e., after 19:00). Meanwhile,
the tendency of Instagram users is different from the non-
users, particularly from early morning to before noon (03:00

3https://niantic.helpshift.com/a/pokemon-go/?p=web&l=en&s
=pokestops&f=what-makes-a-high-quality-pokestop

4https://en.wikipedia.org/wiki/Tsuruma Park
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(a) Pokemon Go (b) Instagram (c) Others
Rank Representative POI name Rel. Freq Representative POI name Rel. Freq Representative POI name Rel. Freq
1 Tokyo Station 1 Tokyo Station 1 Akihabara Station 1
2 Shinjuku Station 0.7814 Shinjuku Station 0.7076 Tokyo Station 0.9754
3 Akihabara Station 0.776 Tokyo Disneyland 0.6323 Shinjuku Station 0.8278
4 Nagoya Station 0.6284 Tokyo DisneySea 0.6004 Shibuya Station 0.6413
5 Shibuya Station 0.5792 Shibuya Station 0.5924 Nagoya Station 0.6216
6 Ikebukuro Station 0.5792 Nagoya Station 0.5421 AKB48 Theater 0.5794
7 Osaka Station 0.5027 Akihabara Station 0.5251 Akihabara Gamers 0.5482
8 Shinagawa Station 0.4918 Club Quattro 0.4745 Ikebukuro Station 0.5134
9 Yokohama Station 0.4372 Ikebukuro Station 0.47 Shinagawa Station 0.4376
10 Animate Akihabara 0.4153 Tokyo Dome 0.4658 Haneda Airport 0.4329

Table 3: Ranking of check-in spots based on the check-in numbers of (a) Pokémon Go, (b) Instagram, and (c) Other users.
(a) Pokémon Go (b) Instagram

Rank Representative POI name Norm. lift Representative POI name Norm. lift
1 Pokémon Center Tokyo DX 1 Mount Fuji 1
2 Tsuruma Park 0.645 Around Mount Fuji 0.982
3 Toda Park Station 0.5232 Yoyogi Park 0.9653
4 Tofukuji Station 0.514 Maiko Snow Resort 0.9457
5 Kinshi Park 0.4653 Naha Airport 0.9333
6 Tokyo Skytree Station 0.438 Fukuoka Airport 0.9186
7 Tsurumai Station 0.4086 Enoshima 0.9003
8 Nihonbashi 0.4019 Fukuoka Maizuru Park 0.9
9 Tochigi Stagion 0.3986 Hitachi Seaside Park 0.8837
10 Shiki Staion 0.3947 Itsukushima Shrine 0.8703
11 Tama Center Station 0.3878 Kenroku-en 0.8647
12 Kotake-mukaihara Station 0.3844 Tokyo DisneySea 0.8581
13 Pokémon Center Osaka 0.3819 Inokashira Park 0.8342
14 Otemachi Station 0.3708 Nippon Budokan 0.832
15 Pokémon Center Kyoto 0.3595 Fushimi Inari Taisha (Shrine) 0.8244
16 Warabi Station 0.3565 Nagoya Castle 0.7985
17 Kyobashi Edogrand 0.3473 Naeba Ski Resort 0.7971
18 Zushi Staion 0.3368 Meguro River Cherry Blossom 0.7771
19 Amagasaki Station 0.3253 Osanbashi Pier 0.7591
20 Pokémon Center Skytree Town 0.3207 Showa Memorial Park 0.7486

Table 4: Ranking of check-in spots based on the normalized lift value.
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Figure 5: Number of check-ins users for time of a day

to 11:00) and late evening and nighttime (after 19:00). Note
that Figure 5 shows the relative number of check-ins. This
means that relatively more Instagram users check-in around
noon than Pokémon Go users and others. We further inves-
tigated Instagram user’s check-ins in late evening and early
nighttime (which is another particular characteristic of In-
stagram users) by calculating the lift value of check-ins from
20:00 to 23:00. Table 5 presents the results. Many large sites
where events are often held in the evening and at night are
present in the top ranking.

Comparison of the distance among successive check-ins
It is generally said that the distance of human mobility fol-
lows a power law (Gonzalez, Hidalgo, and Barabasi 2008;

Rank Representative POI name norm. lift
1 Tokyo DisneySea 1
2 Ajinomoto Stadium 0.8933
3 Sensoji Temple Asakusa Kannon-Do 0.8786
4 Tokyo Disneyland 0.8442
5 Tokyo Disney Resort 0.8398
6 Kyocera Dome Osaka 0.7924
7 Tokyo Dome 0.7525
8 Shimokitazawa ERA 0.7186
9 Makuhari Messe 0.7142
10 Zepp Tokyo 0.6949

Table 5: Ranking of check-in spots based on the normalized
lift value for Instagram users between 20:00 and 23:00.

Ye et al. 2011; Yuan et al. 2013). This property was also
exploited to predict a novel location of existing work (Ye
et al. 2011; Yuan et al. 2013). Therefore, we investigated
the distance difference among successive check-ins between
specific LBS users and non-users.

First, we calculated the distance between adjacent check-
ins within a day. Then, the probability of each distance was
plotted (blue dot) as shown in Figure 6. The probability was
calculated using (# of samples of each distance)/(# of total
samples). Finally, we observed that the distribution of the
probability follows the power law, as shown in Figure 6.

To quantitatively compare the characteristics of each
LBS, the probability distribution of successive check-ins
was fitted using the power law equation. The relationship
between the distance and probability is represented by the
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(a) Pokémon Go (b) Instagram (c) Others

Figure 6: Distribution of distance among successive check-ins

w0 w1

Pokémon Go 1.331 -1.576
Instagram 0.811 -1.448
Others 0.621 -1.374

Table 6: Parameters of the power law distribution.

following equation (Ye et al. 2011).

y = a× xb (2)

where x is the distance between adjacent check-ins, y is the
visited probability, and a and b are the parameters of the
power law. By taking the logarithm on both sides of Equa-
tion (2), we can obtain the following equation.

log y = w0 + w1 log x (3)

where log a = w0 and b = w1. This equation is the same as
that in the work of Ye et al. (Ye et al. 2011). The distribu-
tion was radically changed approximately 105m in Figure 6.
A similar tendency is also reported Yuan et al. (Yuan et al.
2013). Therefore, we fitted Equation (3) using the data be-
tween 0 and 105m. The least-squares regression was used to
perform the fitting calculation.

Table 6 shows the results of the parameter estimation. The
fitted line is denoted by green in Figure 6. The smaller the
value of w1 is, the nearer the tendency of users to check-
in will be. As shown in Table 6, the order of the value of
w1 is PokemonGo < Instagram < Other. This result
indicated that specific LBS users tended to check-in more in
nearby locations than the non-users.

Study 1: Summary of the difference in mobility
pattern

We briefly summarized the difference in mobility pattern be-
tween specific LBS users and non-users, regarding the num-
ber of check-ins, check-in locations, temporal dynamics, and
the distance among successive check-ins.

(1) Number of check-ins: Pokémon Go players had 4.43
times more check-ins, whereas Instagram users had ap-
proximately a quarter of check-ins compared with other
users.

(2) Check-in locations: Pokémon Go users tended to
check-in at parks and nature spots/historical places more

than non-users. Meanwhile, Instagram users tended to
check-in at large event sites, scenic places, and histori-
cal places much more than non-users.

(3) Check-in time of the day: Instagram users had a differ-
ent check-in time tendency from other users, especially
during late evening/early night. Instagram users tended
to visit large event sites in late evening and at night.

(4) Distance among successive check-ins: Pokémon Go
and Instagram users tended to visit more nearby places
than other users.

From the result of (1), the novel location predictability of
Pokémon Go users is also expected to be higher than that of
non-users as mentioned above. From the result of (2), we can
see a remarkable difference existed between specific LBS
users and non-users, especially for lift-based ranking. Thus,
it is useful to predict locations for specific LBS users, and we
design a method that exploits this characteristic and evaluate
its effectiveness in the next section. From the results of (3)
and (4), our data was validated because the results indicated
the same tendency as existing work.

Study 2: Analysis of Effect on Location

Prediction Using Collaborative Filtering

The results of the previous section revealed the difference in
mobility patterns between specific LBS users and non-users
but not how this difference influences location predictability.
To this end, we performed a simple machine learning exper-
iment to analyze the effect of specific LBS usage on location
predictability.

Study 2: Methods

User-based CF is one of the most basic prediction methods.
Therefore, we used the user-based CF as a basic method,
and extended it to predict specific LBS users as the proposed
method. In this subsection, we describe two methods to gen-
erate location predictions for specific LBS users through CF:
(1) User-based CF and (2) Lift-weighted user-based CF. Our
proposed lift-weighted user-based CF was based on the hy-
pothesis that users of the same LBS are likely to visit the
same location. First, we explain the location prediction by
using user-based CF. Then we propose the location predic-
tion for specific service users.
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User-based Collaborative Filtering The first step of
user-based CF was to calculate the similarity between the
target user and other users. Then, the prediction score of a
location was computed by a weighted combination of other
users’ check-in events. Each element ci,j in User-Location
matrix C, which represents the visits of each user, is ci,j = 1
when a user ui ∈ U checks in at location lj ∈ L, and
ci,j = 0 when a user ui does not check in at POI lj . The pre-
diction score of each location was calculated using Equation
(4), which is as follows (Ye et al. 2011):

ĉi,j =

∑
uk∈U wi,kck,j∑

uk
wi,k

(4)

where wi,k indicates the similarity weight between user ui

and user uk.
The similarity was computed using a cosine similarity ex-

pressed by the following equation in the conventional man-
ner of Ye et al. (Ye et al. 2011) and Yuan et al. (Yuan et al.
2013)

wi,k =

∑
lj∈L ci,jck,j√∑

lj∈L c2i,j

√∑
lj∈L c2k,j

. (5)

Lift-weighted User-based Collaborative Filtering In
this subsection, we explain how to exploit LBS usage in-
formation for location prediction. We propose a method that
uses the lift value to add weight to an LBS-specific loca-
tion in the general CF framework. Here, we introduce the
simplest method that incorporates the lift value into CF be-
cause our main purpose is to validate our hypothesis that we
can improve the performance of novel location prediction
by considering whether the target user uses a specific LBS
or not. The computational cost of the proposed method in
addition to the user-based CF is low because the proposed
method can be calculated by adding one multiplication to
the user-based CF thanks to the simplicity.

Based on the analysis of study 1, users who use the same
LBS are likely to visit similar places. Thus, the prediction
score of lift-weighted CF ĉ

(s)
i,j of each location for the user

ui was calculated by using the following equation.

ĉ
(s)
i,j = (1 + Lift(lj))×

∑
uk∈UX

wi,kck,j∑
uk∈UX

wi,k
(6)

To reduce the computational cost, we filtered the set of users
using only specific LBS users UX . wi,k was calculated using
Equation (5).

We calculate the prediction scores of each location for all
test data using each model. A ranked list is formed by sorting
all locations in accordance with their prediction scores, and
top-N scored locations are recommended.

Study 2: Results

Evaluation Settings In our experiment, we randomly se-
lected 20% of users’ visited locations as test data (i.e., these
locations are regarded as yet to be visited) and predicted lo-
cations from the remaining 80% of check-ins for each user.
Thereafter, we used the top-N scored locations as predic-
tions and varied the parameter as N=1, 5, 10, 20. To increase

the robustness of the evaluation, we evaluated the predic-
tion performance five times by changing the random seed
for Pokémon Go users and calculated the average of these
results because the number of Pokémon Go users is limited.

Metrics We use precision@N, recall@N, and accu-
racy@N as evaluation metrics, following previous studies on
location recommendation (Ye et al. 2011; Yuan et al. 2013;
Kurashima et al. 2013). Precision@N is the ratio of the re-
covered locations to the top-N predicted locations, recall@N
is the ratio of the recovered locations to the set of loca-
tions selected randomly, and accuracy@N is the percentage
of users who had least one location in their ground truth of
the top-N predicted locations.

Comparison Methods We compared the proposed lift-
weighted user-based CF method with two baseline methods.
User-based CF: The first baseline method is user-based CF
described in Eq. (4) because it has been widely used as the
most basic method in many existing works (Ye et al. 2011;
Yuan et al. 2013).
User-based CF + Geo: The second baseline method ex-
ploits the geographical factor by a power law proposed by
Yuan et al. (Yuan et al. 2013). We selected this geographical-
factor-based method for comparison because the geograph-
ical factor for recommendation is still underexplored in re-
cent research (Wang et al. 2018). In addition, it is one of the
most basic methods. We calculated the check-in probability
that a user will check-in at location lj after li by the follow-
ing conditional probability. This equation follows the work
of Yuan et al. (Yuan et al. 2013).

p(lj |li) = a× x(li, lj)
b

∑
lk∈L,lk �=li

a× x(li, lk)b
(7)

where x(li, lj) denotes the distance between the location li
and lj . Given a user u and the check-in history of the user hu,
we can calculate the score that is proportional to the check-
in probability of each location l as follows.

ĉ
(g)
i,j = P (l)P (l|hu) ∝ P (l)P (hu|l) (8)

= P (l)
∏

l′∈hu

p(l′|l) (9)

where P (l) denotes the prior probability that is proportional
to the ratio of users checked in l out of all users in the
dataset. We used the Bayes rule in Equation (8). After the
above score based on the geographical factor is calculated,
we integrated the geographical-factor-based score calculated
in Equation (9) and the score of user-based CF by linear
combination. This combined score is referred to as User-
based CF + Geo. These two methods have different score
scales, thus we normalize each score as follows.

c̃i,j =
ĉi,j

maxlj∈L−hu
(ĉi,j)

(10)

c̃
(g)
i,j =

ĉ
(g)
i,j

maxlj∈L−hu
(ĉ

(g)
i,j )

(11)
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Figure 7: The results of different parameters for User-based
CF + Geo

Then, we computed the integrated score as follows.

ci,j = (1− α)× c̃i,j + α× c̃
(g)
i,j (12)

where α is the tuning parameter. The reason we combined
the score of the geographical factor and user-based CF is
to compare each method under fair conditions because the
proposed lift-weighted user-based CF method contains the
calculation of the user-based CF. To tune the parameter, we
varied α from 0.0 to 1.0 in 0.1 steps regarding accuracy@1.
Figure 7 shows the results. The performance curve peaks
around α = 0.1. Thus, we set α = 0.1 in comparison. We
compared the user-based CF + Geo method only for the case
of Pokémon Go users because its computational cost, which
depends on the number of users and pairs of locations, is
extremely high for the case of Instagram users.

Evaluation Results For a quantitative evaluation, we
compared the effectiveness of the proposed lift-weighted
user-based CF method with that of the user-based CF (base-
line method). Tables 7 and 8 show the evaluation results for
Pokémon Go and Instagram users, respectively. Scores in
bold in Table 7 are the best results. The proposed method
outperformed user-based CF except for precision@1, re-
call@1, and accuracy@1 for Pokémon Go users. The two-
tailed t-test showed that the difference was significant for
all cases for Instagram users. The level of statistical signifi-
cance was 0.999. Meanwhile, for Pokémon Go users, † and
‡ indicate statistical significance at the 0.95 and 0.995 level
with respect to both User-based CF and User-based CF +
Geo, respectively.

Study 2: Discussion

In Study 2, our hypothesis was that the accuracy of novel lo-
cation prediction can be improved by considering the use
of specific LBSs. Results in Tables 7 and 8 support our
hypothesis. Here, we discuss these results in more depth.
Notably, the performance of novel location prediction was
higher for Instagram users than for Pokémon Go users de-
spite the User-Location matrix of Instagram being sparser
than that of Pokémon Go users and other users. We suppose
that there are two reasons for this: (1) the qualitative dif-
ference in the check-in data on Foursquare and Instagram,
and (2) the difference between digital content and real-world
content. For the first reason, the check-in data of Pokémon
Go is not only the data for when the user plays Pokémon
Go but also does other activities, whereas the check-in data

of Instagram is exactly for when the user uses Instagram.
Therefore, the bias of the location of Instagram users may
be more clearly reflected than that of Pokémon Go users.
The second reason is that the content distribution of digital
content is easier to change than that of real-world content.
That is, the content of Pokémon Go can be easily changed
by service providers (i.e., Niantic). To investigate the dif-
ference between digital content and real-world content, we
calculated the top 100 rankings of check-in spots on the ba-
sis of the lift value for each month (from January to June).
Then we compared the number of months in which the loca-
tions appeared in the ranking as shown in Figure 8. There is
an apparent difference between Pokémon Go and Instagram.
Approximately 24.8% of the locations appeared in the top
100 rankings during six months for Instagram. On the other
hand, fewer locations (18.5%) appeared in the top 100 rank-
ings during six months for Pokémon Go. In addition, 28.4%
of the locations appeared in the ranking in one month for
Instagram, whereas 37.1% of the locations appeared in the
ranking in one month for Pokémon Go. We suppose that this
phenomenon reflects the difference in the characteristics of
digital content and real-world content. From this result, it
may be more effective for Pokémon Go users to use time-
varying lift value (i.e., calculating the lift value for short
term, such as month by month).

Implications for Location-based Services

Our results lead to implications for LBSs. One LBS applica-
tion is in intelligent personal assistants such as Apple’s Siri
(Apple 2017) and Google Now (Google 2017). Traffic and
weather information are provided on the basis of the current
or predicted location of a user. The locations are mainly reg-
ular places, such as home, workplace, and a few frequently
visited places. However, information for novel places is also
important for a user. Hence, we suggest providing location-
related information of novel places on the basis of novel
location prediction. We consider the essential implications
of the study is that we can leverage the results of novel lo-
cation prediction which is more accurate for LBS applica-
tions. From this viewpoint, we may also apply our results to
location-based advertisements as well as information provi-
sion. In addition, we may exploit the results of novel location
prediction for public health because human mobility affects
the spread of the infection (Meloni et al. 2011). Another ap-
plication is to support the prevention of smartphone overuse.
Recently, smartphone makers such as Apple are providing
a function to restrict smartphone use (e.g., Apple’s screen
time5), because overuse of smartphones is a problem. The
fact that LBS usage information helps novel location predic-
tion may be conversely said to prevent a user from overusing
his/her smartphone (i.e., specific LBSs) too much, especially
for a user who is correctly estimated with high probability.
Thus, our analysis may help prevent users from overusing
their smartphones.

5https://www.apple.com/ios/ios-12/
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Precision Recall Accuracy
pre@1 pre@5 pre@10 pre@20 rec@1 rec@5 rec@10 rec@20 acc@1 acc@5 acc@10 acc@20

User-based CF 0.0269 0.0234 0.0221 0.0218 0.0004 0.0010 0.0018 0.0029 0.0269 0.1033 0.1827 0.3107
User-based CF + Geo 0.0273 0.0231 0.0222 0.0217 0.0004 0.0010 0.0018 0.0029 0.0273 0.1015 0.1845 0.3070
Lift-weighted CF 0.0244 0.0263‡ 0.0251‡ 0.0236† 0.0004 0.0012‡ 0.0020‡ 0.0032† 0.0244 0.1221‡ 0.2000† 0.3229

Table 7: Prediction performance for Pokémon Go users

Precision Recall Accuracy
pre@1 pre@5 pre@10 pre@20 rec@1 rec@5 rec@10 rec@20 acc@1 acc@5 acc@10 acc@20

User-based CF 0.0223 0.0183 0.0168 0.0151 0.0017 0.0041 0.0067 0.0101 0.0223 0.0838 0.1457 0.2370
Lift-weighted CF 0.0286 0.0234 0.0205 0.0176 0.0024 0.0059 0.0092 0.0133 0.0286 0.1059 0.1683 0.2568

Table 8: Prediction performance for Instagram users

(a) Pokémon Go (b) Instagram
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Figure 8: Comparison of the number of locations ranked in
top 100.

Limitations

Our work has the following limitations.
(1) Data source of human mobility. Because we use the
Foursquare and Instagram’s check-in data for our experi-
ment, a possibility exists that we cannot obtain all the visited
locations. In addition, the user might not actually check-in at
the location. However, because check-in data is actively pro-
vided by the user, our analysis can consider his/her privacy.
In addition, regular places were believed to be checked-in at
less by the user than novel places. Hence, these characteris-
tics may be suitable for our analysis. Besides coverage, there
may be a difference between the demographic distribution
of an actual service (i.e., Pokémon Go and Instagram) and
the data collected through Twitter. One alternative method
to record a user’s location is always logging the location of
a user by using GPS. However, in this case, the visited POI
needs to be estimated from GPS coordinates, which may in-
duce error because visited POI estimation from GPS logs is
underexplored (Nishida et al. 2014). On the other hand, the
advantage of using the check-in data is that we can exactly
obtain the visited POI because the check-in data is actively
provided by the user. Therefore, we used the check-in data
collected from Twitter.
(2) Trends in the popularity of each LBS. Each LBS has a
popularity trend. If an LBS is very popular at certain period,
the size of the effect becomes large and vice versa. Thus, we
have to consider the dynamic property of LBSs.
(3) Causality. Because our analysis is not causal inference
but association analysis, we cannot conclude that the LBSs
are the cause of location bias. However, if we can confirm

the causality, we can leverage the causality of mobile app
usage and visited locations to online to offline (O2O) mar-
keting, because if a user installs a specific app, then that the
user may possibly go to a specific location.
(4) Scale of dataset. Although our dataset contains at least
150,000 check-ins for Pokémon Go users, the number of the
users is limited. We can expand the number of Pokémon Go
users by simply extending data collection period. However,
this cannot solve the problem, because the check-in loca-
tions of Pokémon Go users have time-varying characteris-
tics as discussed in Study 2. In addition, we considered that
even though the dataset is not sufficiently large, it is not too
small because Colley et al. (Colley et al. 2017) collected
375 Pokémon users from all over the world, whereas we
collected 667 users with almost 150,000 check-ins within
Japan. In addition to the size of the dataset, because our
dataset was more focused to specific region, our dataset was
more suitable for the analysis of check-in behavior.

Conclusion

In this study, we analyzed the influence of location-based
services (LBSs) on human mobility patterns and exploited
it for location prediction. In the first part of this study, we
investigated the difference between specific LBS users and
non-users with regard to the number of check-ins, check-in
locations, temporal dynamics, and the distance among suc-
cessive check-ins. We found a remarkable difference in mo-
bility between specific LBS users and non-users (e.g., check-
in locations). These insights are beneficial to understand hu-
man behavior and propose novel methods. Thereafter, we
proposed a lift-weighted user-based collaborative filtering
(CF) that exploits the characteristics of the bias of check-
in locations to predict novel location, and we analyzed the
impact of LBS on location predictability. We compared con-
ventional user-based CF with lift-weighted user-based CF
to predict the locations for each user. In the lift-weighted
user-based CF, we extended the method of user-based CF by
weighing the lift value. Foursquare and Instagram check-in
data was used to evaluate the effect for location predictabil-
ity. The result showed that the novel location predictability
of Instagram users is up to relatively 43.9% higher than that
of non-users in terms of recall.

In future work, we would like to introduce a unified
framework of novel location prediction that exploits all fac-
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tors investigated in Study 1 with the help of LBS informa-
tion. In addition, we will evaluate the movement effects of
users of LBSs other than Pokemon Go and Instagram.
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