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Abstract
This paper describes a framework for the development of an integrative cognitive 
system based on probabilistic generative models (PGMs) called Neuro-SERKET. 
Neuro-SERKET is an extension of SERKET, which can compose elemental PGMs 
developed in a distributed manner and provide a scheme that allows the composed 
PGMs to learn throughout the system in an unsupervised way. In addition to the 
head-to-tail connection supported by SERKET, Neuro-SERKET supports tail-to-
tail and head-to-head connections, as well as neural network-based modules, i.e., 
deep generative models. As an example of a Neuro-SERKET application, an inte-
grative model was developed by composing a variational autoencoder (VAE), a 
Gaussian mixture model (GMM), latent Dirichlet allocation (LDA), and automatic 
speech recognition (ASR). The model is called VAE + GMM + LDA + ASR. The 
performance of VAE + GMM + LDA + ASR and the validity of Neuro-SERKET 
were demonstrated through a multimodal categorization task using image data and a 
speech signal of numerical digits.

Keywords  Cognitive models · Probabilistic generative models · Symbol emergence 
in robotics · Deep generative models · Machine learning

Introduction

The development of integrative cognitive systems that can form perceptual and 
behavioral concepts using multimodal sensorimotor information and learn and 
understand a language in a real-world environment is a significant challenge in arti-
ficial intelligence (AI) and robotics  [1]. This paper describes a theoretical frame-
work called Neuro-SERKET for this purpose.
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Numerous types of integrative cognitive systems, which are sometimes called 
a cognitive architecture, have recently been developed for building service robots 
and modeling human adaptive cognition  [2–11]. However, the cognitive systems 
for robots need to handle a variety of types of sensorimotor modalities, e.g., image, 
sound and actuation, and a variety of internal cognitive processes, e.g., categoriza-
tion and planning. Therefore, the size of the computational models becomes large 
and the development requires significant effort for each integrative cognitive sys-
tem. For further progress in this stream of research, we need to achieve an efficient 
way to develop complex cognitive systems in a practical manner. In addition, recent 
advancements in deep generative models (DGMs), for instance, a variational auto-
encoder (VAE)  [12], have boosted their utilization in the development of cognitive 
systems.

This paper describes a novel framework enabling researchers and developers to 
create elemental cognitive modules, i.e., image recognition, automatic speech rec-
ognition, and syntax and clustering models, independently, and compose them into 
a large cognitive system, which can operate as a cognitive system and be consist-
ently trained as a single learning system. Neuro-SERKET is an extension of SER-
KET  [11], which was proposed as a framework for decomposing and composing 
PGMs. As described later, SERKET does not support neural networks, i.e., deep 
learning. A framework called Neuro-SERKET can also employ neural network-
based cognitive modules. In addition to that, SERKET only supports head-to-tail 
connections for decomposition and composition. In contrast, Neuro-SERKET sup-
ports head-to-head and tail-to-tail connections in graphical models, as well.

The remainder of this paper is organized as follows. Section  2 introduces the 
background of Neuro-SERKET. Section  3 describes the Neuro-SERKET frame-
work. More concretely, the method for the decomposition and composition of 
probabilistic generative models (PGMs), including DGMs, is described. Section 4 
describes a concrete example of integrative cognitive systems developed using the 
Neuro-SERKET framework. The integrative model was developed by combining 
VAE, a Gaussian mixture model (GMM), a latent Dirichlet allocation (LDA), and 
an automatic speech recognition system (ASR), and can form a multimodal con-
cept from row speech and image signals. This is an illustrative example involving all 
types of elemental connections, i.e., head-to-tail, tail-to-tail, and head-to-head con-
nections, and a neural network. Finally, Sect. 5 provides some concluding remarks.

Background

During this decade, the complexities of cognitive systems that can learn real-world 
knowledge and find the latent structure from multimodal sensorimotor informa-
tion obtained by the robot itself, i.e., an embodied artificial cognitive system, have 
increased. Cognitive systems for robots that learn the relationships among different 
types of multimodal sensory information have been proposed using PGMs and neu-
ral networks  [2–6]. Methods proposed in the studies enable robots to infer the latent 
variables from their own observations, for instance, the robot acquired object cate-
gories as latent variables from visual, sound and tactile sensory signals in [2]. These 
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enable robots to acquire various knowledge by inferring the latent variables from 
their own observations. A further advancement of such cognitive systems allows the 
robots to find meanings of words by treating a linguistic input as another modality 
[13–15]. Cognitive models have recently become more complex in realizing vari-
ous cognitive capabilities: grammar acquisition [16], language model learning [17], 
hierarchical concept acquisition [18, 19], spatial concept acquisition [20], motion 
skill acquisition [21], and task planning [7] (see Fig. 1). It results in an increase in 
the development cost of each cognitive system.

Among them, it has been recognized that PGMs are extremely useful for mod-
eling an integrative cognitive system that deals with multimodal and heterogene-
ous information and learns various functional concepts, i.e., internal representations, 
in an unsupervised manner because we can design the relationships of latent vari-
ables as a graphical model for introducing constraints to the data modeling. This can 
be interpreted through an analogy of designing cortical connections in our brain. 
Nakamura et al. proposed multimodal LDA (MLDA) for multimodal object catego-
rization [14]. They also developed a series of PGMs extending this idea. Taniguchi 
et al. proposed a spatial concept formation with simultaneous localization mapping 
(SpCoSLAM) for a spatial concept formation and lexical acquisition [8] (see Fig. 2). 
Such studies have contributed to the field of symbol emergence in robotics [9].

A cognitive robot empowered by an integrative cognitive system can form object 
and spatial concepts, learn behaviors, and become able to understand human com-
mands without explicit supervision differently from a supervised learning-based 
approach, which has been widely used in recent AI developments. However, the 
growing complexity of graphical models has gradually increased barriers to entry 
into this research field for numerous researchers. A framework for developing an 
integrative cognitive system is required for further progress of this field in the same 
way as applied in accelerated studies on various deep learning frameworks around 
deep neural networks.

Fig. 1   A robot planning and conducting a multimodal object categorization using a complex PGM [7]
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SERKET is a framework proposed for solving this problem [11]. SERKET was 
designed to enable a distributed software development of extremely large PGMs. 
In general, many pre-existing models for cognitive systems used in robots can 
be considered as a composition of elemental cognitive modules. For example, 
in Figs.  1 and 2, the elemental modules in each graphical model are shown  [7, 
8]. SERKET provides a theoretical framework for decomposing and composing 
PGMs. Cognitive modules developed in a distributive manner, namely elemen-
tal PGMs, can be composed into a PGM using the SERKET framework, and 
the composed PGM can learn and work in the same manner as a PGM devel-
oped from scratch by a single developer. However, SERKET has the following 
limitations.

•	 SERKET only supports a head-to-tail connection, although in general, the graph-
ical model can theoretically have tail-to-tail and head-to-head connections, as 
well.

•	 SERKET implicitly assumes the inference method using the Markov chain with a 
Monte Carlo approach and does not assume the integration of neural networks.

The first limitation prevents us from a flexible, creative, and efficient development of 
a variety of integrative cognitive systems. For example, if we would like to develop 
an MLDA by integrating multiple LDAs, the framework should support tail-to-tail 
connections.

The second limitation prevents us from the integration of DGMs, i.e., neural net-
works. As is widely known, DGMs can achieve representation learning, i.e., feature 
extraction. For example, a VAE is a probabilistic generative model having the capa-
bility of representation learning and can be integrated with PGMs, e.g., a hidden 
Markov model (HMM) and a GMM. However, SERKET does not support the inte-
gration of VAEs.

Fig. 2   Graphical model of SpCoSLAM [8]



27New Generation Computing (2020) 38:23–48	

123

The integration of conventional PGMs, e.g., HMM and GMM, with DGMs, e.g., 
VAE, has received increasing attention, and such integrative PGMs have been studied. 
In a VAE, the encoder models the intractable posterior distribution of the latent repre-
sentation, and the decoder reconstructs the observation using its latent representation, 
which usually assumes a single Gaussian prior. In recent studies, various PGMs such 
as GMM and HMM are applied to its latent space, and are used for semi-supervised 
learning [22], clustering [23, 24], and acoustic unit discovery [25]. The structured VAE 
(SVAE) proposed in [23] is a generalization of the VAE to general PGMs, including 
capturing the correlation structure of sequential data, and in [25], it was extended to 
an acoustic unit discovery. In [24], a two-layer latent representation is composed that 
uniformly assumes a multi-modal prior distribution for a latent space, although this 
model requires a specific optimization to prevent an over-regularization. In [26], a 
generative process is defined based on a GMM in a latent space, and achieves a better 
performance.

Not only the composition of a conventional PGM and a DGM, but also composition 
of DGMs should be explored. More structured DGMs that can handle multimodal data 
are also gaining attention. Whereas vanilla VAEs can only take unimodal data, in [27, 
28], conditional VAEs have been proposed that can handle another modality. These 
models can generate a modality corresponding to another modality data, e.g., gener-
ating images from captions [29]. However, these models cannot generate multimodal 
data bi-directionally, i.e., both generating images from captions and generating captions 
from images, and also cannot obtain a representation that integrates their multimodal 
information. In [30], a joint multimodal VAE is proposed, which not only has a multi-
modal inference model that embeds multimodal data into a joint representation but also 
unimodal inferences learned to approximate such multimodal data. The authors showed 
that, in the case of two modalities, this model can appropriately generate modalities 
bidirectionally and can infer a good joint representation. In [31], the authors extended 
this multimodal inference model by introducing the idea of a product of experts [32], 
and proposed a multimodal VAE (MVAE) that can handle any number of modalities. 
Moreover, [33] showed that a model whose association networks connect the latent 
variables of modality-specific VAEs can apply a cross-modal generation among mul-
tiple modalities. This line of studies clearly shows that DGMs become more and more 
structured and complex in the same way as conventional PGMs. Efficient way of devel-
oping complex cognitive systems by integrating DGMs should be explored.

Considering the advancement of DGMs and recognizing the limitations of SER-
KET, in this study, we extend the application of SERKET and propose an updated ver-
sion called Neuro-SERKET. Table 1 shows a list of modules implemented in Neuro-
SERKET library as examples. Developers can build a variety of integrative cognitive 
systems by composing these modules following the Neuro-SERKET framework.
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Neuro‑SERKET

Generation: Decomposition of Complex Graphical Model

Overview

Neuro-SERKET is an extension of SERKET. Therefore, it basically follows the 
approach of SERKET. SERKET provides a theoretical way to achieve a decomposi-
tion and composition of PGMs. A decomposition is mainly related to the generative 
process, i.e., a generative model, and a composition is mainly related to the infer-
ence process, i.e., an inference model. In SERKET, decomposition and composition 
are conducted by following three rules. 

1.	 A node, a latent variable z, in an integrated model is shared by two elemental 
modules.

2.	 A module regards z as an observable, and the parameter Θ of the probabilistic 
distribution P(z|Θ) is estimated.

3.	 The other module estimates z by taking a prior P(z|Θ) with a fixed parameter Θ , 
which is estimated in 2.

Numerous types of PGMs can be described as graphical models. Directed graphs 
representing PGMs, i.e., graphical models, have three types of elemental connec-
tions, i.e., head-to-tail, head-to-head, and tail-to-tail (see Fig. 3).

The important feature of SERKET is that an integrated PGM developed by com-
posing sub-modules following the SERKET framework can operate in almost the 
same way as a PGM developed from scratch, and uses an inference procedure devel-
oped for the PGM, in a reasonably approximate manner. Neuro-SERKET also has 
this feature.

In addition to a conventional SERKET framework, Neuro-SERKET provides two 
additional features.

Table 1   Examples of modules implemented in current Neuro-SERKET library

Module Description

Observation Module to deal with observations as messages
CNNFeatureExtractor Feature extractor from images based on CNN
HACFeatureExtractor Feature extractor from audio files based on HAC [34]
VAE Module to learn feature representations based on VAE [12]
MVAE Module to learn features based on multinomial VAE [35]
GMM Unsupervised clustering based on GMM
MLDA Unsupervised clustering based on MLDA [14]
MM Module to learn transition of discrete variables
TtoT Module to construct the tail to tail connection
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•	 Neuro-SERKET supports tail-to-tail and head-to-head connections in addition to 
head-to-tail connections.

•	 Neuro-SERKET supports deep probabilistic generative models, e.g., VAEs. 
Therefore, PGMs using Neuro-SERKET can make use of the representation 
learning capability of neural networks.

First, we describe how to decompose complex graphical models with the Neuro-
SERKET framework. As is widely known, probabilistic graphical models have three 
types of elemental connections, as shown in Fig. 3. Note that each generative pro-
cess, e.g., P(x|z), has global parameters, e.g., � for P(x|z, �) , although these are omit-
ted from the graphical model for the sake of simplicity. Each generative process can 
have other latent variables as well. A systematic approach to a decomposition is also 
described herein.

Head‑to‑Tail Decomposition

In the Neuro-SERKET framework, a complex graphical model is systematically 
decomposed. First, we take a head-to-tail connection, shown in Fig. 3a, as an exam-
ple. The joint distribution P(x, y, z) can be written as follows because of a condi-
tional dependency indicated by the graphical model.

The generative process of the latent variable z is described as P(x, z) = P(z|x)P(x) . 
Next, when looking at the generative process of y, it can be seen that the generative 
process of y can be described as P(y, z|x = X) = P(y|z)P(z|x = X) , where X is an 
instance of x. Here, note that P(y, z|x = X) does not depend on the variable x when 
x is fixed, i.e., x = X . This means the probabilistic generative model can be decom-
posed into two modules.

The discussion above is reconfirmed from the viewpoint of factorization. The 
joint probability can be factorized in two ways.

(1)P(x, y, z) = P(y|z)P(z|x)P(x).

(2)
P(x, y, z) =P(y|z) P(z, x)

⏟⏟⏟
Module 1

,

Fig. 3   Elemental graphical models: a head-to-tail, b head-to-head, and c tail-to-tail
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The first and second modules correspond to the generative model for z and y, 
respectively.

If a joint distribution can be factorized in two ways when sharing a latent variable, 
e.g., z in Eqs. (2) and (3), the PGM can be decomposed into two modules.

We introduce an operator ⊗ representing a composition operation of PGMs for illus-
trative purposes.

This shows that PGM P(x, y, z) can be decomposed into P(z, x) and P(y, z), which 
are two elemental modules.

Tail‑to‑Tail Decomposition

Another elemental connection is a tail-to-tail (see Fig. 3b) connection, which is also 
called a “fork”. The joint distribution of x, y, and z can be described as follows using an 
assumed conditional independence:

In the same way, as the discussion regarding a head-to-tail connection, the joint dis-
tribution can be factorized in the following two ways.

Each module obtained through a decomposition corresponds to a generative process 
of x and y. Following the usage of symbol ⊗ , which we introduced in the previous 
subsection, the PGM P(x, y, z) can be decomposed into two modules, i.e., joint dis-
tributions, P(x, z) and P(y, z), as follows:

Head‑to‑Head Decomposition

The other elemental connection is a head-to-head (see Fig. 3c) connection. The joint 
distribution of x, y, and z under a head-to-head connection can be decomposed when 
considering the following conditional independence:

(3)
=P(y, z|x)
⏟⏟⏟
Module 2

P(x).

(4)P(x, y, z) ⇒ P(z, x)⊗ P(y, z).

(5)P(x, y, z) = P(x|z)P(y|z)P(z).

(6)
P(x, y, z) = P(x, z)

⏟⏟⏟
Module 1

P(y|z),

(7)
=P(x|z) P(y, z)

⏟⏟⏟
Module 2

.

(8)P(x, y, z) ⇒ P(x, z)⊗ P(y, z).

(9)P(x, y, z) = P(z|x, y)P(x)P(y).
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If we apply the systematic rule for a decomposition in the same way as a head-to-tail 
and tail-to-tail connection, we will obtain the following decomposition:

However, differing from the previous decomposition, i.e., head-to-tail and tail-to-
tail connections, both modules represent the generative process of z, and involve x 
and y. This prevents us from taking a SERKET-based approach for inferring z in 
each module because both of the modules involve x and y. The SERKET frame-
work requires that a latent variable z be inferred within a module using one of x or 
y after decomposition. In other words, z should be regarded as an observable, i.e., 
a given variable, in another module. Therefore, SERKET does not provide the way 
of decomposition for a head-to-head connection. However, the decomposition of a 
head-to-head connection is important in building further complex cognitive systems. 
For example, SpCoSLAM assumes that a generated sentence St is conditioned by the 
spatial concept Ct , i.e., “where the robot is”, and syntactic and lexical information, 
i.e., a language model LM and the set of parameters of topic-dependent word distri-
butions {Wl} (see Fig. 2) [8].

Therefore, in Nuero-SERKET, we introduce a new way to achieve an approximate 
decomposition for P(z|x, y).

where P̂(z|x, y) is an approximately decomposed distribution. This approximation 
consists of two steps. The first approximation is that P(z|x, y) is decomposed into 
distributions including P(z|x), P(z|y) and P(z). This approximate decomposition can 
have two ways of interpretation: a product of expert (PoE), i.e., 
P̂(z|x, y) = P(z)P(z|x)P(z|y)   [32], and a uni-gram re-scaling, i.e., 
P̂(z|x, y) = P(z|x)P(z|y)

P(z)
 [36]. In both cases, a prior P(z) is considered to be a uniform 

distribution. This means that the prior in the distribution P̂ can be ignored, i.e., 
P̂(z|x, y) ∝ P(z|x)P(z|y).

Using this approximation, we can obtain the following modules.

(10)
P(x, y, z) =P(x, z|y)

⏟⏟⏟
Module 1

P(y),

(11)
=P(y, z|x)
⏟⏟⏟
Module 2

P(x).

(12)P(z|x, y) ≈ P̂(z|x, y) ∝ P(z|x)P(z|y),

(13)P(x, y, z) =P(z|x, y)P(x)P(y),

(14)≈ ∝ P(z|x)P(z|y)P(x)P(y),

(15)
= P(x, z)
⏟⏟⏟
Module 1

P(y, z)
⏟⏟⏟
Module 2

,
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where ≈∝ represents the terms “approximation” and “proportion to”.1
The decomposition is described as follows.

The appropriateness of the approximation is evaluated empirically in Sect. 4 based 
on an experiment.

For example, SpCoSLAM (Fig.  2) has a head-to-head connection at approxi-
mately St , i.e., a sentence recognized by an ASR system. When we pick up related 
variables for illustrative purposes, we can start with the following joint distribution:

where yt and AM are a speech signal and acoustic model in an ASR system, 
respectively.

In practical terms, AM and LM are implemented in an ASR system, i.e., pack-
aged software, and Ct is a part of a multimodal categorization module. Therefore, 
calculating a generative probability and drawing samples theoretically are extremely 
difficult. Therefore, Neuro-SERKET introduces the following approximation:2

This allows developing a graphical model with two parts, i.e., an ASR (including a 
lexical acquisition) module and a multimodal categorization module.3

Inference: Composition of Complex Graphical Model

In the SERKET framework, each module is developed by a different researcher or 
developer in a distributed manner. After the development of the modules, they are 
integrated into an integrative cognitive system. Integrated modules learn together 
and work together as a single cognitive system.

In the context of PGMs, prediction, estimation, and learning are simply regarded 
as an inference of latent variables. Therefore, the composition of the modules cor-
responds to an inference procedure combining multiple modules. This section pro-
vides a method of composition for each elemental connection. Figure 4 summarizes 

(16)P(x, y, z) ⇒ P(x, z)⊗ P(y, z).

(17)P(yt, LM, St,Ct|AM) = P(yt|AM, St)P(St|Ct, LM)P(LM)P(Ct),

(18)P(St|Ct, LM) ≈∝ P(St|LM)P(St|Ct).

(19)

P(yt, LM, St,Ct|AM) ≈∝ P(y|AM, St)P(St|LM)P(LM)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

ASR module

P(St|Ct)P(Ct)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Multimodal

categorization

module

.

1  P(x) ≈∝ f (x) is an abbreviation of P(x) ≈ P̂(x) ∝ f (x).
2  Note that the original study on SpCoSLAM does not use this method of approximation. A uni-gram 
rescaling approximation alone was employed instead.
3  Note that, for illustrative purposes, the other variables and hyperparameters are ignored from the equa-
tions.



33New Generation Computing (2020) 38:23–48	

123

the three types of elemental connections, message passing, and the decomposition 
method used in our framework, Neuro-SERKET. In each graphical model, the black-
dotted arrows indicate the calculation of a posterior distribution, which is necessary 
for an inference procedure. Note that the two dotted arrows in each graphical model 
form head-to-head relationships.

Figure 4a shows the method of message passing between two modules in the case 
of a head-to-tail connection. Conventional SERKET mainly introduced two methods 
for achieving a head-to-tail composition.

The first is called the message passing (MP) approach, and its procedure is as 
follows.4

1.	 In module 1, P(z|x) is computed.
2.	 P(z|x) is sent to module 2.
3.	 In module 2, the probability distribution P(z|y), which represents the relationships 

between x and y, is estimated using P(z|x).
4.	 P(z|y) is sent to module 1.
5.	 In module 1, the latent variable z is estimated, and the parameters of P(x|z) are 

updated.

Fig. 4   Graphical models and their Neuro-SERKET implementations of a head-to-tail, b head-to-head, 
and c tail-to-tail. The black-dotted arrows represent conditional probabilities used in the inference

4  As a variation to the MP approach, module 1 can send samples, i.e., the data distribution, 
zl ∼ P(z|x)(l = {1,… ,L}) , as a Monte Carlo approximation of P(z|x). As a special case of this, module 1 
can send a sample z⋆ ∼ P(z|x) to module 2. In Sect. 4, as an example, the VAE module sends a recogni-
tion result to another module.
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The other is called a sampling importance resampling (SIR) approach, the procedure 
of which is as follows. 

1.	 Generate L samples z(l) ∼ P(z|x) in module 1.
2.	 Send {z(1),… , z(L)} to module 2.
3.	 Select sample z⋆ among {z(1),… , z(L)} by calculating their importance using P(z|y) 

and update the parameters of P(z|y).
4.	 Send the selected sample z⋆ to module 1.
5.	 Update the parameters of P(x|z).

This approach involves a Monte Carlo approximation. However, many off-the-shelf 
modules do not support the calculation of a posterior distribution P(z|x) itself. There-
fore, the SIR approach allow us to use various off-the-shelf modules, e.g., ASR and 
image recognition systems, that provide only samples, i.e., estimated results.

With this inference procedure, SERKET employs a PoE approximation, i.e., 
P(z|x, y) ≈∝ P(z|x)P(z|y) in the same way as a head-to-head decomposition. For fur-
ther details, please refer to the original study [11].

Differing from the decomposition part, there are no structural differences among 
the three elemental connections. The dotted line in Fig. 4 shows the inference pro-
cess for each elemental connection. We can see that all pairs of dotted arrows have 
head-to-head connections. This means that, in the inference process, i.e., composi-
tion, we can use the same procedure as a head-to-tail composition in the cases of 
tail-to-tail and head-to-head compositions.

However, we need to develop a special treatment for the implementation of a tail-
to-tail composition. SERKET requires connecting latent variables of modules in a 
hierarchical manner [11], and we cannot connect module 1, i.e., P(x|z), and module 
2, i.e., P(y|z), directly in a tail-to-tail composition (Fig. 4c). Therefore, we introduce 
an auxiliary module called a tail-to-tail (TtoT) module, which connects modules 1 
and 2 and transfers the probability distribution between the two modules.

In this way, Neuro-SERKET also makes use of a PoE and uniform distribution 
prior approximation [32] in the composition, and achieves an inference of the inte-
grative PGMs. Differing from these assumptions, description, and discussion in the 
original study on SERKET [11], Neuro-SERKET does not assume any specifics for 
the implementation and inference procedure of each module.5 Therefore, Neuro-
SERKET can integrate neural network-based generative models, i.e., DGMs such as 
VAEs.

5  In the original study on SERKET, the authors mentioned that they “employed a sampling-based 
method because of its simpler implementation”. This means that they excluded modules that are trained 
using other inference procedures, e.g., gradient-based methods. In general, a sampling-based approach is 
unsuitable for the training of neural networks. This means that SERKET fails to involve neural network-
based modules, which have recently been widely used, into SERKET-based cognitive systems.
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Example: Concept Formation Using VAE + GMM + LDA + ASR

This section describes an illustrative example of a cognitive system that can be 
developed following the Neuro-SERKET framework by integrating pre-existing 
modules. For illustrative purposes, this model involves all of the elemental con-
nections, i.e., head-to-tail, tail-to-tail, and head-to-head. A neural network-based 
module, i.e., VAE, is also included as an elemental module. The developed PGM 
for multimodal categorization is a composition of a VAE, GMM, LDA [37], and 
ASR. We empirically validated Neuro-SERKET through an experiment using 
image data and speech signals.

Model

Figure 5 shows a graphical model of the PGM developed using the Neuro-SER-
KET framework. This PGM receives two types of observations, i.e., pairs of an 
image o1 and speech signal o2 corresponding to the image. The PGM is for an 
unsupervised multimodal categorization, including representation learning of 
the image data. Image o1 is expected to be encoded into the latent variable z1 
using VAE. The speech signal o2 is recognized, and word w is estimated using 
a language model parameterized by L , which can also be learned from the data. 
The obtained word w is clustered using LDA, and the estimated representation of 
image z1 is clustered using GMM. Note that the latent variable z2 representing the 
class of the input pair of data is shared by the LDA and GMM. This means that 
an estimation of z2 corresponds to a multimodal categorization. A list of param-
eters of the PGM is enumerated in Table 2.

Figure 6 shows the elemental cognitive modules and communication between 
them. The communication conducted during the inference procedure, i.e., the 
composition, is summarized as follows.

Table 2   Model parameters of 
the integrative PGM (VAE + 
GMM + LDA + ASR)

Parameter Description

� Parameter of VAE decoder (generative network)
o1, o2 Observations, image data and speech signal
z1 Latent variable of VAE extracted from o1
z2 Index of classes the observations are categorized into
w Word recognized by the ASR system
�,� Mean vector and variance–covariance matrix of 

Gaussian distribution
r0,m0, S0, �0 Parameters of Gauss–Wishart distribution
�,� Parameters of multinomial distribution
�, � Parameters of Dirichlet distribution
N The number of observations
K The number of classes in LDA and GMM
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VAE module The VAE module extracts a representation, i.e., latent vari-
able, z1 , from the image data o1 , and sends z1 to the GMM module. The GMM 
module sends �z2

 , which is a mean vector of the Gaussian distribution that z1 
was categorized into, back to the VAE module. VAE uses �z2

 and updates the 

Fig. 5   The original graphical model of the integrative PGM (VAE + GMM + LDA + ASR). Each block 
shows each module

Fig. 6   Decomposed modules and communication between them following the Neuro-SERKET frame-
work
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parameters of the encoder and decoder of the VAE to maximize the evidence 
lower bound (ELBO). 

 This allows the VAE to learn a representation appropriate for categorization by 
the GMM module.
GMM module The GMM module sends P(z2|z1) , which is obtained by catego-
rizing z1 received from the VAE module, to the TtoT module . This module shares 
z2 with the LDA module (Fig. 5). Therefore, the inference of bz2 is affected by the 
LDA module. The TtoT module mediates the information between the GMM and 
LDA modules. When the GMM module applies an inference, i.e., a categoriza-
tion, the GMM module uses P(z2|w) , which is received from the TtoT module. 

ASR module The ASR module represents an off-the-shelf speech recognition 
system.6 The ASR module sends the L-best speech recognition results of o2 to the 
LDA module. The L-best results are regarded as an approximation of L samples 
from the posterior distribution P(w|o2) . The LDA module calculates the impor-
tance of each word P(w(l)|z2) , and re-samples the word using the importance 
weight (SIR approach) as follows: 

 where �w(l) (w) is a probability mass function.
LDA module The LDA module receives a set of words w = {w(1),… ,w(L)} and 
clusters them. As a result, the LDA module calculates P(z2|w) and sends it to the 
TtoT module. Note that z2 is shared with the GMM module (see Fig. 5), and in 
the clustering, i.e., inference, the process is affected by the categorization by the 
GMM module. Therefore, the LDA module uses P(z2|z1) received from the TtoT 
module when it clusters words. 

TtoT module The TtoT module simply transfers P(z2|w) from the LDA module to 
the GMM module, and P(z2|z1) from the GMM module to the LDA module.

Following the communication procedure shown above, the total PGM can be trained 
by optimizing each module locally under the influence of neighboring modules.

(20)L(�,�;o1) = −D(q�(z1|o1)||N(�z2
, I)) + Eq�(z1|o1)[log p�(o1|z1)].

(21)z2 ∼ P(z2|z1,w) ≈∝ P(z2|z1)P(z2|w)

(22)w(l) ∼P(w|o2),

(23)w∗ ∼P̂(w) ∝
∑

l

P(w(l)|z2)𝛿w(l) (w),

(24)z2 ∼ P(z2|z1)P(z2|w).

6  Julius: Open-Source Large Vocabulary Continuous Speech Recognition Engine: https​://githu​b.com/
juliu​s-speec​h/juliu​s.

https://github.com/julius-speech/julius
https://github.com/julius-speech/julius
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Code

Figure  7 shows the source code of the main part of the implementation. The 
observations are loaded from files in lines 1–2, the modules to be used are defined 
in lines 4–8, the connections between the modules are defined in lines 10–13, and 
the parameters are estimated in lines 15–21. The total number of lines is less than 
80, including other parts such as import syntax and the definition of the structure 
of VAE. Note that even more complicated models can also be implemented in a 
few hundreds of lines, and we believe the current Neuro-SERKET has scalability 
with regard to programmatic implementation.

Conditions

During the experiment, we used a hand-written digit dataset, MNIST[38], and 
a spoken Japanese number dataset  [39], as the image data and speech signals, 
respectively. Each pair of data consists of image data and a spoken audio signal 
corresponding to a number among {0,… , 9} . In total, 3000 pairs are used. The 
pronunciation of Japanese digits is shown in Table 3.

We used VAE, whose encoder and decoder have a middle layer with 128 nodes 
and a hidden layer with ten nodes, i.e., the dimension of the latent space was 10. 
The number of classes of GMM and LDA was K = 10 . We used Julius for the 
ASR module. We used a standard GMM-based acoustic model preset in Julius, 

Fig. 7   Source code of main part 
of the implementation example
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and a language model in which all syllables have the same probability as an ini-
tial language model. The number of samples obtained from the ASR module was 
L = 10.

During the experiment, we compared the following four models.

VAE GMM LDA ASR No communication among the modules
VAE GMM LDA + ASR Communication between LDA and ASR
VAE + GMM LDA + ASR Communication between VAE and GMM and between 
LDA and ASR
VAE + GMM + LDA + ASR Communication among all modules

In the name of each model, ‘+’ represents the existence of communication between 
the two modules, and ‘ ’ (white space) indicates no communication between the two 
neighboring modules. Note that none of the three connections were not supported in 
SERKET framework.

In the learning process, the model is trained in an off-line manner. Posterior prob-
abilities for all data points are calculated and were given to the neighbor modules. 
When a module is updated, the global parameters of the module was reset once 
and trained using the received data and messages. In each update, VAE was trained 
200 epochs with batch size = 500 , and GMM and LDA were trained with Gibbs 
sampling procedure with 50 and 100 times sampling, respectively. VAE+GMM, 
LDA+ASR, and VAE+GMM+LDA+ASR were updated 50 times, i.e., until they 
converged. The order of the update were ASR → LDA (from LDA to GMM) → TtoT 
→ VAE → GMM → TtoT (from LDA to GMM) → ASR.

The average of accuracy was calculated by referring to the ground-truth category 
of the digits for each condition.

Table 3   Pronunciation of 
Japanese numbers used in the 
experiment

Number Japanese 
pronuncia-
tion

0 ze ro
1 i chi
2 ni
3 sa n
4 yo n
5 go
6 ro ku
7 na na
8 ha chi
9 kyu u
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Results

Table 4 shows the average level of accuracy for each clustering module, i.e., GMM 
and LDA modules.

The performance of the GMM module is slightly increased by introducing com-
munication with a VAE. In contrast, the performance of the LDA module is signifi-
cantly increased from 27.5 to 92.7% by updating both modules by introducing head-
to-head communication, which is newly introduced in Neuro-SERKET, between the 
LDA and ASR modules. The language model in the ASR is updated by referring to 
the probabilistic clustering result of the LDA module, and it is thought that the ASR 
outputs words that are relatively easy for the LDA module to cluster. In addition, 
by sharing information between the GMM and LDA modules using the tail-to-tail 
module, which is also newly introduced in Neuro-SERKET, the performance of the 
GMM module was also significantly increased by approximately 25%. The perfor-
mance of the LDA module is also slightly increased.

Figure 8 shows the transition of the classification accuracy of VAE + GMM + 
LDA + ASR. It shows that the performances of the LDA and GMM modules gradu-
ally increased.

Figure  9 shows the representations learned by the VAE. The ten-dimensional 
latent space of the VAE is compressed into a two-dimensional space using a 

Table 4   Classification accuracy in the GMM and LDA modules

Model Accuracy (%) Features introduced in Neuro-SERKET

GMM LDA Head-to-head Tail-to-tail Neural net

VAE GMM LDA ASR 62.0 27.4
VAE GMM LDA + ASR 62.0 91.8 ✓

VAE + GMM LDA + ASR 63.7 91.8 ✓ ✓

VAE + GMM + LDA + ASR 91.0 93.7 ✓ ✓ ✓
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Fig. 8   Transition of classification accuracy
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principal component analysis (PCA) for visualization. Each color represents a digit. 
Figure 9a, b shows the results of embedding without and with communication, i.e., 
without SERKET and with Neuro-SERKET, respectively. This result shows that 
VAE + GMM + LDA + ASR formed an appropriate latent space for clustering 
using the GMM module.

Next, we observed clustered words. Each cluster involves numerous words having 
recognition errors. To check if each cluster corresponds to a digit, we picked up a 
stereotypical word, i.e., a syllable sequence, s̄c , using the following equations:

where Ic is the number of words classified into class c; sci is the ith word, i.e., the syl-
lable sequence, classified into class c, and D(⋅, ⋅) represents the edit distance between 
the two-syllable sequence. This procedure selects a word that is nearest to the center 
of the set of words in terms of the edit distance. Therefore, we can consider s̄c as a 
stereotype of class c. The determined stereotypes of each class are shown in Table 5. 
Compared with Table 3, we can see that unsupervised learning using VAE + GMM 
+ LDA + ASR can acquire an appropriate syllable sequence for each number.

Conclusion

To develop an integrative cognitive system using PGMs more efficiently, we require 
a useful framework that allow us to reuse elemental cognitive modules developed 
by other researchers and developers. This paper described Neuro-SERKET, which 
is a framework for developing a complex cognitive system by composing elemental 
PGMs. Neuro-SERKET is an extension of SERKET, which can compose elemen-
tal PGMs developed in a distributed manner. Although SERKET only supports a 

(25)j̄c =argminj
1

Ic

Ic∑

i

D(scj, sci),

(26)s̄c =scj̄,

(a) (b)
PC1PC1

PC2PC2

Fig. 9   Latent space of VAE learned using a VAE GMM LDA ASR and b VAE + GMM + LDA + ASR. 
Proportion of variance for [PC1, PC2] are [0.15, 0.13] and [0.24, 0.20] for a, b, respectively
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head-to-tail connection, Neuro-SERKET supports tail-to-tail and head-to-head con-
nections. In addition, Neuro-SERKET supports neural network-based modules, e.g., 
deep generative models such as VAEs, which are not supported by conventional 
SERKET. As an example application of Neuro-SERKET, an integrative model 
called VAE + GMM + LDA + ASR was developed by composing VAE, GMM, 
LDA, and ASR. The performance of VAE + GMM + LDA + ASR and the valid-
ity of Neuro-SERKET are demonstrated through a multimodal categorization task 
using image data and the speech signal of numerical digits.

In this paper, we showed only one example, i.e., VAE + GMM + LDA + ASR, 
and demonstrated the validity of Neuro-SERKET. Further application of Neuro-
SERKET and the development of cognitive systems that enable a robot to form 
concepts, learn behaviors, and acquire language in a real-world environment is our 
future challenge. In particular, it has become clear that language learning in a real-
world environment requires a wide range of cognitive capabilities [40]. For this rea-
son, at least two additional approaches should be applied to Neuro-SERKET.

The first one is the development of a software environment, i.e., software 
libraries. Nakamura et  al. has been developing SERKET.7 As described in this 
paper, the Neuro-SERKET framework fully includes the conventional SERKET 
framework. Therefore, the SERKET software environment should be naturally 
extended to the Neuro-SERKET software environment. To involve DGMs into 
the SERKET framework, making use of a pre-existing software library for the 
DGMs may be a reasonable solution. In addition, Suzuki et al. have been devel-
oping Pixyz8 which is a framework for DGMs. We are now working on an effi-
cient utilization of Pixyz for Neuro-SERKET. We consider it is important to com-
bine unsupervised learning by probabilistic models and representation learning 

Table 5   Stereotypical word in 
each class

The italic characters denote errors

Number Japanese 
pronuncia-
tion

0 ze ro
1 i chi i
2 ni n i
3 sa n
4 yo n
5 go o
6 ro ku
7 na n na a
8 ha chi
9 kyu u

7  SERKET: http://serke​t.naka-lab.org/.
8  Pixyz: https​://githu​b.com/masa-su/pixyz​.

http://serket.naka-lab.org/
https://github.com/masa-su/pixyz
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by NNs such as VAEs, i.e., DGMs. As shown in this paper, the latent space suit-
able for classification can be learned by the interaction between them. We have 
also proposed the method for motion segmentation where GP-HSMM, which is a 
probabilistic model, and VAE, which can extract features from motions, are con-
nected and we showed that low-dimensional features suitable for segmentation 
can be learned by the interaction between them. We consider such a composed 
model of unsupervised learning and representation learning has the potential to 
solve the various problem and it is possible to construct these models easily by 
Neuro-SERKET.

The second is an exploration of the applicability of Neuro-SERKET. In the 
current version, the Neuro-SERKET framework heavily relies on a PoE approxi-
mation. The limitation of a PoE approximation should be investigated both theo-
retically and empirically. A series of studies forming the background of Neuro-
SERKET are developing cognitive systems that can perform life-long learning in 
a real-world environment. Such a learning process involves behavioral learning 
and language acquisition. For this purpose, the system will receive unstructured 
sensorimotor data. Theoretical and empirical validations should be applied for 
further applications. So far, many researchers, including the authors, have pro-
posed a lot of cognitive models for robots: object concept formation based on its 
appearance, usage and functions [41], formation of integrated concept of objects 
and motions [42], grammar learning [16], language understanding [43], spatial 
concept formation and lexical acquisition [8, 20, 44], simultaneous phoneme and 
word discovery [45–47] and cross-situational learning [48, 49]. These models are 
regarded as an integrative model that are constructed by combining small-scale 
models. Therefore, they can be also re-implemented using Neuro-SERKET more 
efficiently.

The computational efficiency needs to be improved as well. The most of mod-
ules are implemented using pure python without parallel computation in current 
Neuro-SERKET except for VAE, which is implemented using TensorFlow. There-
fore, parameter estimation is not so fast. The parameter estimation in independent 
modules can be parallelized, and it might be faster by implementing using C lan-
guage and TensorFlow. We plan to improve these drawbacks in the future. Regard-
ing an optimization policy, we manually set the order of modules to be updated in 
the experiment. However, we also found that the performance of the whole model 
changed depending on the order of modules to be updated. Therefore, we will study 
and create the guideline about the order of the models to be updated for the practical 
use of SERKET.

Neuro-SERKET allows us to focus on the integration and exploration of com-
plex cognitive systems. Recently, multimodal learning with DGMs has been gain-
ing attention. However, as the cerebral cortex in our human brain demonstrates, 
the human cognitive system is based on mutually connected cortical areas, which 
are considered to have respective functions and modality-dependent information 
processing. Doya hypothesized that the cerebral cortex is trained simply through 
unsupervised learning [50]. In general, unsupervised learning is modeled by PGMs. 
Neuro-SERKET enables us to explore a constructive model of the cerebral cortex 
using PGMs. Such exploration and the development of a brain-inspired whole-brain 
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cognitive architecture are also future challenges. We believe that Neuro-SERKET 
will be a key framework for the future constructive studies on general intelligence 
and symbol emergence in natural and artificial cognitive systems [1, 9].
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