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a b s t r a c t

In building artificial intelligence (AI) agents, referring to how brains function in real environments
can accelerate development by reducing the design space. In this study, we propose a probabilistic
generative model (PGM) for navigation in uncertain environments by integrating the neuroscientific
knowledge of hippocampal formation (HF) and the engineering knowledge in robotics and AI, namely,
simultaneous localization and mapping (SLAM). We follow the approach of brain reference architecture
(BRA) (Yamakawa, 2021) to compose the PGM and outline how to verify the model. To this end, we sur-
vey and discuss the relationship between the HF findings and SLAM models. The proposed hippocampal
formation-inspired probabilistic generative model (HF-PGM) is designed to be highly consistent with the
anatomical structure and functions of the HF. By referencing the brain, we elaborate on the importance
of integration of egocentric/allocentric information from the entorhinal cortex to the hippocampus and
the use of discrete-event queues.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In building artificial intelligence (AI) agents, referring to how
rains function in real environments can accelerate develop-
ent by reducing the design space. Hippocampal formation (HF)
upports crucial neural capabilities, such as spatial cognition,
elf-localization for navigation, mapping, and episodic memory.
n neuroscience, HF and its functions have attracted increasing
ttention in recent years. The hippocampus has long been con-
idered the brain region responsible for configuring the cognitive
ap (O’keefe & Nadel, 1978; Tolman, 1948). To this end, desig-
ated neurons, such as place cells in the hippocampus (O’keefe
Nadel, 1978) and grid cells in the medial entorhinal cortex

MEC), exist to execute these functions (Fyhn et al., 2004; Haft-
ng et al., 2005). From the perspective of computational neu-
oscience, numerous computational model-based studies have
ocused on functions involving the hippocampus (Banino et al.,
018; Kowadlo et al., 2019; Madl et al., 2015; Milford et al.,
004; Schapiro et al., 2017; Scleidorovich et al., 2020). Alongside
hese computational studies, the use of brain-inspired AI and
ntelligent robotics is crucial to the implementation of these
patial functions. From an engineering perspective, simultaneous
ocalization and mapping (SLAM) (Thrun et al., 2005) represents a
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ttps://doi.org/10.1016/j.neunet.2022.04.001
893-6080/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
typical approach in computational geometry and robotics. Spatial
cognition and place understanding are important challenges that
must be overcome to facilitate the advance of robotics (Taniguchi
et al., 2019). However, despite the abundancy of neuroscience
knowledge related to HF and the progress in AI technology, com-
bining knowledge from both fields and applying it to robotics
remains a major challenge.

Purposes: This study aims to bridge the gap between neu-
roanatomical/biological findings of the HF and engineering tech-
nologies of probabilistic generative models (PGMs), particularly in
AI and robotics. This paper is a feasibility study on the method-
ology proposed by Yamakawa (2021). We establish a correspon-
dence between the function/structure of the HF in neuroscience
and spatial cognitive methods in robotics. The main objectives of
this study are as follows.

• To provide suggestions for the construction of a computa-
tional model with functions of HF by surveying the associa-
tion between SLAM in robotics and HF in neuroscience.

• To construct a brain reference architecture (BRA) that oper-
ates with biologically valid and consistent functions, as a
specification for implementing a brain-inspired model.

Type of paper: This report is a hypothesis-suggestion pa-
er that presents a novel argument, interpretation, or model
ntended to introduce a hypothesis/theory, based on a litera-
ure review, and provides the direction for its verification. We
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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onstruct a hippocampal formation-inspired probabilistic genera-
tive model (HF-PGM) as a highly adequate hypothesis by refer-
encing neuroanatomical/biological findings. The adequacy of the
constructed model can be evaluated by adopting the structure-
onstrained interface decomposition (SCID) method (Yamakawa,
021) for hypothesis generation. A generation-inference process
llocation task is used to solve particular problems related to the
apping of PGMs to brain circuits. This task involves allocating all
natomical connections to either the generative or the inference
rocess. Here, we learn the connections between modules from
he brain and utilize engineering technologies for the parts having
nsufficient findings of the brain structure and function. The avail-
ble findings on HF have been primarily gathered from studies
n rodents and only partially from the human brain. Engineer-
ng technologies refer to methods related to spatial awareness
e.g., SLAM, navigation, place recognition, spatial concept for-
ation, and semantic mapping) (Kostavelis & Gasteratos, 2015;
hrun et al., 2005). Thus, we present computational HF models
o support a feasible hypothesis from an engineering perspec-
ive. Furthermore, we provide suggestions for the construction of
ethods to study spatial cognitive functions using robotics and AI

echnology from the perspective of neuroscience. The proposed
GM is designed using an extension of the development method
roposed by Yamakawa (2021). Therefore, the adequacy of the
rchitecture is based on the evaluation criteria proposed in the
ame work. These evaluation criteria require (a) the brain infor-
ation flow (BIF) to be consistent with the anatomical findings,

b) the hypothetical component diagram (HCD) to be consistent
ith the structure of the BIF, and (c) the HCD to be able to achieve
he expected computational functions. The proposed PGM corre-
ponding to the neural circuitry of the HF is obtained through a
esign that is a natural extension of SLAM based on engineering
ractice, and the design procedure is detailed in Section 6.3.
ence, the feasibility (c) of HCD is computationally supported
ithout any new implementations or simulations.
Contributions: The main contributions of this study are as

ollows.

• We proffer and apply the generation-inference process allo-
cation, an approach that allows neural circuits to be inter-
preted as PGM, for the first time.

• We clarify that the function and structure of HF can be
consistently represented as an extension of the previously
reported SLAM models by considering relevant findings on
HF and SLAM.

• We show that the phase precession of brain activity in the
HF can be formulated as a discrete-event queue by repeat-
edly performing sequential Bayesian inference on the joint
probability distribution of the variables.

• We illuminate the direction of future challenges that are im-
portant for the development of HF-inspired models through
discussions on spatial movement, hierarchies, and physical
constraints.

This paper is structured as follows. Section 2 describes the
ackground and motivation. Section 3 describes the methodology
or constructing a brain reference architecture and PGM. Sec-
ion 4 summarizes the neuroscientific findings on HF. Section 5
escribes relevant topics, including brain-inspired SLAM, com-
utational models of the HF, concept formation and semantic
nderstanding of location and space, and deep generative models.
ection 6 describes the proposed HF-PGM from the perspective
f the model structure. We construct a novel PGM that is highly
onsistently with the neuroanatomical/biological findings of HF
y integrating allocentric/egocentric visual information. Section 7
escribes the formulation of a discrete-event queue based on the
hase precession queue assumption in HF as one of the inference
lgorithms for PGMs. Section 8 summarizes the findings of this
tudy and discusses future directions.
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2. Backgrounds and motivation

2.1. Bridging the gap between two fields

Models facilitated by engineering approaches, such as robotics
and AI, are capable of supporting HF modeling. Numerous as-
pects of the hippocampus remain unknown. Hence, there are
limitations to creating an HF model solely based on existing
hippocampus-related knowledge in neuroscience and biology.
Models for problem-solving based on engineering do not en-
counter these types of restrictions. It is possible to build a model
with functions similar to those of the hippocampus without
actively utilizing its knowledge. Such engineering models con-
structed for solving actual tasks may have implications for neu-
roscience and biology.

Furthermore, the knowledge on neuroscience is useful for
engineering applications in robotics and AI. Robotics generally
depends on a particular task and involves practical applications
(e.g., accurate 3-dimensional (3D) modeling of the environment.
Brain-inspired AI emphasizes learning from the brain and map-
ping brain circuitry and functions, followed by searching for
possible practical applications. Building a system that refers to
the brain that actually operates with functions for various tasks
opens engineering possibilities from novel perspectives.

Brain reference architecture, which links neuroscience and
robotics while enabling their application in robots, is currently
an important field of research.

2.2. PGM-based cognitive architecture

Probabilistic models that have succeeded as neocortical com-
putational models are also useful for modeling HF. In particular,
PGMs represent the process of generating observational stimuli
by assuming dependencies between random variables. Probabilis-
tic inference (e.g., Bayesian) may be employed by adopting PGMs,
which infer states behind sensory stimuli as latent variables, en-
abling the construction of internal representations. The observed
variables correspond to the stimuli. Adopting PGMs is valid from
the perspective of the Bayesian brain hypothesis, which states,
‘‘the brain represents sensory signals probabilistically in the form
of probability distributions’’ (Doya et al., 2007; Knill & Pouget,
2004). Furthermore, a reason for modeling brain-inspired archi-
tecture using PGMs is that the Neuro-symbol emergence in the
robotics tool kit (SER-KET) architecture can be used both theo-
retically and practically (Taniguchi et al., 2020). Neuro-SERKET
enables PGMs having several functions to have distributed de-
velopment, which can be used to develop integration modules.
This architecture enables the integration of models that imitate
other regions in the brain into a whole-brain model. There-
fore, the PGMs for HF proposed in this study may be used as
a module to represent the whole-brain’s integrated cognitive
architecture (Taniguchi et al., 2022).

3. Brain reference architecture (BRA) construction

This section describes the methodology for constructing the
PGM as a BRA. Fig. 1 shows the relationship of components for
the modeling processes. Section 3.1 introduces an overview on
BRA. Section 3.2 describes construction process and adequacy
evaluation for BIF and HCD. Section 3.3 describes a problem-
solving approach for associating anatomical structures in the
brain with PGMs (i.e., generation-inference process allocation).
The generation-inference process allocation is devised and
demonstrated for the first time in this study.
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Fig. 1. Overview of modeling processes for brain reference architecture (BRA). The brain information flow (BIF) and hypothetical component diagrams (HCD) are
onstructed using the structure-constrained interface decomposition (SCID) method. The probabilistic generative model (PGM) is one of the expression formats of
he hypothetical component diagrams constructed by generation-inference process allocation.
.1. Brain reference architecture

This study adopts an approach for building parts of modules
n a whole-brain architecture, which is a brain-inspired artifi-
ial general intelligence development approach that emphasizes
he architecture. Design methodologies for combining machine
earning that imitates the mesoscopic-level brain structures of
odents and humans are being studied to gather knowledge on
he architecture of the brain. Specifically, the whole-brain archi-
ecture initiative standardizes information corresponding to the
ulfillment of requirement specifications for brain-inspired soft-
are as BRA data1 and promotes role sharing in the BRA design
nd utilization. The whole-brain architecture initiative includes a
anual2 for preparing brain reference architecture (BRA) as the
tandard notation for guiding the development of brain-inspired
oftware.
BRA, which is the reference architecture at the mesoscopic

evel, represents a consistent description of (i) the brain infor-
ation flow (BIF) related to anatomical structures and (ii) the
ypothetical component diagram (HCD) related to its compu-
ational functions (Yamakawa, 2021). BIF is a directed graph
omprising partial circuits and connections that represent the
natomical structure of neural circuits in the brain. HCD is a
irected graph describing component dependencies, which can
e associated with any BIF sub-graph. The functional mechanisms
escribed in HCD are hypothetical, as the name implies, and
ifferent hypotheses may be presented by neuroscientists from
ifferent perspectives. In many cases, brain-inspired software is
mplemented by engineers who do not necessarily have a deep
nderstanding of neuroscience. Therefore, it is useful to examine
CD candidates that cannot be clearly dismissed based on current
euroscience knowledge, even if they cannot be confirmed as
round truth.

.2. Construction process and adequacy evaluation

In this study, we use a structure-constrained interface decompo-
ition (SCID) method developed by the whole-brain architecture
nitiative (Yamakawa, 2021) to design an HCD consistent with the
natomical structure of the HF. Using the SCID method, Fukawa
t al. (2020) applied the concept to the neural circuit of HF for the
irst time and identified a circuit that performs a path integration
unction on MEC.

1 https://wba-initiative.org/wiki/en/brain_reference_architecture.
2 BRA Data Preparation Manual: https://docs.google.com/document/d/1_t3W_
kFmGjfBhz3_EEZ2FCYyzrJi_1ZOtoPlOru8dc/edit#heading=h.6766fia4kgtf.
 t
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We created one plausible HCD by applying steps 1 and 2 (see
Appendix A for the detail) mainly to the HF. In this study, PGM is
positioned as a form of expression for HCD. Fig. 2 shows a table
of PGM modeling processes in the SCID method. The execution
result of step 1-A is mainly explained in Section 4. BIF is shown
in Fig. 3. The execution result of step 1-B is explained in Section 5.
The execution result of step 1-C is explained in Section 6.1. The
execution result of Step 2 is explained in Section 6.3. The contents
partially examined in Step 3 are described in Section 6.4.

The authenticity of BIF was established by Yamakawa (2021)
in the section ‘‘Adequacy evaluation of BIF’’. We further elaborate
on this adequacy in Section 4. Similarly, the consistency of HCD
with BIF has been described in the section ‘‘Adequacy evaluation
of HCD’’ in Yamakawa (2021). The functionality of HCD is ensured
by the presence of SLAM models (details are presented in Sec-
tion 6.3. The model was created to be consistent with BIF, thus
ensuring structure-consistency (discussed in Section 6.4).

3.3. Generation-inference process allocation

We describe the task developed in this study to solve partic-
ular problems for mapping brain circuits when modeling PGMs.
PGMs have the restriction that they must be directed acyclic
graphs; hence, loops cannot be represented. (See Appendix B.1
for a basic description of PGMs.) However, some brain circuits
have loop structures. In most cases, it is difficult to assign acyclic
PGMs to a brain circuit. Furthermore, in ordinary PGMs, signal
propagation in the inference process causes signals to propagate
in the direction opposite to that of the links used during the
generative process. In contrast, in brain neural circuits, signal
propagations between regions propagated by electrical spikes
that propagate terminally on axons are essentially unidirectional.
Generally, modeling a PGM of any existing interarea connection
in the brain is a difficult task.

To eliminate this restriction, we adopt a combination of gen-
erative/inference models.3 In other words, we assume that an
amortized variational inference is introduced, as described in Ap-
pendix B.1. The amortized variational inference can define the
link structure of the inference process without depending on the
link structure of the generative process. The model used for amor-
tized variational inference can be designed with a high degree
of freedom, as long as it is consistent with the link structure of
the generative process. Even if loops are present, there is a time
delay in the signal transduction in the neural circuits of the brain.

3 As other solutions, we can use probabilistic models based on fac-
or/undirected graphs instead of generative models.

https://wba-initiative.org/wiki/en/brain_reference_architecture
https://docs.google.com/document/d/1_t3W_dkFmGjfBhz3_EEZ2FCYyzrJi_1ZOtoPlOru8dc/edit#heading=h.6766fia4kgtf
https://docs.google.com/document/d/1_t3W_dkFmGjfBhz3_EEZ2FCYyzrJi_1ZOtoPlOru8dc/edit#heading=h.6766fia4kgtf
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Fig. 2. Modeling processes and section structure by structure-constrained interface decomposition (SCID) method and generation-inference process allocation.
herefore, we introduce next-time generation,4 which expresses
he progress of time for the generation process, as shown in
ig. B.2(b). Therefore, it becomes easy to relate the link structure
f PGMs to the structure of actual brain neural circuits.
This allocating task is the generation-inference process allo-

ation. This task consistently allocates all links into a generative
r inference model in a dependency network. In neural circuits
djacent to the cortex, attention must be paid to avoid incon-
istencies at the cortex interface. If the neuroscientific findings
re uncertain, a reasonable and feasible engineering model is
hosen. As a prerequisite for performing this task, each node of
hese variables5 is principally associated with a uniform circuit
see Yamakawa (2021)), which is the minimum descriptive unit
f the BIF.
Generally, applying generation-inference process allocation to

ny existing interarea connections in the brain is not an easy task.
owever, the major interarea connections of the neocortex can
e allocated to either the generative or inference process. In the
eocortex, a feedforward pathway transmits signals from lower
o higher areas while processing signals received by sensors,
nd a feedback pathway transmits signals in the opposite direc-
ion (Markov et al., 2013, 2014). In computational neuroscience
heories (e.g., Bayesian brain Doya et al. (2007), Knill and Pouget
2004) and predictive coding (Rao & Ballard, 1999)), inference
nd generation are assumed to be processed by the feedforward
nd feedback pathways, respectively. Therefore, the flow of the
nference model, represented by the dotted arrow in the graphical
odel, is associated with the pathway of the feedforward signal,
nd the flow of the generative model represented by the solid
rrow is associated with the pathway of the feedback signal.

. Neuroscientific findings of hippocampal formation

In this section, we survey the connections and functions of
F and its surrounding areas. The core region of interest of the
F focused in this study includes the cornu ammonis-1 and −3
reas (CA1 and CA3) and dentate gyrus (DG) in the hippocam-
us, lateral/medial entorhinal cortex (LEC/MEC), subiculum (Sb),
nd parasubiculum (ParaSb). The presubiculum (PreSb), perirhi-
al cortex (PER), postrhinal cortex (POR), retrosplenial cortex
RSC), and medial septum are also investigated as areas adjacent
o the HF, that is, as regions for sending and receiving the signal.

4 It means assuming state–space models for time-series data.
5 Nodes are basically random variables; furthermore, they can be represented
s temporary variables during the calculation process of deterministic variables.
320
4.1. Anatomical and physiological findings

With respect to neuroscientific findings, we conducted a sur-
vey by adding detailed findings on LEC and hippocampus to the
findings in the review of Fukawa et al. (2020) centered on the hip-
pocampus and MEC. These findings are also based on an original
anatomical review of the structure of HF (Amaral & Witter, 1989;
Witter et al., 2000). Fig. 3 shows the connection relationship of
the HF circuit, which includes the hippocampus, Sb, PreSb, ParaSb,
and entorhinal cortex. The hippocampus comprises DG, CA1, and
CA3. The entorhinal cortex is divided into MEC and LEC. CA1 and
Sb are further separated distally and proximally (Knierim et al.,
2014). In this study, MEC is divided into six layers: I, II, III, Va,
Vb, and VI, and LEC is similarly divided into six layers: I, II, III,
IV, V, and VI (Fukawa et al., 2020; Shepherd & Grillner, 2013).
MEC IV is excluded because it has few neurons. As input to LEC, a
connection exists from the POR and PER to LEC II and III (Nilssen
et al., 2019). The output from LEC has a connection from LEC II
to DG and CA3 and from LEC III to CA1 and Sb. From CA3, there
are two connections, Sb proximal through CA1 distal and Sb distal
through CA1 proximal (Knierim et al., 2014). The nonspatial signal
is conveyed from LEC to the hippocampus (Hargreaves et al.,
2005). The MEC and LEC signals are integrated by the DG and CA3
in the hippocampus (Chen et al., 2013; Knierim et al., 2014).

Neural cells with various expressions have been observed in
the hippocampus and its surrounding areas. Place cells exist in
CA3 and CA1 (O’keefe & Nadel, 1978); they are active only when
an animal enters a specific place in the environment; they do not
fire elsewhere. It is thought that an environmental cognitive map
is stored as a neural circuit according to the place cells (O’keefe &
Nadel, 1978). Grid cells exist in MEC, ParaSb, and PreSb (Hafting
et al., 2005). Although the activity of place cells represents one
place in the environment, grid cells are activated in a hexagonal
grid at multiple places in the environment. Head-direction cells
exist in MEC, PreSb, ParaSb, and RSC (Grieves & Jeffery, 2017;
Taube, 2007; Taube et al., 1990); they are active only when the
head faces a specific direction, regardless of the location of the
viewer. Border cells and boundary vector cells are cells in Sb
and MEC that selectively fire near the border, irrespective of
whether there are objects or obstacles (Lever et al., 2009). Speed
cells exist in MEC and exhibit activity that depends on the speed
of movement of the subject (Hinman et al., 2016; Kropff et al.,
2015). Spatial view cells that respond to the current landscape
are known to exist on the primate’s hippocampus (Rolls, 2013).
Furthermore, event cells have been discovered that represented
the content and order of the events experienced (Terada et al.,
2017). Events that are not evenly spaced in time are processed

centrally by the LEC and stored only when the state changes.
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Fig. 3. Brain information flow (BIF) represents the connection of neural circuits between HF and its surrounding areas. It is based on anatomical studies and
reviews (Amaral & Witter, 1989; Fukawa et al., 2020; Witter et al., 2000). Blue, lateral entorhinal cortex (LEC) and perirhinal cortex (PER); red, medial entorhinal
cortex (MEC), presubiculum (PreSb), parasubiculum (ParaSb) and postrhinal cortex (POR); yellow, the hippocampus and subiculum (Sb); green, the medial septum;
and purple, retrosplenial cortex (RSC). The hippocampus includes the cornu ammonis-1 and -3 areas (CA1 and CA3) and dentate gyrus (DG). Colored arrows indicate
that the signal is sent from the area indicated by that color to the other area at the tip of the arrow. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
4.2. Functions

HF is a brain region that controls short-term and episodic
emory in vertebrates. It is deeply involved in spatial memory

unctions, such as spatial learning and exploration. The behavior
f an animal when traveling to a destination by selecting an
ppropriate route while simultaneously acquiring environmental
nformation is called navigation. Cognitive mapping, where ani-
als form a map of the spatial positional relationship of various

tems in the environment by exploration and act accordingly
sing this map, is proposed as a psychological concept deeply re-
ated to navigation (Giocomo et al., 2011; Tolman, 1948). The hip-
ocampus is thought to be crucial to the formation of cognitive
aps in mammals.
Self-localization, where animals consistently recognize their

urrent position, is indispensable for the navigation and forma-
ion of cognitive maps. One of the functions that support the self-
ocalization ability of animals is path integration (McNaughton
t al., 2006). Path integration is a function that outputs self-
osition after movement upon input of the initial position, head-
irection, and movement signals, including speed and movement
irection (Raudies et al., 2015). These researchers argued that the
egion responsible for path integration was either MEC II stellate
ells or MEC III. Path integration is calculated using grid cells (Gil
t al., 2018). Their firing pattern represents metric properties,
nd the firing pattern of place cells represents the position index
nformation without metric properties (Buzsáki & Moser, 2013;
ukawa et al., 2020). The prospective speed signal is calculated
y MEC III or MEC Vb. Furthermore, in the hippocampus, there is
loop structure wherein the movement signal by path integration
n MEC and signal from the LEC are integrated to obtain accurate

osition information. DG and CA3 execute the functions of pattern

321
Fig. 4. Egocentric and allocentric representations of space. (a) Egocentric vi-
sual information. First-person perspective and self-centered coordinate system.
(b) Allocentric visual information. Objective perspective and object center
coordinate system.

separation and pattern completion, respectively (Bakker et al.,
2008). Pattern separation is the ability to identify the difference
between two perceptual patterns, and pattern completion is the
ability to generalize and complement using similar signals from
partial observation and noisy environments.

LECs and MECs have been reported to perform different pro-
cessing functions owing to the difference in the signals sent
from PER and POR. LEC and MEC process proximal and distal
landmarks, respectively (Kuruvilla et al., 2020). In addition, LEC
processes signals from an egocentric perspective, whereas MEC
processes signals from an allocentric perspective (Alexander et al.,
2020; Bicanski & Burgess, 2018; Byrne et al., 2007; Deshmukh
& Knierim, 2011; Hargreaves et al., 2005; Wang et al., 2020).
Fig. 4 shows the difference between egocentric and allocentric
perspectives. Considering these factors, two types of cognitive
maps are generated: survey and route maps (Shemyakin, 1962).
Therefore, LEC and MEC are expected to be responsible for spatial
cognition of the route and survey maps, respectively. These two
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ypes of views are used in car navigation systems and online map
pps (e.g., Google Street View).

. Relevant topics and correspondence between HF and SLAM

We introduce the research on computational models related
o spatial cognition methods, including SLAM. Furthermore, we
iscuss the association between functions of HF and compu-
ational models based on the content covered in Appendix B
nd Section 4. First, we introduce the HF computational models
nd brain-inspired SLAM in Section 5.1. Second, we introduce
he models relating to place category formation and investigate
heir relationship with HF in Section 5.2. Finally, the neural-
etwork models and their associations with PGMs are described
n Section 5.3.

.1. Computational models for HF and brain-inspired SLAM

Herein, we describe the HF computational model and the re-
ationship between HF and SLAM. Several studies have discussed
he relationship between SLAM, partially observable Markov de-
ision process graphical models, their probabilistic inferences,
nd HF circuits and functions (Bermudez-Contreras et al., 2020;
aussier et al., 2019; Madl et al., 2018; Penny et al., 2013).
LAM functions mainly correspond to the loop circuits of the
EC and hippocampus (Fukawa et al., 2020). Bermudez-Contreras
t al. (2020) discussed the association with artificial neural net-
orks and reinforcement learning in spatial navigation. Further-
ore, several studies were conducted on computational models
f functions relating to the hippocampus from the perspective of
omputational neuroscience (Banino et al., 2018; Kowadlo et al.,
019; Schapiro et al., 2017; Scleidorovich et al., 2020). Several
ippocampus-inspired SLAM methods have been proposed (Mil-
ord et al., 2004; Tang et al., 2018; Yu et al., 2019; Zou et al.,
020). Milford et al. (2004) implemented a biologically inspired
apping system, RatSLAM, which is related to place cells in the
ippocampus of a rodent.
Some of the existing SLAM functions can be partially associ-

ted with each functional cell in the HF. Metric representation
n the MEC is approximated by the map coordinate system in
LAM. Grid cells represent spatial metrics to determine coordi-
ate axes (Hafting et al., 2005). Models of grid-cell spatial firing
ave been proposed in computational neuroscience studies (Zilli,
012). In contrast, the map representation in numerous SLAM
odels is either a 2D or 3D Cartesian coordinate system. Par-

icularly, the occupancy-grid map of SLAM can be regarded as
combined representation of grid and border cells. Additionally,

n the self-localization model designed for engineering (Ishibushi
t al., 2015), Gaussian distributions are arranged at equal inter-
als, resulting in a representation resembling grid cells. The state
ariables in SLAM that represent posture are defined by position
oordinates and orientation. Therefore, posture is associated with
he firing of grid and head-direction cells.

In landmark-based SLAM, which is a time-series state–space
odel, the landmark position is estimated using a Kalman fil-

er (Montemerlo et al., 2002). This corresponds to the MEC func-
ion for processing distal landmark signals obtained from POR
Kuruvilla et al., 2020). In general SLAM, it is assumed that the
andmarks are static. Expanding this to dynamic objects is ex-
ected to enable the estimation of the position of the movement
f other individuals, for example, as a dynamic event that is part
f the external context in the environment. This type of expanded
LAM model may be a candidate model for a research report on
he activity pattern of place cells in other rats (Danjo et al., 2018).

In the brain, self-localization is performed by theta-phase
recession (Hafting et al., 2008). Phase precession is explicitly
322
modeled as a spatial cell model in Zou et al. (2020). However, in
the SLAM studies, there are a few models that explicitly imple-
ment phase precession, even in brain-inspired models. Hence, it is
implemented by different processes that are functionally similar
in engineering. In this study, we propose a discrete-event queue,
as shown in Section 7.

Episodic memory is an important function both in the hip-
pocampus and robotics. In the computational neuroscience field,
models of the hippocampus in episodic memory have been pro-
posed (Hasselmo & Wyble, 1997; Mcnaughton & Neuroscience,
1987; Treves & Rolls, 1994). Several methods incorporating
episodic memory have been proposed for robotics (Furuta et al.,
2018; Tang et al., 2017; Ueda et al., 2018; Zou et al., 2020). Ueda
et al. (2018) proposed a brain-inspired method (i.e., a particle
filter on episode) for agent decision-making. An episode that
replays in CA3 may be modeled with a generative process. There
are various ways to express episodic memory; however, robots
can retain temporal transitions with observed events and refer to
them subsequently.

5.2. Semantic mapping and spatial concept formation in robotics

In mobile robots, it is essential to appropriately generalize
and form place categories while dealing with the uncertainty
of observations. Hence, a semantic mapping approach, includ-
ing semantics of places and objects, has been actively devel-
oped (Garg et al., 2020; Kostavelis & Gasteratos, 2015). To address
these issues, PGMs for spatial concept formations have been
constructed (Hagiwara et al., 2018; Isobe et al., 2017; Katsumata
et al., 2020; Taniguchi et al., 2017, 2020a). Taniguchi et al. (2017,
2020a) realized a PGM for online spatial concept acquisition
with simultaneous localization and mapping (SpCoSLAM), which
conducts place categorization and mapping through unsupervised
online learning from multimodal observations. Visual informa-
tion is used as landscape features reminiscent of spatial view
cells (Rolls, 2013). HF is also centrally involved in the forma-
tion of place categories, semantic memory, and understanding
of the meaning of places by integrating signals from each sen-
sory organ (Buzsáki & Moser, 2013). We consider the afore-
mentioned models as candidates for a cognitive module with
functions similar to those of the HF.

SpCoSLAM is a model that arguably imitates some functions
of the hippocampus and cerebral cortex. From the viewpoint
of computational efficiency and estimation accuracy, Taniguchi
et al. (2020a) proposed an inference algorithm that sequentially
re-estimates some recent events and accordingly updates global
parameters in older observations. Assuming that the training
data (i.e., the event-based robotic experience) represent episodic
memory and spatial concepts represent semantic memory, their
algorithms can sequentially extract concepts from short-term
episodic memory to form a semantic memory. Isobe et al. (2017)
proposed a model for place categorization using self-position and
object recognition results. This model shows that the catego-
rization accuracy is higher when weighing is performed while
considering only the objects that are close to the robot, rather
than using all objects that are evident from the robot’s viewpoint
for place categorization. This result is also consistent with the
neuroscientific findings of proximal landmarks (Kuruvilla et al.,
2020). Furthermore, the hierarchical multimodal latent Dirich-
let allocation (Ando et al., 2013) provides a categorical repre-
sentation of hierarchical locations (Hagiwara et al., 2018). The
multi-layered k-means was adopted to extract the hierarchical
positional features of a space. Arguably, this corresponds to the
hierarchical representation of grid cells in an MEC (Hafting et al.,
2005) and is considered a valid model based on neuroscientific
findings. Although the aforementioned algorithms and models
were not originally inspired by biology or neuroscience, such
research is highly suggestive.
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.3. Neural-network models

Deep neural-network models, such as world models (Ha &
chmidhuber, 2018), represent various types of information in
he latent state space. In ordinary SLAM, the functional shapes
f the distributions (i.e., global parameters) for motion models,
hich represent state transitions and the measurement models
hat match observations to a map, are designed and set by hu-
ans. Therefore, SLAM problem means the estimation of local

atent parameters. In contrast, world models do not have explicit
odels embedded with prior knowledge. Deep neural-network
odels learn elements corresponding to global and local pa-

ameters in PGMs simultaneously. The estimation of motion and
easurement models, including map representations on neural
etworks, is related to predictive coding.
As computational models for HF, grid cells and their similar

patial representations have been reproduced by deep neural-
etworks, including long short-term memory (LSTM) or multi-
ayered recurrent neural networks (RNNs) (Banino et al., 2018;
hristopher J. Cueva, 2018; Noguchi et al., 2019). A vector rep-
esentation similar to that of grid cells is acquired as an internal
tate by LSTMs, which predicts the current posture from the past
elocity and angular velocity with dropouts (Banino et al., 2018).
n contrast, from an engineering point of view, models for place
epresentation and spatial concepts using deep neural-networks
ave been proposed. The room space is learned from the visual-
otor experience using two sub-networks comprising a deep
uto-encoder and an LSTM (Yamada et al., 2017). By integrating
he spatial concept formation model introduced in Section 5.2
ith generative adversarial networks, Katsumata et al. (2020)
ransferred global spatial knowledge from multiple environments
o a new environment. These approaches have some suggestive
lements that can be interpreted as an HF model.
With the advent of Bayesian deep learning and deep PGMs,

t has become possible to discuss neural networks within the
ramework of PGMs. In particular, by implementing it in the
ramework of deep PGMs, it is possible to naturally incorporate
ierarchical RNNs into a generative model, such as variational
uto-encoder and generative adversarial networks. For example,
he predictive-coding-inspired variational RNN (Ahmadi & Tani,
019) is not a model for the hippocampus or navigation task, but
hierarchical RNN-based deep PGM. Deep PGMs are achieved by
mortized variational inference, a type of variational inference
hat introduces functions to transform observation data into pa-
ameters of the approximate posterior distribution. Therefore, it
s possible to formulate arbitrary variable transformations and
onlinear functions as probability distributions. The framework
or maximizing the evidence lower bound by variational inference
s equivalent to free energy minimization. Therefore, if the HF
odels are described by PGMs, they can be naturally connected

o the free energy principle (Friston, 2019) and world models (Ha
Schmidhuber, 2018).

. HF-PGM: Hippocampal formation-inspired probabilistic
enerative models

We constructed a graphical model of HF and its surrounding
egions: HF-PGM. We describe the HF-PGM in association with
he HF by interpreting and modeling it using a graphical model.
ection 6.1 describes the region of interest, top-level function,
nd input/output signals. Section 6.2 describes the execution
or allocation of generative or inference process in connections.
ection 6.3 describes the time-series representation, encoder–
ecoder representation, and representation associated with BIF
n the proposed HF-PGM. Section 6.4 discusses the consistency
f the model with scientific knowledge.
323
6.1. Region of interest, top-level function, and input/output

The region of interest targeted in this study to realize the
proposed model includes LEC, MEC, CA1, CA3, DG, Sb, and ParaSb.
Additionally, adjacent areas of the region of interest (i.e., areas
where the signal can be obtained or a signal is sent) are PreSb,
POR, PER, and RSC. The connection relationship of each region is
based on Fig. 3. Fukawa et al. (2020) mainly focused on the MEC
and hippocampal circuits. In addition, LEC is considered in this
study. Hypotheses on LEC functions were derived from several
papers and used for model construction. This study assumes that
the model works when the agent is walking in an awake state.
The top-level function for the assumed region of interest inte-
grates allocentric and egocentric information once and outputs
each prediction. The following activities describe the processing
inside the model used to realize the top-level function:
(i) Self-localization (path integration and observational cor-
rection): Self-localization is performed by path integration and
observation-based prediction correction (as explained in
Appendix B.2 and Section 4.2). The difference from conventional
SLAM is that the prediction is corrected using integrated infor-
mation from the LEC-variables, and the prediction of the future
times is output to other regions. For details, refer to Section 6.3.1.

(ii) Place categorization by integrating allocentric and ego-
centric information: By integrating the allocentric visual infor-
mation processed by the MEC and the egocentric visual informa-
tion processed by the LEC, a place category representing semantic
memory about a place is formed (Buzsáki & Moser, 2013). As
a PGM, it can be modeled as a multimodal categorization. For
details, refer to ‘‘integration of information’’ in Section 6.3.3.

The inputs to the model include variables in POR, PER, and
RSC. The internal representations at these parts are treated as
observed variables in PGM. The outputs of the model are the
predicted values in POR and PER at the next time-step. In PGM,
the latent variables and parameters of the conditional distribution
are obtained as the estimated values. The definition of each
corresponding variable is described in Table 1.

6.2. Executing generation-inference process allocation

We constructed HF-PGM to be consistent with SLAM’s PGM
based on the generation-inference process allocation procedure
(see Section 3.3). The connection between POR and MEC II super-
ficial on the BIF (Fig. 3) can be regarded as a feedforward pathway.
An inference process can be allocated to this connection in the
PGM. In contrast, the connection between MEC V and POR on the
BIF can be regarded as a feedback pathway. A generative process
can be allocated to this connection in the PGM. The connections
between LEC and PER are assigned in the same way.

There exist limitations to performing generation-inference
process allocation for the inside of the hippocampus while con-
sidering only the connectivity with the neocortex. Therefore, the
engineering formulation of the SLAM modeled as PGM is used
as a reference. Partially following the generative process in the
PGM of SLAM (see Appendix B.2), the links related to the state
transition, motion models p(xt | xt−1, ut ), were assigned as the
generative processes.

6.3. Models and operating principle

In this section, we describe the model structure and function
of the proposed HF-PGM. We associate variables with each region
of the HF. Some anatomical connections are omitted in the PGM
for engineering feasibility. Descriptions of global parameters are
omitted from the graphical model. In this study, a specific shape is
not particularly limited in probability distributions. Only random
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Fig. 5. Graphical model representation of HF-PGM as the final form. It is drawn on the BIF, representing the circuit diagram of the HF shown in Fig. 3. The area
surrounded by a gray frame is the region of interest targeted in this study. Gray nodes represent observed variables, whereas white nodes represent unobserved
latent variables. Black arrows represent the generative process, and dotted arrows represent the inference process. The flat arrow with ∆t indicates the generation
f the variable in the next time step. Nodes surrounded by gray circles are assumed to be functionally similar and may be treated as the same variable.
ariables, their functional definitions, and dependencies between
he random variables are assumed. Here, the node does not
ecessarily have to be a random variable. Signals from outside
he HF-PGM module are treated as observed variables, and it is
ssumed that the observation of each input is converted from raw
ata into individual high-level features through each processing
odule; additionally, it enters the HF-PGM. Models may be con-
idered from raw data that can be observed by robots; however,
ecause we intend focus on the top-level function, for the time
eing, we consider them as extracted features.
The final form of HF-PGM is shown in Fig. 5. HF-PGM was

xpressed using inference and generative processes based on the
eneration-inference process allocation. We describe the vari-
bles of HF-PGM in Table 1. Next, two types of descriptions in the
able are described. Physiological findings include a description of
physiological phenomenon observed at a specific site on the BIF
r the function inferred from it. Because there are many uncertain
lements in physiological findings related to LECs, the description
s omitted here. The function of the components is a description
f the computational functions assumed for each component
ncluded in the HCD. As a detail of the aforementioned con-
ents with references, we released a pre-screening version of
he BRA data6 as supplementary material (hf_bra.xlsx), which
escribes the navigation functions of the HF.
Sections 6.3.1–6.3.3 explain the flow of changes from the

eneral SLAM models in a step by step manner, as shown in
ig. 5. This implies that the functions of SLAM’s PGM can be
ecomposed and associated based on the anatomical structure
f HF. Meanwhile, the functions of the HF-PGM can include the
unctions of the conventional SLAM (discussed in Section 5.1) and
he spatial concept formation models (introduced in Section 5.2).

6 Hippocampal formation BRA data (pre-screening version): https://docs.
oogle.com/spreadsheets/d/1xf5tIj2qzHh9a52a2p9K5b8ggra825bvBdXKhghF2W4/
dit#gid=0.
324
Fig. 6. Time-series version of graphical model representation of only the MEC
side in HF-PGM. The generation and inference processes are drawn simultane-
ously. The subscript representing time reflects the time of the outside world, in
which the observation is obtained. Notably, it does not represent the time of
internal processing. Observations up to the current time, t , are obtained.

The operating principle, as an internal process for realizing top-
level function in the HF-PGM, is shown below. These also serve
as sub-functions subordinate to the top-level function.

6.3.1. PGM representation according to hippocampus and MEC struc-
tures

The graphical model is shown in Fig. 6, which is a variant of
the PGM of SLAM (see Fig. B.2) and is mapped with reference to
the hippocampal and MEC loop structures. This model is an ex-
tension of a partially observable Markov decision process. In this
model representation, we omit the connections on the LEC side.
However, the signal obtained from the LEC side was originally in-
tegrated via Ht , which corresponds to the integrated higher-level
internal representation. Corresponding to this graphical model
of the neural circuits in the hippocampus and MEC, we obtain

https://docs.google.com/spreadsheets/d/1xf5tIj2qzHh9a52a2p9K5b8ggra825bvBdXKhghF2W4/edit#gid=0
https://docs.google.com/spreadsheets/d/1xf5tIj2qzHh9a52a2p9K5b8ggra825bvBdXKhghF2W4/edit#gid=0
https://docs.google.com/spreadsheets/d/1xf5tIj2qzHh9a52a2p9K5b8ggra825bvBdXKhghF2W4/edit#gid=0
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Table 1
Description of variables in the HF-PGM. Gray backgrounds are associated with PGM for SLAM, as shown
in Fig. B.2. The corresponding variables are listed together in symbol.
Region Physiological findings Symbol Function of components on HCD
CA1 distal Non-spatial semantic memory C Place category (internal representation

of visual spatial information)
CA1
proximal

Place cells r Position distribution (cluster information
regarding positions)

Sb proximal State at CA1 distal with time
delay

C ′ Place category at the previous time

Sb distal State at CA1 proximal with
time delay

r ′ Position distribution at the previous
time

CA3 Pattern completion,
information integration

H III Integrated semantic memory and
episodic memory of information from X
and Z

DG Pattern separation HDG Integrated semantic memory
MEC II Grid cells, Border cells, path

integration
X II ({xt }) Self-position information, predictive

distribution
MEC III Grid cells, head-direction cells,

border cells
X III ({xt }) Self-posture information (position and

orientation), observation likelihood
MEC
Va,Vb,VI

Prospective speed calculation,
feedback to POR

g Predictive representation of X
(Prediction at future time regarding
movement/speed amount or posture)

LEC II — Z II Abstraction of information from yPER
(transmission of prediction, generation
of prediction signal)

LEC III — Z III Abstraction of information from yPER
(Observation transmission)

LEC V,VI Feedback to PER l Predictive representation of Z
(Prediction at future time from the
difference between C ′ and C)

ParaSb — X ′ ({xt−1}) Self-posture information
POR — yPOR ({yt }) Allocentric visual information (distal

distance/landmarks, absolute object
positions)

PER — yPER Egocentric visual information (proximal
distance/landmarks, relative object
positions, object category, landscape
information)

RSC Head direction signal uw ({ut }) Rotational speed movement
c
u
b
A
a
e

the following: CA1/Sb (rt−1) → ParaSb (X ′
t ) & MEC Vb, VI (gt ) +

OR/RSC (yPORt , ut ) → MEC II (Xt ) → DG/CA3 (Ht ) & CA1/Sb (rt )
MEC Vb, VI (gt+1) → POR (ŷPORt+1). Some are defined as the same

ariable, assuming that they have similar functions; however, the
egions are different.

HF-PGM differs from the traditional PGM of SLAM when gen-
rating predictions of observation for the next cycle. SLAM di-
ectly estimates the current self-posture, xt , from the previous
self-posture, xt−1. Furthermore, the generative process of SLAM is
the arrow from xt to yt at time t . In contrast, HF-PGM generates
the self-posture, Xt+1, from Xt via variables, such as Ht , rt , X ′

t+1,
and gt+1.

The higher-level representation of place is denoted as rt . gt+1
s responsible for the prediction of the next time. It is assumed
hat rt comprises differential information about the time de-
ay between CA1 and Sb. Hence, the prediction, gt+1, is gen-
erated from rt , and the time-differential information is used.
This prediction by the difference calculation is not performed in
conventional SLAM.

Additionally, rt−1 at the previous time, t − 1, generates the
self-posture, X ′

t . X
′
t is responsible for conveying the position in-

formation of the previous time. The self-position, Xt , is predicted
from X ′

t and the movement amount, ut . Subsequently, the self-
position, Xt , is corrected by the predicted value, gt , and the
observation, yPORt .

It is assumed that the predicted value, gt , is determined by
reducing the error so that Xt can be generated consistently with
other variables. It is also possible to minimize the prediction error
of ŷPORt , which is generated from the prediction, gt , and the actual
observation, yPOR: predictive coding (Rao & Ballard, 1999).
t

325
Fig. 7. Encoder–decoder version of graphical model representation in HF-PGM.

Related to the theta-phase precession phenomena in the HF
ircuit, signals that circulate in the looping circuit in HF require
nits of discrete-event queues in a current state, which includes
oth near-past and near-future predictions (see also Section 7).
dditionally, given the nature of theta-phase precession, vari-
bles that form a large loop may not have self-transition (Butler
t al., 2018). Therefore, it is assumed that Ht , rt , and Xt do not

have a direct time self-transition despite having a direct neural
connection.

6.3.2. Integrated with LEC
Fig. 7 is a time-omitted representation of the graphical model

in Fig. 6 with additional connections on the LEC side. The projec-
tion from LEC V, VI l to LEC II, III Z assumes a connection structure
similar to MEC. This graphical model representation clearly shows
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he result of generation-inference process allocation. Because the
F-PGM in Fig. 7 is compressed in time, a circulation occurs in
he generative process. Therefore, the notation for the next time
eneration process introduced in Fig. B.2 is used. Notably, there
xists an arbitrariness of position with which the time progress
an be allocated in the PGM loop.
This model has an encoder–decoder structure and can be seen

s an extended form of variational encoders–decoders (Bahuleyan
t al., 2018) with two modalities and a condition. Because the
odel structure is similar to encoder–decoder models, the input
nd output have the same variables with the next time generation
rocess for the inference and generation sides. The signals (yPER
nd yPOR) from PER and POR-parts are processed into Z and X by
EC and MEC, respectively, integrated into H by DC/CA3-part and
ivided into C and r . Subsequently, ŷPER and ŷPOR are returned
rom the predictive information, l and g . During training, the loss
unction can be designed to match the input to the generated
utput. The structures of Z to C and X to r are similar to those
f the skip connection (i.e., the contracting path) and the U-
et (Ronneberger et al., 2015). Furthermore, a loop structure has
recurrent time delay on the MEC side, which is consistent with
he anatomy of the MEC and hippocampus. It is suggested that
his loop structure is crucial to self-localization (Fukawa et al.,
020).

.3.3. HF-PGM associated with BIF
Finally, corresponding to the BIF of the HF, Fig. 5 is obtained.

he following is a detailed description of each part of the HF-PGM
ased on Fig. 5.
Input and output: The amount of rotational movement, uw

t , is
ransmitted from RSC to MEC III (X III) via PreSb. The translational
peed is assumed to be calculated inside the MEC, where the
peed cells exist (Hinman et al., 2016; Kropff et al., 2015), because
he corresponding region cannot be clearly identified. Hence, the
mount of movement, ut , is obtained by integrating the difference
nformation sent from r and r ′ with uw

t . In engineering, it is
ossible to calculate the speed from the difference information.
or example, there are methods such as optical flow. A dis-
ussion related to the aforementioned sentences is provided in
ppendix C.5. Additionally, this time-difference information, as
entioned in Section 6.3.1, is useful for predicting the internal
tate and input signal at the next time.7 POR yPOR mainly deals
ith distal landmarks and distance signals (Kuruvilla et al., 2020).
istant information is useful for self-localization because it can be
btained more robustly than proximal information while moving.
ER yPER mainly deals with proximal landmarks and distance
ignals. This signal is useful to avoid proximal obstacles. Addition-
lly, proximal objects may be useful in forming a place category
or the current location (Isobe et al., 2017). Landscape information
an also be used to roughly identify the current location (Rolls,
013). These are similar to the treatments of observations in
patial concept formation, as described in Section 5.2.
Role of LEC/MEC: Generally, in the neocortex, layer III is

hought to be responsible for the transmission of observations,
nd layer II for predictions (Yamakawa, 2020). Given that the
EC/MEC is also part of the neocortex, its role is likely to be pre-
erved. LEC/MEC III receives observation signals from the POR and
ER and projects them mainly to CA1 and other areas. LEC/MEC II
enerates predictive signals and projects them to DG and CA3.
ence, it is considered that LEC/MEC II mainly calculates the

7 As the variables in CA3 and Sb are separated in Fig. 5, it is considered that
and r hold time-difference information as an internal representation. Because

′ and C ′ are said to represent the state having a time delay of r and C in BIF,
urther studies are required to assess the assumptions on the separability and
eneration of these variables.
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predictive distribution, and LEC/MEC III calculates the observation
likelihood. Because the MEC has a coordinate system with grid
cells, X represents the robot’s posture in the environment. MEC II
, III receives the observation, yPOR, from the POR and the rotational
movement, uw

t , from the RSC. Egocentric visual information yPER
(e.g., proximal object signal Kuruvilla et al., 2020) is sent to Z II,
III in LEC. The variable l of LEC V, VI is expected to be latent
ariables that serve as intermediates to send a generative signal
o the PER.

Integration of information: Allocentric and egocentric in-
ormation is integrated into the hippocampus. Hence, DG HDG

nd CA3 H III form an abstract internal representation of a place
hat integrates information from the visual information, Z , in
EC and the positional information, X , in MEC. We believe that
his internal representation corresponds to the spatial concepts.
urthermore, DG and CA3 are said to have functions of pattern
eparation and completion, respectively (Bakker et al., 2008).
hese functions are crucial in the integration of multimodal in-
ormation. From the PGM perspective, pattern separation may
e modeled by parameters that determine the Bayesian prior
istribution (Sanders et al., 2020). Specifically, the concentration
arameter in Dirichlet process clustering is involved in the au-
omatic determination of the number of clusters (Neal, 2000). In
hort, allocentric and egocentric information are expected to form
cluster within a unified latent space. Pattern completion can be
iewed as the process of regenerating information from DG as
efect completion by resampling from a probability distribution.
dditionally, error correction of self-position is believed to occur
n the hippocampus (Fukawa et al., 2020). By this process, simul-
aneously integrated information HDG and H III can be used. We
ssume that place-category formation or information processing
ccurs in the CA1 distal region. Further, we assume that location-
ependent category formation corresponding to place cells occurs
n the CA1 proximal region.

.4. Consistency of model with scientific knowledge

This section discusses the consistency of the model using
cientific knowledge and how the outcome can be tested. We
elieve that the HF-PGM is highly feasible because it is con-
istent with the anatomical findings of HF, although there may
e more detailed variables and dependencies. The main reason
s that the original PGM of SLAM already exists. We also fol-
ow the path integration of MEC and hippocampus, as discussed
n Fukawa et al. (2020). Furthermore, the agreement with BIF and
ngineering operating principles is described in Section 6.3. Con-
equently, we successfully map the HF as a PGM by introducing
he generation-inference process allocation. In summary, HF-PGM
s highly consistent with the brain structure of HF.

The effectiveness of HF-PGM can be verified by solving tasks
hat can be achieved by integrating LEC (egocentric signal) and
EC (allocentric signal). For example, in situations where local-

zation is difficult in SLAM, we can investigate whether the place
ategory information can distinguish the position. In addition, HF-
GM can be realized as a concrete model by integrating the neural
etwork-based world model and SLAM. Then, further experi-
ents can be conducted to determine whether the latent space

epresentation of the world model, which tends to be unstable in
earning, can be complemented by the geometric information of
LAM. We have also provided a pseudo-source code in the form
f Neuro-SERKET architecture (Taniguchi et al., 2020) for HF-PGM
s supplementary material (HF-PGM_serket.py).
The implementation of HF-PGM on a robotic platform is a hot

esearch topic for future studies. Hence, we plan to explore the
etailed structure of each model element in subsequent studies.
he HF-PGM proposed in this study is a specimen, and the actual
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Fig. 8. (a) Phase precession queue assumptions and (b) discrete-event queue processing. (a) shows the information representation in the theta-phase precession of
MEC II when the rat moves from left to right. x3|y1:3 represents an estimate of the state, given the observations up to time t = 3. Fields 2–4 at the bottom of the
rat represent the spatial regions where the three grid cells fire in place fields. The horizontal axis of the bottom table in (b) represents the time of the estimated
state, and the vertical axis represents the time of observation. The red box represents the queue. The queue has the estimated/predicted states five times from t − 2
to t + 2 at the current time, t . The vertical axis of the table in (b), which is the observation time, corresponds to the horizontal axis in (a), which is the actual time.
implementation may require more concrete discovery in terms of
engineering. Therefore, the following issues must be mitigated,
including (i) selection of a type for each probability distribution
during the generative process, (ii) when performing amortized
variational inference, selection of the function shape of the infer-
ence model and that of the architecture of the neural networks,
and (iii) ensuring a real-time algorithm that includes the learning
of global parameters. The aforementioned issues can be solved
by model selection and architecture search/optimization in a
framework similar to neural architecture search.

7. Abstraction as discrete-event queue

We provide the interpretation of the phase precession queue
assumption, which is one of the functionalities of the HF as an
estimation of the probability distribution in PGM. As explained
in Section 6.3.1, a discrete-event queue based on this assumption
was constructed to explain the parts that cannot be expressed
by the graphical model structure of the PGM alone. The phase
precession queue assumption plays an important role in the
development of an HCD from BIF. Thus, its relationship with the
PGM framework is indirect.

In the HF, the theta-phase precession is known to process the
experience by discretizing it and compressing it within a time
step, as shown in Fig. 8(a). Herein, stimuli from the external world
are sampled at the period of theta waves (8–13 Hz), and it is
believed that the present, past, and future events are encoded in
phase (Terada et al., 2017). By abstracting the information within

one phase as a queue, as shown in this subsection, the calculation
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of the queue can be interpreted as filtering the current state,
smoothing the past, and predicting the future.

7.1. Introducing discrete-event queue

To comprehensibly model the compressed time process han-
dled by the theta-phase precession, the time granularity of the
entire model must be detailed. To avoid too much complexity,
we introduce the phase precession queue assumption, which
states that the signal held by the theta-phase precession can be
regarded as a time queue containing the past, present, and future
events at the current time. The assumption is as follows:

Phase precession queue assumption: The observed state
compressed within one cycle of theta waves circulating on
a pentasynaptic loop circuit can be regarded as a discrete-
event queue representing the state sampled at discrete time
intervals. Here, the pentasynaptic loop circuit is formed in the
hippocampus and MEC by the projection sequence MEC II-DG-
CA3-CA1-Sb-ParaSb-MEC II.

There are several reasons why the aforementioned assumption
would be considered reasonable. As a neuroscientific finding,
HF is expected to be modeled as a discrete-event queue with
a finite buffer capacity according to the analysis of large-scale
network communication in macaque monkeys (Mišić et al., 2014).
Further, in intelligent systems that deal with a world with hidden
Markov properties, it is useful to have a discrete-event queue

capability to retain the entire observed signal for a short time.
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rom an engineering perspective, a discrete-event queue can be
asily realized as a memory array for the number of time steps
o be stored. Here, the memory elements on the same array are
onsidered to have the same meaning, but at different times.
owever, the neural circuitry of the brain has a restriction that
t cannot have more than one representation with the same
eaning. Therefore, it seems that we have no choice but to
se a method like the theta-phase precession, which compresses
nformation in the time dimension on the same neuron. The fact
hat PraSb and MEC II on the pentasynaptic loop circuit receive
irect projections from the medial septum, which generates theta
hythms, is consistent with the assumption that this circuit is
nvolved in the theta-phase precession.

.2. Processing for discrete-event queue

From the aforementioned discussion, the information held
n the phase precession can be interpreted as a discrete-event
ueue. If this is the case, the process shown in Fig. 8(b) is per-
ormed. Theoretically, the discrete-event queue can be regarded
s a sequential estimation problem for the joint posterior distri-
ution in multiple states. The variables are the same as those of
he PGM of SLAM, as shown in Fig. B.2.

Table 1 lists the correspondence of variables with HF-PGM.
otably, Xt in the HF-PGM is a variable with an internal repre-

sentation equivalent to xt−2:t+2. Fig. 8(b) shows a table presenting
a simplified notation for the discrete-event queue. Each element
in the table is a conditional marginal probability distribution in
the state, xj, at time j under the condition of observations up to
time i. Here, the control value, ut , and the integrated information
from the LEC are omitted. The probability distribution of the
discrete-event queue is shown in Eq. (1).

Queue(t) = p(xt−2:t+2 | y1:t ), j ∈ {i − 2 ≦ i ≦ i + 2}, i = t,

= η p(xt+2 | xt+1)  
Prediction

p(yt | xt )  
Filtering

p(xt−2:t+1 | y1:t−1)  ∫
Queue(t−1)dxt−3

, t ≧ 3. (1)

ere, we assume that Queue(t − 1) is calculated at the previous
ime, t − 1. i and j in the formula correspond to those in Fig. 8.
Queue(t − 1)dxt−3 denotes the operation of the integrated-out

i.e., marginalizing) (Murphy, 2012) of xt−3 from Queue(t −1). As
hown in Eq. (1), Queue(t) is a recurrence formula expressed by
Queue(t − 1), and a sequential calculation similar to the Bayes
filter is possible.

The discrete-event queue can be interpreted as an algorithm
that combines the filtering with the smoother and the predic-
tion (Kitagawa, 2014). This queue calculation is applicable to
PGMs of any partially observable Markov decision processes, not
just to simple PGMs for SLAM. Refer to Appendix B.1 for the
formulae of the predictive/smoothing distributions. In general
online self-localization, the belief, bel(xt ), shown in Appendix B.2,
which is the distribution when i = j, is estimated without using
the queue. This is called filtering (Kitagawa, 2014; Thrun et al.,
2005). The smoothing distribution can correct past self-position
estimates from later observations. SpCoSLAM 2.0 (Taniguchi et al.,
2020a) introduced the fixed-lag smoother for sequential and ac-
curate state estimation. The predictive distribution predicts the
future self-position from the current state and the learning result
of the environment, providing a trajectory that avoids obstacles.
Additionally, long-term predictions can be made by repeating
predictions ahead by one term. For example, such predictions
have already been realized in a map-based motion model (Thrun
et al., 2005) and a stochastic model predictive control (Li et al.,
2019) for autonomous vehicles. In addition, predictions related to
the generation of spatial behavior are discussed in Appendix C.1.
328
8. Conclusion

We sought to bridge the findings of HFs in neuroscience and
SLAM methods in AI and robotics. We summarized the SLAM
methods in PGMs and the neuroscientific findings of the HFs and
investigated their associations. This paper presents a case study
on the framework reported by Yamakawa (2021). The main con-
tribution of this study is the construction of a PGM for the HF that
satisfies the evaluation criteria for the BRA design. Specifically,
the BIF was designed to be consistent with the anatomy of the
HF, and the HCD was then designed by extending the existing
SLAM model to be consistent with the structure of BIF. We intend
to evaluate the effectiveness of this framework and HF-PGM in
future studies. In addition, the generation-inference process allo-
cation solved particular problems regarding the mapping of PGMs
to brain circuits. The HF-PGM is significantly different from the
previous SLAM models; it integrates LEC and MEC and introduces
a discrete-event queue. Such structures were not found in most
SLAMs and are very suggestive in engineering modeling.

This study operates as part of the grand challenge of realizing
the whole-brain architecture using PGMs (Taniguchi et al., 2022).
A whole-brain PGM will be expected to integrate submodules
of PGMs for multiple brain regions by using the Neuro-SERKET
architecture (Taniguchi et al., 2020). In the case of HF-PGM, visual
information obtained from other PGM modules corresponding
to its surrounding areas, including the visual cortex, could be
connected as observed variables. Other areas of HF connection,
such as the prefrontal cortex, were not targeted by HF-PGM in
this study. Integration with a PGMmodule that mimics such areas
can be considered in future studies. Other detailed discussions
related to open questions and future perspectives are presented
in Appendix C.
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Appendix A. Construction methodology for brain reference
architecture

This section describes the methodology for constructing the
BRA (Yamakawa, 2021). Herein, the methodology used to build
the BRA model (i.e., the structure-constrained interface decom-
position (SCID) method) is introduced.

The whole-brain architecture approach involves iterative and
incremental development with the aim of producing a system
corresponding to the whole brain capable of general-purpose

http://www.editage.com
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roblem-solving. This approach is defined as ‘‘to create a human-
ike artificial general intelligence by learning from the architec-
ure of the entire brain’’.8 In individual projects, several tasks are
olved by assigning them to partial circuits in the brain.
The SCID method is a hypothesis-building method for creating
hypothetical component diagram consistent with the neuro-

cientific findings. It is required to ensure consistency between
euroscientific findings and engineering feasibility to build brain-
nspired models. In current neuroscience research, findings on
natomical structures at the mesoscopic level are obtained on
he near-full-brain scale, usually using rodents as the model
rganism. Therefore, the SCID method can be applied to a wide
rea of the brain.
To construct the BRA, which includes the design information

or brain-inspired AI, anatomical information is first collected,
nd a BIF is constructed. A BIF is an information flow diagram
hat describes the mesoscopic-level anatomy of the whole brain.
herefore, it is not intended for a specific task in the environ-
ent. BIF, which is a graph, is a basic structure comprising a
ode (i.e., circuit) and a directed link (i.e., connection). The SCID
ethod mainly designs HCDs that correspond to BIF.
Using the SCID method, an HCD consistent with the anatomi-

al structure in the region of interest is obtained by the following
hree-step process:

tep 1 While referring to the findings of various studies related
to cognitive behaviors of humans and animals, the premise
of SCID applicability is established. Specifically, the three
processes are performed in parallel.

Step 1-A: The anatomical structure around the region of
interest is investigated and registered as a BIF.

Step 1-B: The existence of a component diagram that can
realize the input/output is confirmed.

Step 1-C: The valid brain region, the region of interest, and
top-level function that it carries are determined.

tep 2 While considering the association between circuits and
connections in the region of interest of the BIF, the top-
level function is decomposed into detailed functions in as
many conceivable patterns as possible. This step enumer-
ates candidate HCDs.

tep 3 HCDs that are logically inconsistent according to scien-
tific findings in various fields (e.g., neuroscience, cogni-
tive psychology, evolution, and development) are rejected.
Then, the function of components and the meaning of
connections of the remaining HCDs can be assigned to the
BIF.

ppendix B. Mathematical preparation of PGMs and SLAM

As preliminary information for computational modeling, we
ntroduce PGMs and SLAM.

.1. PGMs with graphical model representation

We provide a theoretical introduction and describe the def-
nitions, assumptions, and constraints involved in PGMs. PGMs

8 As the premise for this definition, the central whole-brain architecture
ypothesis was set as ‘‘the brain combines modules, each of which can be
odeled with a machine-learning algorithm to attain its functionalities, thereby
ombining machine-learning modules such that the brain enables us to construct
generally intelligent machine with human-level or super-human cognitive

apabilities’’.
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represent the process that generates observations as directed
acyclic graphs. Graphical models graphically represent the depen-
dencies among random variables in PGMs (see Fig. B.1). Generally,
observable variables are represented as gray nodes, whereas un-
observable variables (i.e., latent variables) are depicted as white
nodes. Global parameters determine the shape of the probability
distribution, and local parameters are latent variables that corre-
spond to individual data. Notably, the direction of the arrows does
not simply indicate the flow of signal processing; it indicates the
generative process of the observation (see Fig. B.1(a)). Basically,
the arrows are attached towards the observed data. The vicinity
to the root node indicates a high-level latent representation in
the brain.

As an example, a graphical model of the variational auto-
encoder, which is an auto-encoding variational Bayes (Kingma
& Welling, 2014) model, is shown in Fig. B.1.9 Variational auto-
encoder has an inference model,10 qφ(x|y), which is an encoder,
and a generative model, pθ (y|x), which is a decoder. The flow of
signal processing and recognition in the inference model is rep-
resented by dotted arrows (see Fig. B.1(b)). When inferring latent
variables, an inference model is used to calculate the posterior
probability distribution of the latent variables conditioned by the
observed values. The inference model in variational auto-encoder
is constructed using amortized variational inference (Gershman &
Goodman, 2014), which is an approach that introduces functions
for efficient approximate inferencing of latent variables. This ap-
proach leads to important models that refer to the brain structure
(see Section 3.3).

PGMs are separated into the following two phases: (i) the
definition of the model structures described in the generative/
inference process or graphical model and (ii) the estimating/
learning procedure of the posterior/predictive probability distri-
bution and probability. For theoretical details on PGMs, please
refer to Murphy (2012).

The state–space models shown in Fig. B.2 and described below
are assumed to exhibit a Markov property that adds temporal
transitions to latent variable models, including the variational
auto-encoder. The state–space models have three types of distri-
butions, depending on the time difference between the state and
observation variables. The predictive, filtering, and smoothing
distributions are described as follows:

predictive distribution : p(xt | y1:t−1), (B.1)
filtering distribution : p(xt | y1:t ), (B.2)

moothing distribution : p(xt | y1:T ), (B.3)

here t is the time of interest, T is the last time, and (1 ≦ t ≦ T ).
The prediction can be computed from the state transition model.
The filtering distribution is typically realized using a Bayesian
filter. Smoothing is performed by post-diction, where the past
state at time t is updated using the observed signal in the future
time, T . It is achieved via data assimilation techniques, such
as Kalman smoothing and fixed-lag smoothing, on state–space
models (Kitagawa, 2014).

B.2. SLAM

In this section, we describe the theory and classification of
SLAM (Thrun et al., 2005) and existing methods based on PGMs.
SLAM is a common approach for spatial representation in robotics.
A graphical model of SLAM, representing the transition properties

9 This figure is modified from Kingma and Welling (2014).
10 The inference model is sometimes called the recognition model.
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Fig. B.1. Graphical model of latent variable models, such as the variational auto-encoder (Kingma & Welling, 2014). (a) Generative model, (b) inference model, and
c) both generative and inference models. The latent variable denotes xi , which is a local parameter, and the observation variable denotes yi . The number of data is
N . The index of the data is i ∈ {1, 2, . . . ,N}. The global parameter for the generative model is θ , and the global parameter for the inference model is φ.
Fig. B.2. Graphical model representations of SLAM. SLAM methods are represented by PGMs based on a partially observable Markov decision process. The self-position
denotes xt , environmental map m, control variable ut , and observation variable yt . Global parameters are omitted. (a) Typical drawing of SLAM (Thrun et al., 2005).
b) Compressed drawing of time notation with inference processes, including the original notation of this paper. The flat arrow with ∆t indicates the generation of
he variable in the next time step.
T

b

f the state, control, and observation, is shown in Fig. B.2.11
his graphical model is commonly referred to as the partially
bservable Markov decision process.
There are three approaches to solving the SLAM problem:

ayes filtering (Grisetti et al., 2007; Montemerlo et al., 2002),
ptimization by scan matching (Zhang & Singh, 2017), and pose-
raph optimization (Olson et al., 2006). In this study, we primarily
ocused on the Bayes filter-based online SLAM in PGMs for state–
pace models. Therefore, the Bayes filtering operation is detailed
elow. Scan-matching geometrically associates multiple sensor
bservations with one another. Pose-graph optimization adjusts
he positions based on the constraints of a graph representing the
rajectory of the robot. Furthermore, a visual SLAM (Uchiyama
t al., 2017) involves constructing a 3D map from images.
First, we discuss self-localization, which is a sub-problem of

LAM. The Bayes filter is an algorithm used to estimate the
osterior probability distribution of the position with respect to
he entire space in the self-localization problem. In probabilis-
ic robotics, it is the principal algorithm for calculating beliefs;
owever, because it is not a practical algorithm, approximation
ethods (e.g., Kalman and particle filters) are applied. Belief is
probability distribution calculated on a subjective basis that

eflects the robot’s internal knowledge of the state of the envi-
onment. The belief distribution, bel(xt ), for a state, xt , can be
xpressed by Eq. (B.4). This belief distribution represents the
osterior probability distribution on the state space conditioned
n the observation, y1:t , and the control value, u1:t , at time t .

el(xt ) = p(xt | y1:t , u1:t ). (B.4)

11 In this section, because Fig. B.2(b) is shown for reference, the SLAM method
hat introduces the inference model is not explained. Here, to clarify that
irculations with time advancing are acceptable for PGMs, the notation, ‘‘next
ime generation process’’ is introduced. The next time generation process is
epresented by a double line orthogonal to the generation arrow and the symbol
t .
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The Bayes filter is a sequential process that relies on two
important assumptions: prediction and filtering. Eq. (B.5) is the
prediction by the motion model, and Eq. (B.6) represents filter-
ing by the measurement update. This prediction is called ‘‘dead
reckoning’’ in the navigation field of a voyage and calculates the
position by integrating the amount of movement of the robot.
The measurement update corrects the error by observation. An
iterative update rule is applied to compute bel(xt ) from bel(xt−1).
he process to estimate belief is shown as follows:

bel(xt ) = p(xt | y1:t−1, u1:t )

=

∫
p(xt | xt−1, ut )bel(xt−1)dxt−1, (B.5)

el(xt ) = ηp(yt | xt )bel(xt ). (B.6)

Here, the belief distribution, bel(xt−1), is already estimated at a
previous time, t − 1. The η is the normalization term.

In addition to the aforementioned self-localization, SLAMmust
simultaneously estimate the environmental map. The PGM-based
SLAM methods are estimated based on Bayes filters, such as
landmark-based (Montemerlo et al., 2002)/grid-based FastSLAM
(Grisetti et al., 2007). FastSLAM estimates joint posterior distri-
bution, as shown below:

p(x0:t ,m | u1:t , y1:t )
= p(m | x0:t , y1:t )  

mapping

p(x0:t | u1:t , y1:t )  
self-localization

, (B.7)

where xt represents the 2-dimensional (2D) coordinates in the
Cartesian coordinate system and the head-direction of the agent.
yt represents the distance values to the obstacle obtained from a
depth sensor (e.g., laser range finder) or the image features ob-
tained from a camera. The joint distribution of trajectory x0:t and
map m can be decomposed by factorization into two processes.
The first term represents mapping, and the second represents
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Fig. B.3. Map representation examples in SLAM: (a) Occupancy grid map (Grisetti et al., 2007). (b) Topological map (Blochliger et al., 2018), (c) 3D modeling
ap (Labbe & Michaud, 2014), and (d) Semantic map (Taniguchi et al., 2020a).
elf-localization. Therefore, the algorithm is a sequential iterative
LAM process.
Maps are constructed primarily for use in path-planning and

avigation. The map representation based on this method is
hown in Fig. B.3: occupancy grid map (Grisetti et al., 2007),
andmark map (Montemerlo et al., 2002), 3D modeling of the en-
ironment (Labbe & Michaud, 2014; Uchiyama et al., 2017), topo-
ogical graphs (Blochliger et al., 2018; Mu et al., 2016), and their
ombination (Choi & Maurer, 2014). The maps can be broadly
lassified into metric and topological maps. Metric maps consist
f feature maps, point-cloud maps, geometric maps, occupancy
rid maps, object maps, and semantic maps. Metric maps mainly
epresent the presence or absence of obstacles or objects in a 2D
r 3D Cartesian coordinate system. In topological maps, nodes
epresent connections in places. The graph structure comprises
odes and edges in a spatial semantic unit, such as a room, or
hose extracted from the metric map as post-processing. The
ombination of the metric and topological maps is referred to as
topometric map. A semantic map is a representation that adds
emantics to a metric map. More information on semantic maps
s presented in Section 5.2.

ppendix C. Open questions and future perspective

Herein, we discuss matters omitted in the HF-PGM alongside
nresolved challenges and unclear points.

.1. Navigation, spatial behavior, and decision-making

Spatial movement and navigation are closely related to HF
unctions, including spatial cognition and self-localization. The
ippocampus is a recognition unit and, therefore, does not di-
ectly issue motion commands. Path planning and issuance of
otion commands are essential for navigation, and these func-

ions are related to regions connected to the HF (David Poeppel
t al., 2020). In engineering, motion generation is related to
einforcement learning and path planning.

Approaches to realizing navigation in robotics are broadly
ivided into the following two categories.
i) Map-based navigation: One searches for a path to the goal on
a map using an objective coordinate system. It is an allocentric
coordinate system navigation using SLAM and the grid map.
Classical-path planning, such as A⋆ and Dijkstra’s algorithms,
enerally belong to this type of navigation.
ii) Visual navigation and vision-based mapless navigation. The
ther method (i.e., visual navigation) determines the movement
rom an image sequence based on an egocentric viewpoint. This
avigation is based on the subjective viewpoint signal without a
oordinate system.
One could claim that (i) corresponds to the MEC, and (ii)

orresponds to the LEC. The aforementioned two types of navi-
ation are the same in predicting and making decisions on future
tates and actions based on observations. Approach (i) is useful
or quickly searching for routes, even at distant goals, because
hey have an objective perspective and geometric environmental
331
knowledge similar to those of MEC. In contrast, many naviga-
tion types in partially observable Markov decision processes,
such as reinforcement learning and vision-and-language navi-
gation, do not use allocentric maps/coordinates, similar to LEC.
Approach (ii) enables sequential navigation based on in situ ob-
servations; however, it is assumed that it will not be suitable
for long-term navigation. Therefore, we project that MEC allocen-
tric information processing is essential for facilitating long-term
navigation.

Future prediction is expected to be effective, even when con-
sidering the generation of spatial behavior. Humans can decide
the subsequent actions in anticipation of future states. For ex-
ample, one can turn right by predicting a bump into a wall if
continuing straight ahead indefinitely. Calculating the predictive
value of future position and control is related to the stochastic
model predictive control in the (partially observable) Markov
decision process models (Li et al., 2019). Furthermore, the con-
nection between active inference (Friston, 2017), control as in-
ference (Levine, 2018), and brain functions, including the HF, is a
highly interesting topic for future research.

Long-term prediction can also be formulated as probabilis-
tic inferences by calculating predictive distributions. Taniguchi
et al. (2020b) estimated the predictive distribution of future self-
position and the amount of motion required from the current
position. This method is a map-based navigation based on the
control as an inference (Levine, 2018) framework with the same
PGM as in SpCoSLAM (Taniguchi et al., 2017). This inference al-
gorithm performs a forward recursive process based on dynamic
programming and backward processing from the position having
the maximum probability to the current position. It realizes global
path planning with speech instruction under spatial concepts
acquired from the bottom-up by the robot without setting an
explicit goal position.

C.2. Connection with language and meaning

In this study, we constructed a model that mainly represents
HF findings in rodents. However, rodents cannot speak; therefore,
this model cannot be investigated in terms of its performance in
language and meaning processing. Language processing is consid-
ered based on human neuroscientific findings. The hippocampal
declarative memory system has been identified as a potential
key contributor to cognitive functions that require the online
integration of multiple signal sources, such as online language
processing (Duff & Brown-Schmidt, 2012). In the human brain,
the parahippocampal place area, which encodes scenes, is active
not only in visual perception but also in the auditory perception
of place names (David Poeppel et al., 2020). The parahippocampal
place area is thought to be homologous to the POR in rodents.
Therefore, this suggests that the input of place names relates to
the pathway to LEC, which is responsible for abstraction in place
categories.

Considering the connection between the HF and language, it
is highly suggestive that robot models can learn the names of
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laces. These models are also closely related to semantic map-
ing (Kostavelis & Gasteratos, 2015), which grounds the names
f places on a map. Lingodroids12 realized grounding and shar-
ng of place nouns between mobile robots using the RatSLAM
ystem (Heath et al., 2016; Schulz et al., 2011). In Taguchi et al.
2011) and Taniguchi et al. (2017), robots associated place nouns
ith specific spatial regions by receiving spoken instruction about
he place names from a tutor. Gu et al. (2016) and Sagara et al.
2022) proposed a probabilistic model for grounding the vocab-
lary of spatial relative positional relationships, including the
cquisition of concepts regarding distance and direction. This type
f research on the acquisition of spatial language by robots is an
mportant topic in symbol emergence in robotics (Tangiuchi et al.,
019).
Several computational models have been proposed; however,

here are very few neuroscientific findings on the association
etween HF and language. The acquisition of spatial language and
ts computational modeling are tasks that are to be continued in
he future.

.3. Handling of time and hierarchy

A human can supposedly handle multiple types of hierar-
hy (Kuipers, 2000). Hierarchies can be divided into three types:
i) temporal, (ii) spatial, and (iii) categorical/conceptual. These hi-
rarchies are not considered in the HF-PGM, but the introduction
f a model having a hierarchy is an important direction for future
tudies. In this section, we introduce possible candidates for the
ippocampal computational hierarchy model.
(i) Temporal hierarchy. The brain, including the HF, can han-

dle multiple time steps from time compression by theta-phase
precession to episodic memory and temporal abstraction time-
series processing. Time-series models, such as those in the hidden
semi-Markov model (Johnson & Willsky, 2010), LSTM, multiple
timescale RNN (Yamashita & Tani, 2010), and predictive-coding-
inspired variational RNN (Ahmadi & Tani, 2019) can be considered
as models that handle multiple time transitions.

(ii) Spatial hierarchy The HF has different spatial resolutions,
depending on the area of the brain in the MEC, such as grid
cells. Place cells recognize places with a broader and more flex-
ible scope than grid cells. A model with spatial hierarchy may
be reproduced using multiple resolution clustering for space, as
in Hagiwara et al. (2018) and described in Section 5.2. Topometric
maps and hybrid semantic maps can also express spatial reso-
lutions in a hierarchical manner (Pronobis et al., 2017; Rosinol
et al., 2020). For example, geometric structures are configured in
detail on metric maps, and places are represented abstractly on a
topological map.

(iii) Categories and conceptual hierarchy Relating to the
two aforementioned hierarchies, hierarchy is also present in the
representation of place meanings and concepts. Hierarchical clus-
tering using multimodal information is assumed in the compu-
tational models. For example, the hierarchical multimodal la-
tent Dirichlet allocation (Ando et al., 2013), pachinko alloca-
tion model (Wei & McCallum, 2006), and extended models of
variational auto-encoders are applicable. Further, the models in-
troduced in (i) and (ii) may acquire a conceptual hierarchy as
internal representations.

12 The Lingodroids project includes language learning by mobile robots via
patial language games to construct shared lexicons for places, distances, and
irections. https://itee.uq.edu.au/project/lingodroids.
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C.4. Physicality and sensorimotor system

Anatomical/biological findings in animals other than humans
and rodents are also beneficial for developing spatial cognitive
systems in robotics. For example, for a drone, it is more advanta-
geous to imitate the brain of a flying animal (e.g., bird or bat). The
brain structure has evolved alongside the physicality and sensory
organs. When considering the spatial cognitive function of robots
and animals, it must be noted that both the internal processes of
the cognitive systems and sensorimotor organs (i.e., sensors and
actuators) differ.

Actuator: Rodents walk on four legs, humans walk on two
legs, birds fly with wings, and dolphins swim with fins. Robots
can be wheel-driven with two or four wheels, humanoid robots
have two legs, and four-legged robots exist. Drones and under-
water vehicles are mainly propeller-driven.

Sensor: Sensors used to facilitate spatial cognition and naviga-
ion are not limited to the sensory organs of rodents and humans.
urthermore, some animals use ultrasonic waves and magnetic
ensors for navigation. For example, some birds use a magnetic
ompass to determine their alignments. Robots can be equipped
ith sensor devices, such as depth sensors, omnidirectional cam-
ras, sonar devices, and global navigation satellite system sensors,
hat differ from human sensory organs.

Constructing a robot that mimics an animal can serve as a
tepping stone to understanding the neural structures required
or spatial cognition. Other animals, such as birds and fish, which
ave similar spatial cognitive functions for constructing cognitive
aps, are known to have different HF structures than mammals

n evolutionary terms. These topics are discussed in comparative
ippocampal science studies (Watanabe & Okaichi, 2008); how-
ver, we anticipate that comparisons with robot spatial cognitive
odels will progress in the future. To this end, we hope that this
ork will inspire a comparative study of hippocampal functions
etween mammals and robotics-AIs.

.5. Mechanism for estimating the absolute speed from proximity
isual stimulus

As mentioned in Appendix B.2, from an engineering point of
iew, the absolute moving speed is measured and input to the
LAM system. In practice, this is realistic because an accurate
elocity of the signal can be obtained from mechanisms, such as
he rotational speed of the wheels and the integrated value of
cceleration by the gyroscope.
However, when humans are on a train, they can sense the

rain’s speed from the scenery passing by; however, they cannot
stimate this without windows. Hence, animals detect speed
rom the visual stimuli of objects that are relatively close to one
nother, rather than as an absolute speed obtained by engineering
ethods. Within the scope of our survey, there is no knowledge

hat the absolute speed of movement is input to HF; the signal
n the head-direction is input via the RSC, etc.
Nevertheless, the presence of neural activity associated with

rtificial velocity vectors is known to occur in MEC V with grid
ells (Sanders et al., 2015). However, it is not plausible that an
rtificial velocity vector can be computed within the loop of the
EC and hippocampus because the signal directly input to the
EC via POR is basically information about distant landmarks,
hich is not suitable for calculating an absolute speed.
However, the proposed model can successfully explain how

rtificial velocity vectors can be calculated using visual informa-
ion about proximal objects in the HF. First, the visual information
bout nearby objects arrives at the DG-CA3 via the PER and the
EC, where it is integrated with allocentric information. Subse-
uently, the integrated information of the proximal objects is

https://itee.uq.edu.au/project/lingodroids
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rojected to the proximal CA1 and distal Sb, where both are pro-
ected to the MEC V, allowing the artificial velocity vector to be
omputed using a small time-delay difference on the phase pre-
ession corresponding to one-time step deference in a discrete-
vent queue. Measurement of the effect on neural activity related
o artificial velocity vector on MEC V by selective inhibition in the
ER-LEC pathway can be used to test this mechanism.

ppendix D. List of abbreviations

AI artificial intelligence
BIF brain information flow
BRA brain reference architecture
CA cornu ammonis area
DG dentate gyrus
HCD hypothetical component diagram
HF hippocampal formation
HF-PGM hippocampal formation-inspired probabilistic gener-

ative model
LEC lateral entorhinal cortex
LSTM long short-term memory
MEC medial entorhinal cortex
ParaSb parasubiculum
PER perirhinal cortex
PGM probabilistic generative model
POR postrhinal cortex
PreSb presubiculum
RNN recurrent neural network
RSC retrosplenial cortex
Sb subiculum
SCID structure-constrained interface decomposition
SERKET symbol emergence in the robotics tool kit
SLAM simultaneous localization and mapping
SpCoSLAM online spatial concept acquisition with simultaneous

localization and mapping

Appendix E. Supplementary data

Supplementary material related to this article can be found
nline at https://doi.org/10.1016/j.neunet.2022.04.001.
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