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To endow robots with the flexibility to perform a wide range of tasks in diverse and

complex environments, learning their controller from experience data is a promising

approach. In particular, some recent meta-learning methods are shown to solve

novel tasks by leveraging their experience of performing other tasks during training.

Although studies around meta-learning of robot control have worked on improving the

performance, the safety issue has not been fully explored, which is also an important

consideration in the deployment. In this paper, we firstly relate uncertainty on task

inference with the safety in meta-learning of visual imitation, and then propose a novel

framework for estimating the task uncertainty through probabilistic inference in the

task-embedding space, called PETNet. We validate PETNet with amanipulation task with

a simulated robot arm in terms of the task performance and uncertainty evaluation on

task inference. Following the standard benchmark procedure in meta-imitation learning,

we show PETNet can achieve the same or higher level of performance (success rate of

novel tasks at meta-test time) as previous methods. In addition, by testing PETNet with

semantically inappropriate or synthesized out-of-distribution demonstrations, PETNet

shows the ability to capture the uncertainty about the tasks inherent in the given

demonstrations, which allows the robot to identify situations where the controller might

not perform properly. These results illustrate our proposal takes a significant step forward

to the safe deployment of robot learning systems into diverse tasks and environments.

Keywords: meta-learning, imitation learning, robot learning, task uncertainty, safety

1. INTRODUCTION

The development of generalist robots remains a key challenge in robotics. These robots are
expected to perform a wide range of tasks in diverse environments, for instance, automation of
household chores or operations in retail stores. As hand-engineering specific skills for every task
and environment is clearly infeasible, many studies focus on data-driven approaches, which learn
desired skills from experiences. For example, reinforcement learning is a popular choice, where
robots learn their control policies from the interaction with the environment (Kober et al., 2013;
Sutton and Barto, 2018). In addition, imitation learning is a more sample-efficient strategy in robot
learning, which leverages demonstrations collected by experts or via teleoperation (Pomerleau,
1989; Hussein et al., 2017; Zhang et al., 2018). From the perspective of learning task-general robot
controllers, meta-learning is among themost prominent newmethods in transfer learning, in which
the algorithm learns to adapt to new environments or tasks (Finn et al., 2017a). For these reasons,
meta-imitation learning is considered to be a powerful robot learning method and several studies
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have focused on it to date. Especially, MIL (Finn et al., 2017b)
and TecNets (James et al., 2018) learn policies using behavioral
cloning, which enables offline learning. Both models learn to
adapt to new tasks by inferring the task using demonstrations
at hand and performing with a controller conditioned on the
inferred task. The way each model adapts is different—MIL uses
gradient-based adaptation and TecNets uses conditional policies
based on an explicit context variable.

Although the performance when adapting to various tasks is
aimed at in previous studies, in the deployment of the robot
system, the safety must also be considered. From the viewpoint
of the safety of learned robot controllers, some studies work on
ensuring safety in reinforcement learning (Garcıa and Fernández,
2015; Lötjens et al., 2019) and imitation learning (Zhang and
Cho, 2016; Thakur et al., 2019). The settings in which robots
have been deployed thus far are usually single-task and relatively
simple, therefore we can imagine the behaviors that robots may
perform in advance, and take measures that will ensure the safety
of the robots and their environments. The safety of generalist
robots, however, can be different from those conventional ones,
in that there is no guarantee that the task given at test time can
be achievable with the learned controller. Furthermore, if a robot
is deployed in an environment with large variations in the tasks
it must perform, it becomes impossible to anticipate and model
behavior when a task inference is mistaken, which may lead to
unsafe conditions in the real world. To give an example of meta-
imitation learning, without any safety conditions, the robot may
perform wrong with confidence even when the demonstration
given to a robot is improper or ambiguous to specify the task
requested at test time.

Keeping this concern in mind, we found that studies in
meta-imitation learning to date implicitly suppose that the
demonstrations given to robots during the test phase will be clear
enough that the robot can be certain about the task at hand,
while the demonstrations can potentially be noisy during real
deployment. One possible solution to this issue is to measure
the uncertainty on task inference from the demonstration, or the
uncertainty about which task to perform, which we refer to as task
uncertainty. When the task uncertainty is high, the task inference
could be wrong. The robot could then takemeasures to ensure the
safety of its action; for example, one measure could be leveraging
the fallback policy by requesting additional demonstrations of
the task to be performed. It should be noted that while some
studies on imitation learning consider the uncertainty of the
controller, these discussions are restricted to single-task settings.
We instead focus on meta-imitation learning, and we are not
aware of discussions about uncertainty in task inference for
meta-imitation learning in the literature so far.

Considering the discussion above, this paper focuses on
capturing task uncertainty from demonstrations in meta-
imitation learning problems. We propose a new algorithm,
Probabilistic Embedding over Task-space Network (PETNet),
which embeds task information for adapting the controller
as a distribution. This algorithm is intended to measure task
uncertainty while deploying ameta-imitation learning algorithm.
PETNet is designed around the notion that as a demonstration
can sometimes be ambiguous, task embedding should be

modeled in a probabilistic manner. This probabilistic inference
on the task variable allows us to quantify how certain the
model is about the task from the demonstrations at hand. As
for the implementation, the model simultaneously learns the
task embedding network that infers explicit task variables along
with the control policy conditioned on those task variables.
The task embedding network outputs a distribution on the task
embedding space from few-shot demonstrations and we use the
variance of the distribution as the measure of task uncertainty in
these demonstrations.

We tested PETNet with the simulated manipulation
environment presented in Finn et al. (2017b) and confirm that
it can achieve state-of-the-art-level performance in the standard
benchmark. We then show that the evaluated uncertainty
in PETNet is useful for detecting demonstrations that are
inappropriate for task identification. Tests were run with the
demonstrations in the original dataset and with synthesized out-
of-distribution demonstrations. In addition, the performance
degrades if we use demonstrations with high task uncertainty,
and increasing the number of demonstrations for adaptation
can help reduce the task uncertainty. These results show that
PETNet can contribute to the safety of meta-imitation learning
for controllers by preventing robots from behaving unexpectedly
when the demonstrations have too much uncertainty for robots
to identify the task.

To summarize, key contributions of this paper are (1)
proposing a framework for leveraging uncertainty of task
indicated with demonstrations for realizing the safety of robot
under various tasks in meta-imitation learning and (2) with
the simple implementation with probabilistic inference on task
embedding space, this approach can capture the task uncertainty,
leading to identify demonstrations with which the model would
not perform properly.

2. RELATED WORK

Most studies aiming at generalist robots have focused on
improving the sample efficiency of the learning algorithm. As
in other domains in machine learning, such as image (Zamir
et al., 2018) and natural-language processing (Devlin et al., 2019),
transfer learning is one of the promising directions for efficient
training of robot control to perform various tasks. For example,
much of the literature in robot learning utilizes the sim-to-real
approach. These algorithms train a general policy on simulated
and diverse environments and then this policy is deployed to the
real environment of interest (Tobin et al., 2017; Peng et al., 2018;
James et al., 2019). By leveraging simulated data, which is easier to
obtain compared to real-world datasets, the sim-to-real approach
sometimes successfully learns a policy that works well even in the
real environment; however, it requires a great deal of effort in the
design of simulator environments.

Other than learning one general policy as in sim-to-real
approaches, several recent works focus on how to quickly adapt
a policy to a new task of interest, which is in general referred
to as meta-learning. Meta-learning is explained as a method
to learn meta-knowledge to decide model bias depending on
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the target task or domain using experience (Vilalta and Drissi,
2002). This approach is general across machine learning and
is not limited to robot control. In models that use neural
networks, the meta-learner adapts to test settings by either
changing network parameters (Finn et al., 2017a) or inferring
latent variables (Garnelo et al., 2018). A substantial number
of studies have addressed meta-learning of robot control. For
example, recurrent network (Duan et al., 2016) and gradient
descent (Finn et al., 2017a,b) have been used for adaptation of
the policy network, while James et al. (2018), Queißer and Steil
(2018), Rakelly et al. (2019), and Seyed Ghasemipour et al. (2019)
utilize conditional policies with latent variables. Since the policy
needs to both identify the test environment or task and adapt
to it, we can expect better performance with a specific meta-
learned policy. In this paper, our model is based on the idea of
meta-learning and we propose a method that can estimate task
uncertainty using probabilistic inference to latent task variables.

As for the algorithm used for policy learning, popular
choices include reinforcement learning or imitation learning.
Reinforcement learning is based on reward signals (Sutton
and Barto, 2018). Finn et al. (2017a), Humplik et al. (2019),
and Rakelly et al. (2019) focus on the intersections of
meta-learning and reinforcement learning. Instead of learning
from scratch, imitation learning, also referred to as learning
from demonstrations (Schaal, 1997; Argall et al., 2009),
utilizes demonstrations presented to the robots in the form
of teleportation (Van Den Berg et al., 2010), kinesthetic
teaching (Kober and Peters, 2009), or as a demonstration
video performed by a human (Sermanet et al., 2018; Yu
et al., 2018). While this paper is based on imitation learning
because it improves the sample efficiency of interactions with
the environment, the core ideas discussed below can be
extended to other learning methods in which measuring task
uncertainty is useful for safe deployment of robot learning.
Inverse reinforcement learning and behavioral cloning are the
main algorithms in imitation learning. In the former method,
the algorithm learns to recover the reward function behind
demonstrations by assuming they are optimal under the reward
function (Ng and Russell, 2000). Behavioral cloning, in contrast,
is a supervised method by which the algorithm learns mappings
from observation to actions directly manner (Pomerleau,
1989). In the context of meta-imitation learning, behavioral
cloning is often used (Finn et al., 2017b; James et al., 2018),
while Seyed Ghasemipour et al. (2019) and Xu et al. (2019) adopt
inverse reinforcement learning. Our method employs behavioral
cloning for the sake of its algorithmic simplicity. Note again
that none of the studies above on meta-learning of robot control
emphasize the importance of task uncertainty for ensuring safety.

Some papers mention the significance of evaluating predictive
uncertainty to ensure the safety of the controller in the context
of imitation learning. Previous papers have pointed out that
the main problems in imitation learning lies in the inherent
ambiguity of demonstrations (Goo and Niekum, 2019) or the
discrepancy between training and test conditions that can lead
robots to perform unexpected actions (Pomerleau, 1989; Osa
et al., 2018). In practice, one possible solution is measuring the
predictive uncertainty, and if the robots are uncertain about their

prediction, they can stop performing actions and request that
experts provide additional demonstrations (Thakur et al., 2019).
These studies above, however, only consider single-task settings
and the task uncertainty has never been taken into consideration
yet, while our work is rather focusing on the task uncertainty of
meta-learning and the safety of the controller.

3. MEASURING TASK UNCERTAINTY IN
META-IMITATION LEARNING

Our model PETNet consists of two parts, the task embedding
network and the controller. The task embedding network builds
a distribution over the task embedding space from visual
demonstrations of the task. In this paper, the distribution is
Gaussian with mean and variance as the output of the network.
The controller is modeled with another neural network and
takes the robot’s observation and the task variable as inputs. The
controller functions in a closed-loop as shown in Figure 1.

3.1. Problem Statement of Meta-Imitation
Learning
The goal of meta-imitation learning is to obtain a policy
that can be adapted for use in a new task given one or a
few demonstrations (Finn et al., 2017b). The policy π maps
observations o to predicted actions â. Each imitated task is
defined as

Ti = {τ = {o1, a1, . . . , oT , aT} ∼ π⋆
i ,L

(

a1 :T , â1 :T
)

,T}, (1)

where τ is the demonstration generated by expert policy π⋆
i and

L is the loss function. We assume that each task Ti is sampled
from the task distribution p(T ).

During meta-training, the robot is presented two types of
demonstrations from expert π⋆

i about the task Ti. One is for

adapting the model to the task that we refer as the cue τ
(c)
i , and

one is for measuring the loss of the policy. We refer to the latter

as the demonstrated trajectory τ
(t)
i . Duringmeta-testing, for a new

task Tnew ∼ p(T ), the robot performs in the actual environment

provided only with one or a few cues τ
(c)
new from expert π⋆

new.
In this paper, we use only sequences of visual observation

for the cues τ
(c)
i , so actions are not included, since in some

problem settings, robots cannot access expert actions for cue
demonstrations, for example, a human expert performs the cue

as in Yu et al. (2018). For the demonstrated trajectory τ
(t)
i , we

use a sequence of observations and the actions of the robot in
each timestep.

3.2. Probabilistic Task Embedding
The main focus of this paper is to propose a method that can
be deployed ensuring safety in the setting of meta-imitation
learning. For this purpose, PETNet adopts a simple approach

that measures the uncertainty of task inference from cues τ
(c)
new.

If the task uncertainty is modeled, we can expect the safety
to be enhanced, because, for example, the robot can avoid
performing unexpectedly during meta-testing caused by an
uncertain task inference.
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FIGURE 1 | Overview of PETNet. The model consists of two neural networks, task embedding network and controller. During meta-training, the latent task variable is

sampled from the distribution over task embedding. In the meta-test, the variance is the measurement of task uncertainty.

In concrete, the task embedding network f (τ
(c)
i ; θ) infers a

latent task variable as an explicit random variable in a stochastic
manner. This network provides the distribution over embedding

p(zi|τ
(c)
i ) conditioned by the cue τ

(c)
i by outputting the mean and

variance of the distribution, that is,

p(zi|τ
(c)
i ) = N (µ

(c)
i , σ

2(c)
i ) where µ

(c)
i , σ

2(c)
i = f (τ

(c)
i ; θ).

(2)
The controller π (o, zi;φ) takes the task variable zi and the visual
observation o as inputs.

The network architecture we used in the experiments is
almost the same as the previous method TecNets (James et al.,
2018), in concrete, both the task embedding network and the
controller have four convolutional and three fully-connected
layers. The difference in PETNet is that the controller has two
outputs, namely the mean and variance of the Gaussian task
embedding distribution, while in TecNets, the output is the task
variable alone, which is passed directly into the controller. See
section 4.1.1 for details of the implementation.

The task variable zi is sampled from the task embedding

distribution during meta-training as zi ∼ p(zi|τ
(c)
i ). As we

hypothesize that the distribution is Gaussian, we can use
reparameterization tricks in the sampling procedure to train both
the task embedding networks and the controller simultaneously.
To train the model, we use the mean-squared error between the

action from the demonstrated trajectory and the predicted action
from the policy π with the parameter φ, so the loss for task Ti is

Li =
1

T

∑

(o,a)∈τ
(t)
i

‖π (o, zi;φ) − a‖22 (3)

where T denotes the number of timesteps. The full training
procedure is given in Algorithm 1.

During meta-testing, when the robot faces with the new

task Tnew determined by given cue demonstrations τ
(c)
new, the

task variable znew is computed as the mean of p(znew|τ
(c)
new).

Then the controller outputs its action ât = π (ot , znew;φ) for
each timestep t. The variance from the task-embedding network
is the measurement of the uncertainty about inference from
the cue to the task. Algorithm 2 describes the procedure used
in meta-testing.

The cue is not restricted, in principle, to videos of
demonstrations performed by the same robot. The cue could be
any demonstration, like a video of a human performing an action,
as long as the task information is preserved. We will discuss the
generalizability of the approach further in the section 5.
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Algorithm 1 : Meta-training of PETNet.

Require: Task distribution p(T )
1: while not done do
2: Sample batch of tasks {Ti}

N
i=1 ∼ p(T )

3: for all Ti do

4: Sample cue τ
(c)
i ∼ Ti and demonstrated trajectory

τ
(t)
i ∼ Ti

5: Encode demos µ
(c)
i , σ

2(c)
i = f (τ

(c)
i ; θ)

6: Sample task embedding zi ∼ N (µ
(c)
i , σ

2(c)
i )

7: Compute loss for task Ti as
Li =

1
T

∑

(o,a)∈τ
(t)
i
‖π (o, zi;φ) − a‖22

8: end for

9: Compute average loss L = 1
N

∑N
i=1 Li

10: Update parameters θ ,φ with gradient descent
11: end while

Algorithm 2 : Meta-test of PETNet.

Require: Cue τ
(c)
new of meta-test (hold-out) task Tnew ∼ p(T )

Encode demos µ
(c)
new, σ

2(c)
new = f (τ

(c)
new; θ)

Use σ
2(c)
new as measure of task uncertainty

Use µ
(c)
new as task embedding znew = µ

(c)
new

for t = 1 . . . T do

ot = Env.GetObservation()
ât = π (ot , znew;φ)

Env.Act(ât)
end for

4. EXPERIMENT

In this section, we explain the experimental tests and our analysis
of the characteristics of the PETNet algorithm. These tests
address the following questions:

1. Can PETNet attain performance comparable to that of
previous methods in meta-testing?

2. Does PETNet can capture the uncertainty of the task
embedding inferred from the cue?

3. Is the uncertainty estimated by PETNet useful for improving
the safety of the controller?

4.1. Experimental Setting
We evaluate PETNet with a simulated pushing task of MIL
sim-push dataset using the MuJoCo physics simulator (Todorov
et al., 2012)1. The task is to push the target object indicated by
the demonstration to the designated goal area using a 7-DoF
robot arm.

Each task varies in terms of the objects in the environment and
the target object to push. Within the same task, the pair of objects
and the relationship of the target and the distractor is fixed, but
their arrangement in the environment changes. 769 tasks are
used for meta-training including those for validation. 74 tasks

1The dataset is available in the original codebase of MIL at https://github.com/

tianheyu927/mil.

are held out for meta-testing, each of which has different objects
than the meta-training tasks. Although 24 demonstrations are
included for each task in the original MIL sim-push dataset, we
used 12 demonstrations for each task following the experimental
setting of previous studies, with six tasks for the cue and six
for the demonstrated trajectory. The setup of disjoint datasets,
which consists of the cues and demonstrated trajectories, comes
from the motivation of meta-imitation learning, which aims to
adapt to a new task given some information about the task at
hand from the cue, while the demonstrated trajectories are used
to measure the loss and train the policy. Therefore, the cues
and demonstrated trajectories do not have to be in the same
domain [for example, Yu et al. (2018) uses human video of a task
as the cue and trajectories of target robot for the corresponding
task as the demonstrated trajectory]. In our experiment, the cues
and demonstrated trajectories are performed in the same setting
(the same robot, camera, etc.), which is the simplest case we
can consider.

A successful trial is defined as an episode in which the robot
places the target object inside the goal area for at least 10
timesteps in a 100-timestep episode. The average success rate of
six trials is reported for all meta-testing tasks.

4.1.1. Implementation Details

The visual demonstration is a series of 125 × 125 RGB images
with 100 timesteps. The sequence is represented by concatenating
the first and last frame channel-wise, which we found is sufficient
for MIL sim-push dataset (we may use an RNN if we are
more interested in representing the dynamics). The network
architecture is almost the same as TecNets for fair comparison.
Both task embedding network and the controller have four
convolutional layers (CNN) followed by three fully-connected
layers. Each convolutional layer has 5 × 5 filters of 16 channels
with 4 strides and ReLU activation function (Nair and Hinton,
2010) is applied. The proprioceptive data (the joint angles, joint
velocities, and end-effector pose of the robot arm) is concatenated
to the output of the last layer of the CNN. The fully-connected
layer has 200 units, except for the last layer. The number of output
of the task embedding network is 20, 10 for the mean, and 10 for
the variance of Gaussian distribution, which results in the same
number of parameters as TecNets (TecNets uses task embedding
vector with the length of 20). The output of the controller is
torques applied to each joint of the 7DoF robot arm. We used
Adam optimizer (Kingma and Ba, 2015) with the learning rate
of 5.0× 10−4.

4.2. Performance of Simulated Pushing
Task
We compared the performance of PETNet with that of two
previous methods, namely MIL (Finn et al., 2017b) and
TecNets (James et al., 2018). Table 1 is the success rate in
the meta-test of the simulated pushing task. PETNet attained
a success rate of 72.52%, which outperforms MIL with visual
demonstrations (66.44%) and is comparable to the performance
of TecNets (λUctr = 0) (70.72%). It should be noted that although
the main result of TecNets (main) (77.25%) is obtained by using
actions from both the cues and the demonstrated trajectories,
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TABLE 1 | Performance at meta-test of sim-push task.

Method Success Rate (%)

MIL (vision) 66.44

TecNets (main) 77.25

TecNets (λUctr = 0) 70.72

TecNets (λemb = 0) 58.56

PETNet (ours) 72.52

The numbers of MIL and TecNets are taken from the original papers. TecNets (main) uses

both internal states and visual observations as the cue demonstrations, whereas other

methods use visual observation only. TecNets (λemb = 0) is a variant of TecNets without

the cosine embedding loss.

PETNet uses actions from the demonstrated trajectories only.
This selection is more general as a setting in meta-imitation
learning and it is fairer to compare PETNet with the ablation
version of TecNets, namely TecNets (λUctr = 0). TecNets (λemb

= 0) is the variant without the cosine embedding loss during
the learning and its performance is worse than the other
variants (58.56%), which shows the loss term is necessary to
group embeddings of the same task in TecNets. However, while
PETNet does not have such explicit embedding loss term, the
performance is almost the same as TecNets, which implies
that the probabilistic inference-based method of PETNet can
contribute appropriate task representation in the embedding
space. As shown in the experiment above, the proposed method
for estimating task uncertainty has no negative impact on the
final performance of meta-imitation.

4.3. Analysis of Task Embedding and Task
Uncertainty
Next, we analyzed the characteristics of the learned
representation of the task embedding from the demonstrations.
The focuses of this analysis is to find whether the task embedding
effectively captures the uncertainty in the inference from cue to
task, and to find whether this measure of uncertainty is useful for
ensuring robot safety.

4.3.1. Visualization of Task Embedding

Firstly, we visualized the task embedding by reducing its
dimensions using t-SNE (van der Maaten and Hinton, 2008).
As illustrated in Figure 2, we chose 15 tasks randomly from the
meta-training and meta-testing tasks and we plotted the mean
of each task embedding distribution. The same mark (shape
and color) corresponds to the same task but the demonstration
is different. The marker size is proportional to the variance of
the task embedding. Meta-testing tasks are highlighted with a
black border around the mark. Although we did not introduce
any explicit loss function for the embedding, we found that the
embeddings of the same task are grouped together for both meta-
training tasks and meta-testing tasks, suggesting that the task
representation learned by this model was generalized even for
meta-test tasks.

FIGURE 2 | Visualization of task embedding for randomly selected

demonstrations, which is reduced to two-dimensional space with t-SNE.

Points with the same marker denote demonstrations from the same task and

markers with black round means demonstrations in meta-test tasks. The size

of each marker is proportional to the variance of the task embedding.

4.3.2. Evaluating Task Uncertainty

We then conducted three experiments to evaluate whether
PETNet can correctly estimate task uncertainty to detect
inappropriate demonstrations for imitation learning.

Firstly, we applied the learned task embedding network to
the original MIL pushing dataset. Figure 3 shows some of the
top 13 demonstrations with the highest variance of the task
embedding distribution. The demonstrations in the first row are
from meta-training tasks and those in the second row are from
meta-testing tasks. While the MIL pushing dataset Finn et al.
(2017b) seems well-controlled in its data generation, PETNet
identifies some demonstrations that are inappropriate for task
identification using the task embedding network. For example,
the robot pushes both objects in (B) and (D), and the target object
is completely occluded by the other in (F). This result shows
that PETNet can find semantically inappropriate demonstrations
without explicit supervision.

Secondly, we synthesized some out-of-distribution
demonstrations and checked whether PETNet can detect
those examples that are not included in the original dataset
and have no information about the task. Figure 4 represents
the examples of the demonstrations. Starting on the left,
the demonstrations in the original dataset (Normal), the
robot arm does not move (No-Action), the robot arm moves
randomly (Random), no objects are in the environment (No-
Objects), and the demonstration is hidden by squares randomly
placed in the observation (Hidden). Figure 5A shows the average
standard deviation of the task embedding distribution for
each category of demonstration. The standard deviations for
synthesized out-of-distribution demonstrations are obviously
larger than those using demonstrations in the original dataset,
implying that PETNet correctly detects the out-of-distribution
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demonstrations. This is an essential property for removing
demonstrations with large task uncertainty during deployment.

Thirdly, we evaluated the standard deviation changing the
number of demonstrations during meta-testing. This assessment
assumes that the robot can access several demonstrations for
each task, rather than only one demonstration in other settings.
The task embedding distribution from multiple demonstrations
is represented as a product of each distribution from a single
demonstration and we can compute the product analytically,
as in Hinton (2002). The result is shown in Figure 5B and

FIGURE 3 | Demonstrations with highest variances in task embedding space

of PETNet. Demonstrations in the first row are from meta-training tasks, while

those in the second row are from meta-test tasks. These demonstrations can

be inappropriate for task identification for the controller, for example, in (A–E),

the arm pushes both target object and distractor, especially in (B) and (D),

they are overlapping, and in (F), the target object is completely occluded by

the other.

confirms that increasing the number of demonstrations reduces
task uncertainty.

4.3.3. Task Uncertainty and Performance

If the task identification fails with the given cue in meta-
imitation learning, the controller will not be able to attain the
goal of the task and may perform unexpectedly. Therefore,
it is necessary to know how certain the task identification
is before the execution for preventing such undesired failure.
We show in the previous section that the variance of the
distribution over the task embedding space is useful for finding
inappropriate cues for identifying the task (e.g., occlusion or
object overlapping). Here, we can hypothesize that we can
prevent such failures if the inappropriate cues are detected by
monitoring the variance.

Therefore, we examined the relationship between the task
uncertainty of the demonstrations and performance during
meta-testing. We employ anomaly detection on the estimated
variances to detect the anomalous demonstrations that may cause
failure, using a one-class support vector machine (OCSVM)
with a linear kernel (Schölkopf et al., 2001). This is the
most basic choice for unsupervised anomaly detection. The
classifier is trained with the variances of the task embedding
distribution from training tasks only, assuming that they
contain 1% anomalous demonstrations. During meta-testing,
we detect anomalous demonstrations from the variances of
the demonstration using this linear OCSVM model. Figure 5C
clearly shows that the task performance with the cues
detected as anomalies is worse than the normal one by
about 10%, which suggests that the task execution is more
likely to fail if we use such anomaly cues and that the
anomaly detection can actually work for preventing failures (we
confirmed that the variances of those anomalies have always
contained some large element and that the model detects those
high variances).

FIGURE 4 | Examples of synthesized out-of-distribution demonstrations (the normal demonstrations are from the original datasets).
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FIGURE 5 | Experimental results about task uncertainty. (A) Average standard deviation of the task-embedding distribution using the original and synthesized

out-of-distribution demonstrations as in Figure 4. (B) Average standard deviation with different number of demonstrations. (C) Comparison of performance using the

demonstrations with normal and anomalous standard deviations during meta-testing.

5. DISCUSSION AND CONCLUSION

In this paper, we first pointed out the significance of evaluating
task uncertainty in meta-learning for robot control to ensure safe
deployment. Motivated by this insight, we proposed PETNet,
a novel method for measuring the task uncertainty in meta-
imitation learning using probabilistic task embedding. We
showed that PETNet achieves better performance than previous
methods in the benchmark of the simulated pushing task, and
tracks the uncertainty of the task while performing it. This
feature could be important to ensure the safe deployment of
meta-imitation learning algorithms applied to broader ranges
of tasks.

The evaluations presented in this paper are done with the MIL
dataset using a physics simulator, which is a standard setting
for meta-imitation learning. However, deploying robot learning
methods into real robots is not as easy as simulators and there can
be several challenges. For example, if we think about transferring
policies in simulators to real environments, sim-to-real is itself
a challenge in robot learning, because we have to tackle the
domain gap between simulator and real environment. On the
other hand, when learning only from real environments, another
concern arises about how to make the model “task-efficient” as
well as the sample-efficient, because it is costly to prepare various
tasks and their demonstrations. In addition, the “task” in the
experiments is defined as the combination of the target object
and the distractor, and the aspect of “pushing an object” is shared
in all tasks. Scaling meta-imitation learning to different “skill-
level” tasks (i.e., pushing, pick-and-place, peg insertion, etc.) is
the ongoing work in the robot learning community (Yu et al.,
2019, 2020; James et al., 2020). Concurrently, since Ajay et al.
(2020) reports that their model learns these skill embedding
based on probabilistic inference, we suppose that our framework
can scale to more diverse tasks, which we would like to evaluate
as future work.

As the extensions of our work, the approach of measuring task
uncertainty on the task-embedding space can be generalizable to

other learning algorithms like reinforcement learning or inverse
reinforcement learning. Our results open the door for using
demonstrations in other modalities like language instructions,
human demonstrators (Yu et al., 2018) ormultiple demonstrators
via crowdsourcing services (Mandlekar et al., 2018) which
can inherently have higher uncertainty in task identification.
Leveraging the evaluated task uncertainty for meta-training (for
example, weighing imitation learning loss according to task
uncertainty) could also be an important extension of our
work and could also take the form of curriculum learning
or active learning, which optimizes both data-collection and
control policies.
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