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a b s t r a c t

The vastness of the design space that is created by the combination of numerous computational
mechanisms, including machine learning, is an obstacle to creating artificial general intelligence (AGI).
Brain-inspired AGI development; that is, the reduction of the design space to resemble a biological
brain more closely, is a promising approach for solving this problem. However, it is difficult for an
individual to design a software program that corresponds to the entire brain as the neuroscientific
data that are required to understand the architecture of the brain are extensive and complicated. The
whole-brain architecture approach divides the brain-inspired AGI development process into the task of
designing the brain reference architecture (BRA), which provides the flow of information and a diagram
of the corresponding components, and the task of developing each component using the BRA. This is
known as BRA-driven development. Another difficulty lies in the extraction of the operating principles
that are necessary for reproducing the cognitive–behavioral function of the brain from neuroscience
data. Therefore, this study proposes structure-constrained interface decomposition (SCID), which is a
hypothesis-building method for creating a hypothetical component diagram that is consistent with
neuroscientific findings. The application of this approach has been initiated for constructing various
regions of the brain. In the future, we will examine methods for evaluating the biological plausibility
of brain-inspired software. This evaluation will also be used to prioritize different computational
mechanisms, which should be integrated and associated with the same regions of the brain.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Artificial general intelligence (AGI), the development of which
as been a major goal in advanced artificial intelligence (AI)
esearch in recent years, involves demonstrating the extensive
eneral intelligence that is possessed by humans within a compu-
ational system (Adams et al., 2012; Goertzel, 2014). An essential
bility of AGI could be solving various problems, including those
n unknown issues, by flexibly combining knowledge that is
ained from experience. However, methods for developing AGI
emain unclear. Many AI researchers believe that the develop-
ent of deep learning (LeCun, Bengio, & Hinton, 2015) serves as
launch pad for this goal. According to these scholars, this goal
an be realized by combining various computational mechanisms,
ncluding machine learning, which is a method that enables a
achine to learn knowledge from experience. Several attempts
ave been made to create a unified theory and principle of in-
elligence (Domingos, 2015; Friston, 2010; Hafner et al., 2020).
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893-6080/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access a
However, no single theory exists on which the entire sphere
of intelligence can be built. Thus far, the development of AGI
has progressed by the repetitive tuning of various limited issues.
However, such an approach makes it difficult to design AGI with
flexible problem-solving abilities that would enable unknown
issues to be solved. The construction of an AGI that possesses
the full extent of human abilities would require an extremely
large design space owing to the combination of computational
mechanisms. Although this design space could also be explored
mechanically (Clune, 2019), at present, it is difficult to secure the
required computational complexity.

Brain intelligence is associated with a certain degree of ver-
satility. The development of an AGI that is comparable to human
intelligence may be accelerated by narrowing the design space
by referring to the architecture of the cognitive and behavioral
functions in the brain (Petersen & Sporns, 2015). That is, even if
the scope of AGI realized by machines (the machine kingdom)
does not need to be bound by biological constraints (Hernández-
Orallo, 2017), the development of a brain-like architecture could
be a significant milestone in AGI development (Goertzel, Lian,
Arel, de Garis, & Chen, 2010; Hassabis, Kumaran, Summerfield,

& Botvinick, 2017).
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Fig. 1. Basic scheme of WBA approach. This is a revised version of a simplified diagram of the basic concept of the WBA approach, which has been gradually formed
ince 2014. The left side of the figure presents major examples of large organs in the brain, including the neocortex, basal ganglia , hippocampus, and amygdala. An
dditional brain architecture is formed by the connections among these organs (not shown). On the right side of the figure, the computational modules, including
hose that utilize machine learning, are placed and connected with reference to the brain architecture. This scheme forms the basis for the construction of an AI
oftware system that can operate while interacting with the environment through the body.
Based on this technological background, we at the Whole
rain Architecture Initiative (WBAI) have been advocating for a
evelopmental method known as the whole-brain architecture
WBA) approach since 2015. We define the basic idea of this AGI
evelopment approach as the creation of ‘‘human-like artificial
eneral intelligence by learning from the architecture of the en-
ire brain’’ (Arakawa & Yamakawa, 2016; Yamakawa, Osawa, &
atsuo, 2016).
The premise of this approach is known as the Central WBA

ypothesis, which is expressed as follows: ‘‘The brain combines
odules, each of which can be modeled with a machine learning
lgorithm, to attain its functionalities, so that the combination
f machine learning modules in the same manner as the brain
ill enable us to construct a generally intelligent machine with
uman-level or super-human cognitive capabilities’’.
According to these assumptions, the aim of the WBA approach

s to construct a brain-inspired AGI based on the following basic
oncepts: As illustrated in Fig. 1, each brain organ is implemented
s a calculation module, including those that utilize machine
earning, and these are integrated based on the brain architecture.
he brain organs depicted in the figure are fairly coarse, but in
eality, they are associated with the brain in units of finer-grained
omputational modules (see Section 2.1).
It is not realistic to construct brain-inspired AGI software

y directly referring to the neuroscientific findings in academic
apers and data. This is because the functions of the brain are di-
erse and vast neuroscientific findings regarding these functions
re available. Furthermore, the number of people who thoroughly
nderstand neuroscience and can develop software is limited, as
his field involves intensive training.

To address this problem, the WBAI has standardized the infor-
ation corresponding to the requirements for developing brain-

nspired software in the form of brain reference architecture
BRA) data. The BRA design and implementation methods are
resented in Fig. 2 (Sasaki, Yamakawa, & Arakawa, 2020), which
e refer to as BRA-driven development.
The BRA is the reference architecture for the neural circuits of

he brain (see Section 2), which basically consists of a description
f the brain information flow (BIF) and one or more associated
ypothetical component diagrams (HCDs). The BIF describes the
natomy at the mesoscopic level as a directed graph connecting
odes that represent the local neural circuits (see Section 2.2).
he HCD is a directed graph that describes the dependencies that
re formed by the components of the computational functions.
his directed graph is a hypothesis that is designed to be included
n a directed graph described by a BIF (see Section 2.4). The
eural behavior and process (NBP) provides a description of the
479
Fig. 2. BRA-driven development, which consists of developing brain-inspired
software using the BRA and designing the BRA based on neuroscientific
knowledge (studies and data). The BRA consists of the BIF and HCD.

neural activity in the region of interest (ROI) that often includes
useful hints for the HCD design, although its role in BRA-driven
development is somewhat supplementary (see Section 2.3).

In general, even if the target BIF is specified, the functional
hypothesis thereof cannot be uniquely determined. This is be-
cause different tasks and capabilities are used as the starting
point for designing the function, the anatomical granularities that
are addressed differ, and the knowledge that is required to specify
the function is insufficient. To deal with these factors, the BRA
format enables the data of multiple HCDs to be described for
unique BIF data. Nevertheless, the inclusion of HCDs with poor
biological plausibility in BRA data should be avoided. Therefore,
the HCDs themselves should only be formally registered if they
have an appropriate function and remain consistent with the BIF
(see Section 3.3).

Thus, it will be easier to compare and evaluate the validity of
multiple hypotheses of computational functions if these hypothe-
ses can be described using the BRA data description format, which
explains the computational functions in a standardized manner
that is grounded in anatomical structures. Data that are prepared
in this manner can facilitate the derivation of a highly general
hypothesis that integrates multiple hypotheses. Furthermore, by
making it easier to examine the consistency of hypotheses with
other hypotheses that are assumed for the surrounding neural
circuits, it will be easier to examine the validity of the hypotheses
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Fig. 3. BRA. The BRA consists of the BIF and HCD. The BIF provides the mesoscopic-level information flow in anatomical structures. The HCD is a diagram that
organizes the functions in a manner that is consistent with the anatomy of a given circuit. Multiple HCDs can be used for a single circuit in the BIF. Every software
development project is essentially based on a specific HCD.
from a broader perspective, which is difficult to achieve when
focusing on a narrow range.

Therefore, even a developer with limited knowledge of neuro-
cience can implement the software if the BRA is provided, and
he HCD that is contained in the BRA is regarded as a requirement.

The development of brain-inspired software requires HCDs
hat cover a wide range of brain regions according to its purpose.1
owever, the creation of such HCDs is not an easy task. Even
ith the recent rapid developments in neuroscience, operating
rinciples have been described for only several regions of the
rain.
To address this issue, structure-constrained interface decom-

osition (SCID) has been developed as a research method to
lucidate the functional mechanisms by focusing on brain circuits.
he SCID method attempts to obtain the functional mechanisms
y decomposing the entire function of a particular brain region
o be consistent with the anatomical structure at the mesoscopic
evel, as described in detail in Section 3.2. A fairly wide range of
rain mesoscopic anatomical structures has been established in
urrent neuroscience. Therefore, by using the SCID method, we
an create BRAs of a relatively wide range of brain regions, while
upplementing the functional mechanisms that are not yet clear
t present.
As BRA-driven developments progress, their deliverables tend

o move away from the reality of the brain, which is a problem
ecause the WBA approach aims to explore AGI within a de-
ign space that is similar to that of the brain. To overcome this
roblem, it is necessary to continue to evaluate how effectively
he implemented brain-inspired software reproduces the truth of
he brain (the parts relating to the level of cognitive behavior)
s perceived by neuroscience. The evaluation of such biological
lausibility is carried out from two viewpoints. The first evalua-
ion is adequate for BRA to assess whether it is consistent with
he existing neuroscience findings. The other is the evaluation
f the fidelity, or whether the software is built according to
he BRA (Yamakawa, 2020c; Yamakawa, Arakawa, & Takahashi,
020).
System integration has become an important issue in the

ater stages of AGI development. Software development is usually
erformed to realize a certain task, but various implementa-
ions will inevitably be created in the process. Such disparate
mplementations that are performed in the first half of the AGI

1 If the development target is brain-inspired AGI, intelligence similar to that
f humans must be comprehensively constructed, so the area to be covered is
lmost the entire brain.
480
development are integrated into the second half, and only then
can the intelligence be generalized. At this stage, the feature of
BRA-driven development comes into play, whereby each imple-
mentation corresponds to a common BIF. That is, the compo-
nents to be integrated between different implementations can
be specified via the BIF. This enables the integration of the en-
tire system to be decomposed into the code integration of each
component. Thus, the system integration can be performed more
efficiently. We refer to this process as brain-inspired refactoring
(see Section 4.3).

The remainder of this paper is organized as follows: Sec-
tion 2 delves into the BRA and discusses the description level
at which the brain-inspired AGI should learn about the brain,
the BIF format, which is an element for describing the BRA, and
the HCD. Furthermore, we provide an overview of BRA-driven
development. Section 3 presents the collection of neuroscientific
findings relating to the BRA design, SCID, and evaluation of the
BRA validity. The stub-driven and integration development using
the BRA, as well as methods for evaluating the fidelity of software
from the perspective of the BRA in the future, are discussed in
Section 4. Discussions are presented in Section 5, and finally,
Section 6 concludes the paper.

2. Brain Reference Architecture (BRA)

The BRA is the reference architecture for software that realizes
cognitive and behavioral functions in a brain-like manner. The ar-
chitecture primarily consists of the mesoscopic-level anatomical
data of the brain and the data of one or more functional mech-
anisms that are consistent with that knowledge. In particular, as
illustrated in Fig. 3, the data are a combination of the BIF (see
Section 2.2) and HCD (see Section 2.4) (Sasaki et al., 2020).

The current WBA approach is based on BRA-driven develop-
ment. This development consists of the design of the BRA, the
evaluation thereof based on neuroscience findings, and the im-
plementation and evaluation of the software with reference to the
HCD within the BRA. After describing the BRA at the mesoscopic
level, we discuss the BIF as a component of the BRA and HCD,
which are designed to be consistent with the BIF. Moreover, we
explain BRA-driven development.

2.1. Mesoscopic levels to be referenced in BRA

Which level of granularity of the brain should be described
using BRA data? The central nervous system has an anatomical
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ierarchical network structure. Therefore, it is natural to real-
ze software that refers to the brain as a network of several
unctional components. By standardizing the granularity of the
rain-referenced components, it will be easier to refer to these
uring software development and to integrate multiple BRA data.
In the use of the BRA as design data, the simplest concept of

nifying the granularity of the description in each neuron is not
ealistic owing to the following points. First, the design of too
any parts should be avoided. For example, considering that a
ar is composed of tens of thousands of parts and an airplane
s composed of millions of parts, it is not realistic to draw a
lueprint with more than 10 billion human neurons. Second,
he learning factors following maturation can be ignored. This
eans that the detailed connections between neurons, which
ary depending on individual experience, should not be designed,
ut rather, should be tuned by machine learning.
Therefore, the descriptive granularity of BRA data should be

etermined at an intermediate level (the mesoscopic level) in a
ierarchy of the neural circuits in the brain. However, it is obvious
hat a mesoscopic level of granularity that relies on physical
easures to determine the voxel size of fMRI measurements is

nappropriate.

.1.1. Uniform circuits: Arguments of software components in brain
The mesoscopic-level granularity of the brain circuitry that

hould be referenced in the BRA data is clarified in terms of the
mallest elements to be described in the software design.
As mentioned previously, brain-inspired software is composed

f a network of components. Therefore, the contents that should
e described in the BRA data are the external functional specifica-
ions and interfaces of each component as well as the connections
mong the components. The arguments that are described in the
nterface of the component are among the smallest elements in-
luded in these design elements. For example, in a reinforcement
earning program, the interface of a component may contain argu-
ents such as states, actions, and rewards that are represented by
ne- or multi-dimensional vectors. Therefore, the identification of
he entities in the brain corresponding to the arguments leads to
he determination of the description granularity of the BRA data.

The existence of a physical entity corresponding to the ar-
uments should be assumed to use the brain as a reference
rchitecture for software. As these arguments with specific mean-
ngs are variables that change continually, they are represented
s the activity of neurons in the brain. Furthermore, because the
epresentation of information in the brain is generally redundant,
group of neurons that encode similar meanings plays the role
f the argument; therefore, the group of neurons in the brain cor-
esponding to the argument is defined as the following uniform
ircuit.

Uniform circuit:
A uniform circuit is a group of neurons in the brain that can be
regarded as encoding the same type of meaning functionally.

.1.2. Uniform circuit as a group of neurons composed of a specific
ell type
In the nervous system, synaptic specificity is a property that

ontrols the combination of cells in which synaptic connections
re established (de Wit & Ghosh, 2016; Williams, de Wit, & Ghosh,
010). This is the property whereby an axon projecting from
particular cell type selectively forms synaptic connections at

he receiving end to a particular laminar, cell type, and location
ithin the cell. Synaptic specificity enables the cells at the re-
eiving end to identify neural groups of the same cell type at the
ending end that they wish to use for processing, as well as to
istinguish among projections from different cell types.
481
Even interregional axon projections can be directed to precise
target cells for each cell type by means of a process known
as axon guidance. In this process, the elongation direction of
the growth cone at the tip of the axon is controlled through
different responses of each cell type to surrounding guidance
molecules. This process also contributes to the formation of to-
pographic maps, which are projections that preserve the two-
dimensional spatial relationships between different regions, such
as retinotopy (Triplett et al., 2009). A mechanism that is similar to
transferring two-dimensional array arguments between software
components can be constructed using this process.

In light of the above discussion, it is reasonable to consider
a group of neurons that are composed of a specific cell type in
the source domain as an argument for a software component.
Therefore, we make the following assumptions regarding the neu-
roscientific foundation of the neurons that constitute the uniform
circuits.

Cell type-based uniform circuit hypothesis:
A uniform circuit is formed by a group of neurons that are
composed of a specific cell type within a particular brain
region.

According to this hypothesis, the neuronal group within a
particular brain region that encodes the information to provide
the argument of the software is composed of certain unique
cell types. That is, the uniform circuit, which is the minimum
granularity used to describe the BRA, can be set at the mesoscopic
level as a group of neurons that are composed of a specific cell
type (see Fig. 4A).

Furthermore, Bohland et al. (2009) noted that mesoscopic-
level architecture, which is a unit of cell groups classified by the
same cell types that are localized in a certain brain region, has
a significant impact on cognitive behavioral functions. Thus, it
is reasonable to consider the correspondents of the arguments
exchanged in the architecture as neural groups consisting of
specific cell types.

Significantly more invariance can be expected at a meso-
scopic level where co-localized groups of neurons, perhaps
of the same type or sharing common organizational features,
are considered together as a unit, and projection patterns
from these neuronal groups are studied over macroscopic
distances. This level of connectivity is well-suited to aid our
understanding of specific mental functions. —(Bohland et al.,
2009).

2.1.3. Diversity of uniform circuit description
Diverse aspects of cell types exist, such as the physiological

and morphological features, gene expression, anatomical loca-
tion, and projection patterns, with gradations in the similarity
of each aspect (Mitra, 2014). However, our knowledge of mam-
malian synaptic specificity remains inadequate; therefore, it is
still difficult to select appropriate features that contribute to the
classification of uniform circuits from the wide variety of feature
axes of cell types.

A pragmatic approach is to select the cell type features that
classify uniform circuits so that they can distinguish the argu-
ments of components that are required for the functional design
of brain-inspired software. It is inevitable that the granularity of
the description of uniform circuits will vary depending on the
target task when designing the BRA. Therefore, at present, it is
difficult to avoid the appearance of uniform circuits with different
overlapping granularities completely in the description of BRA
data.
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Fig. 4. BIF. The BIF describes the flow of information in anatomical structures at the mesoscopic level of the brain. A: A BIF is a graph consisting of circuits and
he connections among them. Each circuit is any organ or region of the brain and the assemblies to which they are connected. The starting point of a connection is
uniform circuit that is functionally considered to encode the same type of meaning. B: The leftmost circuit in A is enlarged and the two types of neurons inside

t are depicted schematically. Reflecting synaptic specificity, each uniform circuit is assumed to be formed by a group of neurons composed of a specific cell type
ithin a particular brain region. C: Attributes describing each circuit in the BIF data. Certain attributes are specific to uniform circuits, the most representative of
hich is the projection attribute, which is a list of circuit IDs of the projection targets.
Table 1
Attributes of BIF and NBP data.
Attribute Description Values

Source of ID Source of circuit ID Ontology ID/Reference ID/‘‘collection’’/‘‘makeshift’’

Circuit ID Identifier of circuit string

Names Circuit labels string

Sub-circuits List of circuits to include List of circuit IDs

Super-class Upper class List of circuit IDs

Uniform Whether uniform circuit True/false

Transmitter Type of neurotransmitter Glutamate/Dopamine/Acetylcholine/GABA

Modulation type Functional form of neurotransmission Excitatory/Inhibitory/Modulatory

Size Number of neurons text [RID]

Projections ID of circuit to which axon projects List of circuit IDs [RID]

Interpretation Description of physiological phenomena, etc. text [RID]

Physiological data Neural activity data Index to data

[RID]: An attribute that requires a reference ID.
.2. Brain information flow (BIF)

The BIF describes the anatomical structure of the entire brain
t the mesoscopic level (Arakawa & Yamakawa, 2020) (see Fig. 4.
s such, it is not intended for specific tasks in the environment.
he BIF is a graph, the basic structure of which consists of a node
nown as a ‘‘circuit’’ and a directed link known as a ‘‘connection’’.
he smallest unit of the graph is the uniform circuit defined in
ection 2.1, which also serves as the starting point for a connec-
ion. Moreover, a circuit is a graph that contains multiple uniform
ircuits, and multiple circuits may have overlapping portions.

.2.1. Circuits (nodes)
A circuit is a component that becomes a node in the graph

tructure of the BIF. A uniform circuit is a group of neurons in
he brain that can be regarded as functionally encoding the same
ind of meaning. Subsequently, each uniform circuit is the lower
imit of the BIF granularity and can provide a starting point for
connection. In general, a circuit may be any sub-circuit in the
rain. This may indicate areas such as the entire visual cortex or
nly V1 (i.e., the primary visual cortex), or it may correspond to
he neocortex–basal ganglia loop.

As indicated in Table 1, the attributes possessed by all circuits
nclude the source of ID, circuit ID, names, sub-circuits, super-
lass, and uniform. Furthermore, the unique attributes of the
niform circuit include the transmitter, modulation type, size,
nd projections.
The circuits and connections are discussed in the following.
482
2.2.2. Connections (links)
Connections correspond to bundles of axons that are respon-

sible for signal transmission between circuits in the brain, which
are represented by links in Fig. 4A. The connections are described
by a list of projection attributes on a uniform circuit. The number
of axons for each species can be added to the description for each
projection attribute.

2.3. Neural Behavior and Process (NBP)

The NBP describes the knowledge of neuroscience of dynamic
physical phenomena. The main objects described in this case are
the behaviors of neural activities and their combined processes
that occur in the ROIs in response to the task being performed.
Such dynamic findings in neuroscience are often useful for exam-
ining functions in the HCD, which include ‘‘interpretation’’ and
‘‘physiological data’’.

2.4. Hypothetical component diagram (HCD)

The component diagram of the unified modeling language
(Ambler, 2004) is used to model and explain the structure of
any complex object-oriented software. This diagram depicts the
structural aspects of the functional mechanism of software as
a network using socket labels to indicate the components that
are responsible for the computing functions, as well as the in-
terfaces of the call relationships between those components (see
right image in Fig. 5). The diagram is used to visualize, specify,
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Fig. 5. Example of a BRA description that associates the BIF for the basal ganglia with the HCD for actor–critic reinforcement learning. The blue letters A, B, C, and
D represent the uniform circuits in the ROI of the BIF (left panel). The corresponding components in the HCD (right panel) are marked with the same letters, and
the HCD components are marked with their functions. The meaning of the signal to be transmitted is indicated by the interface between the components. In the
BIF, TRN indicates a thalamic relay neuron. This diagram was adapted from the diagram in Takahashi, Schoenbaum, and Niv (2008) and Yamakawa (2020a).
document, and build an executable system by forward or reverse
engineering.

The HCD that constitutes the BRA is a type of component dia-
gram. This diagram assigns components that match the function
of the brain ROI with an anatomical structure at the mesoscopic
level; however, it is hypothetical as there is no guarantee that it is
consistent with the truth of the brain function. The assignment is
performed using the SCID method, which is discussed later. Each
component that constitutes an HCD is a module that encapsulates
a set of related functions (or data)2 and corresponds to the
behavior and structure of specific brain organs and regions.

As a typical example of a BRA, the association between the
BIF and HCD is depicted in Fig. 5, which shows the well-known
example (Takahashi et al., 2008) of the actor–critic reinforcement
learning function of the basal ganglia. In the left diagram depict-
ing the basal ganglia loop, the basal ganglia circuit is the ROI. The
corresponding HCD that decomposes the actor–critic reinforce-
ment learning function is presented on the right. The uniform
circuit, named striatum (matrix) and indicated by the letter A
in the BIF diagram, corresponds to the action value calculator
component indicated by the letter A in the HCD. Similarly, the
uniform circuits in the BIF correspond to the components in the
HCD, as indicated by the other letters (B, C, and D). The following
is an example of mapping the links between the two diagrams.
The signal path (labeled dopamine) that is output from the SNc,
indicated by the letter D in the BIF, is mapped to the signal path
(labeled TD error) that is output from the TD error calculator
component, indicated by the letter D in the HCD. Note that, in
this example, the circuits indicated by A, B, C, and D in the BIF
are all uniform circuits. Therefore, the label names assigned to
the respective components in the HCD correspond to the label
names of the arguments that they provide.

In this manner, the availability of an HCD, which displays
the structural aspect of the functional mechanisms, increases the
likelihood that even developers without profound expertise in
neuroscience will be capable of implementing software that is
closer to the truth of the brain. Network machine learning sys-
tems that are frequently used in current AI research (e.g., artificial
neural networks and Bayesian networks) are compatible with
development owing to component diagrams.

2 The term ‘‘component’’ is also used in software engineering to refer to
oftware packages, web services, web resources, and similar entities; however,
n this paper, we use it to refer to a module that encapsulates a set of related
unctions (or data).
483
2.5. Prototype of BRA database

The brain is a fairly closely linked system. Therefore, the
accumulation of standard neuroscientific findings relating to cog-
nitive behavior will not only optimize the development of brain-
inspired software, but will also aid in comprehensively grasping
mesoscopic findings in the entire brain.

In this regard, the WBA approach examines databases to
improve reusability by integrating the constructed BRA. In this
study, a prototype of the BIF database was constructed using
Semantic MediaWiki.

The data flow proceeded as follows: First, one of the authors
with expertise in neuroscience reviewed the academic papers
and compiled the relevant data in a spreadsheet. Subsequently,
the data were registered in a database using a conversion tool.
Thereafter, when the developers implemented the brain-inspired
software, a tool prototype was created, which not only could
browse the data directly, but could also visualize the BRA data
as a graph in the ROIs.

Such activity can also be positioned as part of the field of neu-
roinformatics (Amari et al., 2002; Pradeep, Knight, & Gurumoor-
thy, 2013), in which data- and knowledge bases are developed for
neuroscience. At present, experimental data on anatomical struc-
tures (Kuan et al., 2015) and physiological phenomena (Poldrack
& Gorgolewski, 2017) are being vigorously registered in this field.
However, no progress has been made in the accumulation of data
for designing cognitive and behavioral functions, such as BRA.

2.6. BRA-driven development

BRA-driven development is a developmental approach that
constructs brain-inspired AGI through the following processes
using a standardized BRA (see Fig. 6).

• Design of BRA: The design of the BIF by collecting and
organizing neuroscientific findings. Furthermore, an HCD is
created using the SCID method (discussed later).

• Implementation of BRA: The implementation of brain-
inspired software by referring to the HCD in the BRA.

In this manner, the developer can develop brain-inspired soft-
ware guided by the HCDs in the BRA and can compensate for the
lack of expertise in both neuroscience and software engineering.

In the following, we provide an overview of the three activities
involved in the BRA design. The first activity is laying the foun-
dation for accumulating BRAs that are useful for brain-inspired
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software. Specifically, this involves determining the description
format (BIF; Section 2.2) and examining databases for the inte-
grated sharing of BRAs (Section 2.5). ( 1⃝ What can be learned
rom the brain?) The next step is to acquire and formulate the
nowledge that is necessary for the BRA. Specifically, knowledge
egarding the anatomical structures and psychological phenom-
na in certain regions of the brain is collected and amassed in
he form of the BIF. These BIF data are used to construct the
CDs through the SCID method. ( 2⃝ How can knowledge be
btained from the brain?) The third activity involves evaluating
he adequacy of the BRA data. In this activity, the review criteria
re determined and a judgment is made on whether the created
RA data satisfy the necessary requirements as a reference model
or brain-inspired software. ( 3⃝ How to assess the resemblance to
the brain.)

Furthermore, we present an overview of the three activities
that are associated with BRA utilization. First, in the development
of brain-inspired software, the HCD that is associated with a spe-
cific task in the BRA is implemented as a requirement. ( 4⃝ Build
oftware similar to a brain.) In the future, we plan to carry out
ntegration development, whereby components in separately de-
eloped programs are associated with one another based on the
RA and integrated. ( 5⃝ Integrate disparate functions as the brain
oes.) Furthermore, to estimate how effectively the implemented
oftware represents the brain, the fidelity (biological plausibility)
s evaluated by comparing the BRA and program. ( 6⃝ Evaluate
he resemblance to the brain.)

As mentioned previously, it is necessary to integrate multiple
omputational mechanisms that correspond to the same brain
egions and have been created according to, for example, the
iversity of tasks, in each BRA-based development project to com-
lete the brain-inspired AGI. Therefore, we believe that the entire
evelopment based on the WBA approach in the near future will
roceed in parallel or iteratively with BRA-based and integration
evelopments. Thus, the fidelity evaluation of the software will
revent the developmental results from veering away from the
rain architecture.

. Design of BRA

The design of the BRA is described in this section. Among the
hree activities related to the BRA design, the first one, namely
‘ 1⃝ What can be learned from the brain?’’, has been described
n Section 2. Regarding ‘‘ 2⃝ How can knowledge be obtained
rom the brain?’’, the collection of anatomical findings in the
euroscience field and the SCID method for HCD construction
re explained. Moreover, the assessment of appropriateness is
484
iscussed in the context of ‘‘ 3⃝ How to assess the resemblance to
he brain’’. The description format of the BRA data thus produced
s summarized in Section 3.4.

.1. Neuroscientific findings available for BIF and NBP creation

We discuss the process of acquiring the information relating
o the anatomical structure that is required to describe the BIF
see Table 1). The main requirement is information for building
irected graphs with circuits as nodes. Therefore, it is ideal to
cquire information on uniform circuits of the entire brain and
he connections among these circuits. The current state of neu-
oscience remains far from acquiring ideal information. In this
egard, if necessary, circuits that are larger than the uniform
ircuit can be defined, and a BIF graph will be constructed among
hese circuits.

The information to be acquired for each uniform circuit in-
ludes the brain region labels (circuit IDs), animal species, neu-
otransmitters, excitatory and inhibitory modes, cell count, and
nformation sources (references). The information to be acquired
or the connections includes the input circuit, output circuit,
nimal species, size (number of axons), neurotransmitters, and
ources (references). The orientation of the hierarchy between
reas (including feedforward/feedback) is required for the neo-
ortex.
Furthermore, the data that are described in the BIF are used to

mplement the software using an artificial neural network. Thus,
t is ideal to know the number of neurons in a circuit and the
pproximate connection sizes (number of axons).
It is clear that a BRA that is used to construct human-like

ntelligence should be based on the structure of the human brain.
owever, it may be possible to streamline the construction of
he BIF by referring to the findings in other animals, particularly
odents. Therefore, in reality, the BIF mainly uses human data for
he neocortex, which is unique to humans; however, for other
rain regions, several references based on non-human primates
nd rodents are incorporated (Negishi, Hayami, Tamura, Mizu-
ani, & Yamakawa, 2019). Thus, although it exhibits similarity
o humans overall, the BIF appears to contain chimeric data
hat combine mesoscopic-level anatomical findings from multiple
ammals.

.1.1. Information sources
The main information sources for constructing a BIF are the

ata regarding anatomical structures (such as connectomes) and
he related literature.
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Fig. 7. Procedure of SCID method. The SCID method is a technique for obtaining the HCDs that are required for software development. The method uses a three-step
rocess to decompose the TLFs of a specific brain region (ROI) into components under mesoscopic-level anatomical constraints. In step 1, three exploratory tasks
1-A, 1-B, and 1-C) are performed in parallel, as appropriate. Thereafter, we proceed to steps 2 and 3.
.1.2. Region labels (circuit IDs)
In principle, the Allen Developing Human Brain Atlas ontology,

hich is an Allen Brain Reference Atlas (https://atlas.brain-map.
rg/), is used as a region label (circuit ID); if necessary, a label
ith a level that roughly corresponds to the granularity of the
niform circuit is added.

.1.3. Number of neurons (size)
The number of neurons in each region of the mouse brain

s stored in the Blue Brain Cell Atlas (Erö, Gewaltig, Keller, &
arkram, 2018). These regions are defined using the Allen Mouse
rain Reference Atlas (Kuan et al., 2015). However, no compre-
ensive data on the number of neurons in humans are available
t present.

.1.4. Connections
It is desirable to gather information on the presence of the

onnections among circuits, their directions, and the approximate
umber of projection axons for all combinations of areas.
Although this is not necessarily an exhaustive brain region at

ll, the projection ratio from one particular area to another can
e estimated using the Allen Mouse Brain Connectivity Atlas (Oh
t al., 2014). As mentioned previously, because the number of
eurons in an area can be obtained for mice, the number of axons
o be projected can be estimated by multiplying the projection
atio by the number of neurons.

The Multilevel Human Brain Atlas by EBRAIN3 can be used
o obtain human data, including the hierarchical relationships
feedforward/feedback), for the entire neocortex.

.1.5. Neurotransmitters
Although data on the distribution of neurotransmitters

hroughout the brain are currently available from Drosophili-
ae studies (Meissner et al., 2019), it appears that no data for
ammals exist. However, similar anatomical structures appear

requently in each brain region that is involved in higher intelli-
ence processing, such as the neocortex, thalamus, basal ganglia,
ippocampus, and cerebellum. Moreover, as the neurotransmit-
ers in these sites have been studied in detail, the lack of data does
ot pose a major problem in the BIF construction. Nevertheless,
ata on the subcortical brain regions are required.

3 https://ebrains.eu/service/human-brain-atlas/, accessed: 2021-2-26.
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3.1.6. Interpretation
Physiological phenomena can be described; for example,

‘‘burst firing’’. Furthermore, a highly reliable functional interpre-
tation of these phenomena can be provided (e.g., grid cells).

3.1.7. Physiological data
These data provide a reference to the neural activity data in

the ROI, such as URLs and drawings in papers.

3.2. Structure-constrained interface decomposition (SCID) method

The SCID method involves consistently decomposing the com-
putational functions of a specific brain region into the
mesoscopic-level anatomy to obtain the HCD that is required for
the development of brain-inspired software. In software devel-
opment, it is common to carry out the design through a process
of decomposing the higher-level functions; however, the SCID
method also considers consistency with the anatomical structure
of the brain.

Furthermore, the decomposition of the functions of the natural
brain as if it were an artifact may not yield the desired results.
However, as the brain is an organ that has undergone evolu-
tionary selection, its physical mechanisms often serve intended
purposes. For example, when computational neuroscience derives
‘‘algorithms and expressions’’ for brain functioning, this action is
premised on clear purposefulness.

3.2.1. Process of SCID method
In the SCID method, an HCD that is consistent with the anatom-

ical structure in the ROI is obtained by performing the following
three-step process (see Fig. 7).

In step 1, the findings of various studies relating to the cog-
nitive behaviors of humans and animals are used to establish
the premise that the SCID method is applicable. In particular,
the three processes are performed in parallel. While investigating
the anatomical structure around the ROI and registering it as
a BIF (1-A), the existence of a component diagram, which we
refer to as a provisionary component diagram, that realizes the
ROI input/output (1-B) is confirmed. A valid brain ROI and the
top-level function (TFL) that it performs are determined (1-C).

In step 2, the TLFs as detailed functional mechanisms are
enumerated in any conceivable pattern, with anatomical struc-
tures as constraints. Each uniform circuit with a group of neurons
of appropriate granularity is first defined to make the struc-
tures possessed by the functional mechanism assignable to the

https://atlas.brain-map.org/
https://atlas.brain-map.org/
https://atlas.brain-map.org/
https://ebrains.eu/service/human-brain-atlas/
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Table 2
Advantages of SCID method.
Method SCID method Conventional method

Key clues Structure and TLF (also
physiological phenomena)

Neural phenomena correlated
with environment (e.g., reward
and place cells)

Coverage in
brain

Almost entire brain (to the
extent that mesoscopic
structures are known)

Limited to areas where
physiological clues exist

Features Functional descriptions that
are easy to use for
development

Phenomenal interpretations that
are indirect and software specific
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anatomical structure. Specifically, convenient aspects of various
cell types are selected, or similar cell type groups are merged.
Subsequently, possible candidate functional mechanisms (HCDs)
are constructed under the constraint of being included in the
connection structures that are contained in the circuit within the
ROI of the BIF, whereby each uniform circuit is considered as a
component argument.

In step 3, the HCDs that are logically inconsistent accord-
ng to scientific findings in various fields, such as neuroscience,
ognitive psychology, evolution, and biological development, are
ejected. Thereafter, the functions of the components and mean-
ngs of the connections of the remaining HCDs can be assigned to
he BIF.

.2.2. Advantages of SCID method
In neuroscience, the traditional means of experimentally iden-

ifying the function of a neural circuit of interest is as follows.
his method identifies neural activity that has an intelligible
orrelation with an external stimulus, and provides a functional
nterpretation thereof based on the nature of that stimulus. How-
ver, this is only possible if there are brain regions close to the
ensor/actuator or neural activity that has a clear correlation with
he behavior, such as reward/place cells. In general, it is not easy
o obtain interpretable correlations from neural activities that are
ixed with various types of external and temporal information in
ost parts of the neural circuitry of the brain. Thus, the range
f neural circuits with functions that can be identified by this
ethod tends to be limited (see Table 2).
The SCID method can be applied to quite a wide area of the

rain. This is because the anatomical structure information at
he mesoscopic level, which is key to the SCID method, can be
btained from almost the entire brain, including that of rodents
see Section 3.1).

A further advantage of the SCID method is that an HCD is
asy to use directly in software development because it is ob-
ained through a process based on the design theory of software
evelopment. In contrast, when neural activity phenomena that
re correlated with external information are used as a reference
or software development, they need to be reinterpreted as a
equirement. That is, the functions that are obtained through the
raditional phenomenon-based approach (Yamakawa, Arakawa,
Takahashi, 2017) are often indirect information and require

reparation for software development.
The first HCD that is developed using the SCID method iden-

ifies the site that is responsible for path integration in the
ntorhinal cortex (Fukawa, Aizawa, Yamakawa, & Yairi, 2020).
ubsequently, it is used to identify the meanings of the signals be-
ween neocortical regions (Yamakawa, 2020b). Several studies are
urrently being conducted on the application of the SCID method
o study brain regions, such as the brain stem, which is responsi-
le for eye movements (Tawatsuji, Arakawa, & Yamakawa, 2020),

he claustrum, and functions including imagination. t
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Table 3
Metadata for HCD data.
Attribute Description Values

nH : HCD number Serial number of HCD in
this BRA

Natural number

HCD name Name of HCD Text
Description Description of HCD Text
Implementations Links to implementations List of URLs

Table 4
Attributes of data of each HCD.
Attribute Description Values

Label (nH ) Labels for computational functions Strings
Function
(nH )

Hypothesis of computational function Text

Projections
in use (nH )

Projections used for computational
function

Subset of projections

Comments
(nH )

Comments on computational function Text

3.2.3. Addition of HCDs to BRA data
The HCD information that is created by the SCID method is

registered in the BRA format, as outlined in the following.
As mentioned previously, the BRA consists of BIFs, which

are extracted information flows at the mesoscopic level in the
target brain region, as well as HCDs, which are hypotheses of
the functional mechanisms assigned to the BIFs. Therefore, the
functional dependencies that exist in the HCD are described by
referring to a part of the projection described in each circuit on
the BIF. This is described as the value of the ‘‘projections in use
(nH )’’ attribute in Table 4.

Although only one description of the BIF exists in the BRA
ata, multiple HCDs may exist. Therefore, these multiple HCDs
re managed using Table 3. In this table, for each serial num-
er nH that specifies each HCD, the ‘‘HCD name’’, ‘‘Description’’,
nd ‘‘Implementations’’ descriptions can be provided for each
orresponding HCD.
The description of the HCD itself is provided by adding the

alues of the attributes contained in Table 4 for each circuit that
s used in the BIF or NBP. These attributes include ‘‘projects in
se (nH )’’ as well as ‘‘label (nH )’’, ‘‘function (nH )’’, and ‘‘comments
nH )’’. Thus, the attribute group corresponding to the description
f each HCD is assigned a serial number nH for the corresponding
CD. For example, in this case, the TLF of the entire ROI in the
′

H th HCD is described in the function (n′

H ) of the circuit that
ggregates the entire ROI.

.3. Adequacy evaluation of BRA

.3.1. Need for evaluating biological plausibility
When developing brain-inspired software, it is necessary to

valuate the biological plausibility; that is, to estimate the close-
ess of the implemented brain-inspired software to the reality of

he brain as captured by current neuroscience findings.
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Fig. 8. Creation and evaluation in BRA-driven development. The biological
plausibility is evaluated in the direction opposite to that of the creation. In
contrast to the SCID method for designing BRAs, the adequacy of BRAs for
neuroscientific findings is assessed. Moreover, the fidelity of the software to
the BRA is assessed as opposed to the software development. Although this is
not depicted in the diagram, in integration development, an HCD is used for
both development referencing and fidelity evaluation.

The evaluation of biological plausibility in BRA-driven devel-
pment involves two methods (see Fig. 8). The first method is the
valuation of adequacy, which estimates the consistency between
he existing neuroscientific findings and BRA. The second method
s the evaluation of fidelity, whereby the reproducibility of the
RA in brain-inspired software is estimated.

.3.2. Need for certified registration
The created BRA is used as a functional requirement for refer-

nce in software implementation and as a subject for comparison
hen evaluating the biological plausibility (fidelity). However,
he majority of BRA users have little knowledge of neuroscience,
nd therefore, they cannot determine the trustworthiness of the
reated BRAs. To ensure the adequacy of the BRA data, a workflow
hat inspects and certifies the data before they are registered is
ecessary.
In neuroscience, parallel hypotheses frequently exist that are

ontradictory but cannot be ruled out. From the perspective of
rain-inspired software development, it is not possible to deter-
ine which hypothesis is ideal immediately. Therefore, provided

hat the BRA data meet the inspection criteria, they should be
egistered even if they contradict other data.

.3.3. Evaluation of adequacy and inspection criteria
The evaluation of the adequacy is further divided into two

arts, as illustrated in Fig. 8.
1) Adequacy evaluation of BIF

In this process, the consistency of the anatomical structures
nd neural activity described in the BIF with those described in
euroscientific papers and data is evaluated.
Two main inspection criteria are used to verify that the BIF

escription is sufficient. The first criterion is that the description
lement of the structure or phenomenon that is provided in the
ata submitted for registration is not already registered in the
RA database (novelty). The other criterion is that the element
ust be directly or indirectly supported by any current neurosci-
ntific findings (authenticity). As a rule, the authenticity of facts
s guaranteed by their inclusion in one or more peer-reviewed
rticles.
2) Adequacy evaluation of HCD

The functionality of the HCD and its consistency with the BIF
re evaluated. The functionality evaluation determines whether
he process generated by the behavior of the structured com-
onents in the HCD constitutes a mechanism of action that can
chieve the goals of the ROI.
The consistency evaluation determines whether the HCD cor-

esponds to the description of the BIF according to three aspects:
 2

487
1. The dependency structure of the HCD corresponds to the
anatomical structure contained in the ROI of the BIF (s-
consistency).

2. The behavior of the components within the HCD is con-
sistent with the physiological findings described in the BIF
(b-consistency).

3. The mechanism of action for the objective of the ROI is
achieved by a chain of actions based on the dependency
structure of the components that constitute the HCD (func-
tionality).

.4. BRA data preparation manual

Details of the BRA data preparation procedure can be found in
he ‘‘BRA Data Preparation Manual’’ that is available on the WBAI
ebsite.4 The description in this paper is based on the above
anual, which has been made publicly available as of June 2021.
s mentioned previously, the BRA consists of the BIF, which is an
xtracted flow of the information at the mesoscopic level in the
arget brain region, and the HCD, which is a hypothesis of the
unctional mechanism assigned to the BIF.

Each BRA datum is handled as a project, which is currently
escribed as the following four sheets in a single Google spread-
heet. The project sheet contains the meta-information for this
roject. The reference sheet contains a line-by-line list of all
ibliographic information used in the project. The HCD sheet (see
able 3) contains the line-by-line meta-information regarding all
CDs specified by the HCD serial number nH . The main part of
he BRA data is the circuit sheet. In this sheet, the BIF, NBP, and
CD information are provided for each row corresponding to a
ircuit. The list of attributes to be described as BIF and NBP is
isted in Table 1. As multiple HCDs exist, the serial number nH
f each HCD is assigned to the attribute group of each HCD, as
ndicated in Table 4.

. Development and evaluation using BRA

In this section, we discuss three activities that are associated
ith BRA use in BRA-driven development. As illustrated in Fig. 8,
he development and evaluation that are performed are carried
ut with reference to the HCD in the BRA; thus, the programmer
oes not require profound knowledge of neuroscience.

.1. Stub-driven development

In BRA-driven development, all components are implemented
nd connected based on the requirements of the HCD associated
ith a particular task to create brain-inspired software.
In general, machine learning devices often behave differently

rom the architecture that is imagined at the design phase. The
ifficulty of controlling this behavior increases rapidly if the
ystem is composed of several machine learning components.
he WBA approach uses stub-driven development to address this
hallenge.
In stub-driven development, a system is constructed during

he early stages of development by combining components that
o not have a learning function and are described by rule-based
rocesses. Subsequently, the system is improved by gradually
eplacing each component with machine learning components, so
hat it approaches the expected behavior in the HCD.

It would be natural to use neural networks for machine learn-
ng for implementation in the creation of brain-inspired AI. De-
ending on the brain organ to be implemented, various neural

4 https://wba-initiative.org/wiki/en/brain_reference_architecture, accessed:
021-7-2.

https://wba-initiative.org/wiki/en/brain_reference_architecture
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etworks with hierarchical structures, recursive structures, gating
echanisms, and attention mechanisms can be used. The neo-
ortex, which is compatible with the concept of the Bayesian
rain, is also a strong candidate for implementation as a Bayesian
etwork. However, a specific machine learning method is not
equired by the HCD because it only rules the external behavior
f the components.
An integrated execution platform is required as a manage-

ent mechanism for the computational resources to run and
rain multiple components in development using a BRA. Can-
idates for this platform include recent deep neural network
latforms, such as TensorFlow, PyTorch, and Keras. Brain-inspired
omputing architecture is a platform that is developed to con-
ider the asynchronous nature of the brain and other charac-
eristics (Takahashi et al., 2015). Furthermore, an HCD can be
onstrained and converted into a probabilistic generative model
PGM), SERKET (Nakamura, Nagai, & Taniguchi, 2017; Taniguchi,
akamura, Suzuki, Kuniyasu, Hayashi, Taniguchi, et al., 2020), and
ixyz (Suzuki, 2021). In recent years, a growing movement known
s whole-brain PGM has emerged, which attempts to construct a
GM corresponding to the entire brain (Taniguchi et al., 2021b).
he construction of a PGM of hippocampal formation has been
nitiated (Taniguchi, Fukawa, & Yamakawa, 2021a).

.2. Fidelity evaluation of software

The biological plausibility of brain-inspired software is evalu-
ted by comparing it with the BIF and HCD in the BRA data. The
stimated degree of consistency between the software and BRA
s known as the fidelity.

To date, four methods have been explored for the evaluation
f fidelity.

• Structural similarity: An evaluation of how strongly the
static structure of the software matches the BIF in the BRA.

• Functional similarity: An evaluation of how strongly the
behavior of a particular component that is implemented
during the execution of a specific task matches the behavior
(e.g., behavior timing) that is designed in the HCD in the
BRA.

• Activity reproducibility: An evaluation of how effectively
the behavior of a certain variable in the internal compo-
nents of the software implemented according to the BRA
reproduces the characteristics of neural activity (such as
the activity timing and activity pattern in the corresponding
brain region during the execution of a specific task.

• Performance: An evaluation of the performance and ability
of the software as a whole (integration testing).

Among these evaluation methods, structural similarity and
erformance are easy to use for the evaluation of the overall soft-
are. However, functional similarity and activity reproducibility
re useful for unit tests for each component as well as for integra-
ion development, as discussed later. Furthermore, it is possible
o consider an evaluation method wherein dysfunction states are
nduced by intentionally destroying/ablating part of the software
nd comparing it with the brain functioning under conditions
uch as mental illness or brain injury. Fidelity evaluation (func-
ional similarity, activity reproducibility, and performance) can
e performed for behavioral changes owing to learning during
ask execution by describing how the HCD changes on a specific
IF. However, it is not easy to deal with the cognitive develop-
ent stage, during which the anatomical structure relating to the
IF changes significantly. Even if the method for describing the
IF could be extended to handle such changes, substantial time
ould be required for the accumulation of anatomical knowledge
o design the BIF in a manner that corresponds to cognitive
evelopment.
488
4.3. Integration development

A particular circuit on the BIF is associated with a component
that is included in various HCDs. As noted previously, the HCD
is a structure of functions that is decomposed into components
to realize TLFs, including tasks. Therefore, even if a component is
implemented to realize the same circuit, its function may differ
depending on the HCD to which it refers.

However, software needs to be able to apply knowledge to
different tasks to reveal its true value as an AGI. To this end,
if components exist that correspond to the same brain region
in a separate program, integration development is performed by
associating and integrating these components. The concept of
promoting the integration of components by using brain con-
straints is known as brain-inspired refactoring. The advantages
of BRA-driven development, whereby implementations are per-
formed in response to a common BIF, are also exhibited in such
system integration.

4.3.1. Concept of brain-inspired refactoring
A pair of components to be integrated between two imple-

mentations can be determined via the BIF in BRA-driven de-
velopment. Thus, the integration of the entire system can be
decomposed into the code integration of each component pair.

As depicted on the left side of Fig. 9, the development of
two tasks is performed independently if a BRA is not used as
a reference. In task 1, input 1 is assigned to component A, and
following processing, output 1 is obtained from component E.
Similarly, in task 2, input 2 is assigned to component B, and
following processing, output 2 is obtained from component F.
The two implementations that are created in this manner are
completely different and cannot be merged.

Subsequently, as depicted on the right side of Fig. 9, the
case in which two tasks are developed with the BRAs as the
constraints is discussed. In this case, components C and D, which
are responsible for intermediate processing, are associated with
the same circuit on the BIF. Two approaches are typically en-
visioned to merge components C and D that are contained in
different implementations. The first is to compare the fidelity
ratings of the two corresponding components and to select the
higher-evaluated implementation. The second is to redesign and
implement an integrated algorithm that combines the advantages
of both.

5. Discussion

5.1. Brain-inspired software development from ontology

5.1.1. Three types of entities in BRA-driven development
The brain can be viewed as both a physical (φ) entity and

as a device with a function (f ) to achieve a goal. Therefore, the
ontological perspectives described are relevant for learning from
the brain and developing the code (c) that exists as software.

Physical existence (φ) has the compositional nature of being
constructed bottom-up from a combination of parts. In the brain,
no inherent arbitrariness exists in the configurations of the whole
from small physical elements, at least at a coarse granularity,
and it is expected that it will eventually be uniquely described.
Functional (f ) existence is obtained through the creation of a
subdivision of functions to achieve the purpose that is set as a
task. Therefore, a great deal of arbitrariness exists in the manner
in which the functional components are combined. The software
code (c) also has a compositional nature in the sense that it can
be assembled from small literals. However, as the software is de-
veloped with the above functional mechanisms as specifications,
it reflects the diversity of the functional existence.
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Fig. 9. Components to be merged are specified by BIFs shared by both implementations. In this figure, software development unconstrained by a BIF (left panel)
and software development constrained by a BIF (right panel) are compared. Task 1 produces output 1 from input 1, whereas task 2 produces output 2 from input
2. Comparing the component diagrams for these two tasks, it is not easy to identify common points by simply developing them separately, even if the possibility of
overlap exists. However, if they are developed with reference to the BRA, the BIF will constrain the HCD that is followed by the software. Subsequently, components
C and D, which are responsible for common processing in the two tasks, can be identified as the components to be merged.
Table 5
Entities used in BRA-driven development.
Ontology Physical (φ) Functional (f ) Coded (c)

Diversity of
configurations

Non-arbitrariness High arbitrariness

Entities used BRA

in BRA-driven
development

BIF, NBP HCD Software code

Number of
entities present

There exists only one
entity (1)

Multiple entities can
be assigned to a single
physical entity (N)

Collection of code
implemented based on
each functional entity (N)

Scope ROI TLF Software package

Signal Uniform circuit Argument of components

Structure Anatomy Networks of components

Each signal is a minimum description unit. Each uniform circuit is a group of neurons composed of a specific cell
type.
c
w
r
f
e

The BRA consists of the BIF and NBP, which are physical
ntities, and the HCD, which is a functional entity (see Table 5).
he BIF describes the anatomical structure within an ROI with
niform circuits as the minimal units. The NBPs describe the
ehavior of the uniform circuits and the physical phenomena
hat appear as an entire ROI. The HCDs describe the network of
omponents that realize TLFs, with arguments as the minimal
nits.
In BRA-driven development, entities exist that correspond to

ach ontology, as follows: First, multiple HCD datasets are asso-
iated with one BIF dataset. As mentioned previously, one reason
or this is that multiple HCDs are associated with one BIF owing
o the arbitrariness of the composition. Another reason is that
ifferent functions (tasks) are often associated with the same BIF
n HCD design because of the richness of functions realized by the
uman brain. Software code is typically implemented in various
anners based on one of the HCDs.
As the BRA is essentially a reference architecture, it provides a

emplate for brain-inspired software. BRA data reflect the sophis-
icated mechanisms of the brain; therefore, they are often close
o the specification.
489
5.1.2. Examination of various software development approaches
from three ontologies

In this subsection, the entire development process is viewed
in three stages: designing the specification, implementing the
code using the specification, and evaluating the implemented
code. Thereafter, the three stages are compared for four software
development approaches in terms of the three ontologies de-
scribed above (see Fig. 10). Specifically, conventional software, a
simulator, conventional brain-inspired software, and BRA-driven
development are compared.

First, in the conventional software development approach, the
TLF to be realized by the system under consideration is deter-
mined. Subsequently, a functional mechanism that can realize the
TLF is designed (f → f ) and described as a specification. If the
specification is described as a directed graph of components with
dependencies, it is known as a component diagram. Thereafter,
the software code (c) is implemented based on the specification
(f → c). The evaluation of the developed software includes
ode review, functional similarity, and performance, to evaluate
hether the code conforms to the function (c → f ). The code
eview verifies whether the content of the code conforms to the
unctional mechanism. The functional similarity verifies whether
ach component operates according to specifications (unit test).
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Fig. 10. Four types of development approaches viewed from three different ontologies. In the figure, the character string in ‘‘()’’ is a label indicating the entity that
is used in BRA-driven development. The partially hyphenated ‘‘CSBW’’ character string indicates the usage status in each approach: C = conventional software, S =

imulator, B = brain-inspired software, and W = WBA approach (BRA-driven development). The character notation part is used in this approach and is not used
hen replaced with a hyphen character.
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n the performance evaluation, the degree to which the TLFs are
chieved when the entire code is executed is evaluated.
Second, the simulator development is described. The knowl-

dge (φ) of anatomical structures and behaviors/processes (NBP),
hich are authoritative in neuroscience literature and data, is col-

ected and organized (authenticity). In particular, the input/output
ignals in ROIs of the brain are important NBP components. The
hysical mechanism to be realized as software is constructed
ased on its structure, behavior, and process, and the simulator
ode (c) is implemented accordingly (φ → c). As an evaluation
f the simulator that is developed in this manner, we determine
he structural similarity and reproducibility of the activities based
n whether the code matches the physical characteristics (c →

). Structural similarity verifies whether the structure that is
eproduced by the simulator is similar to the anatomical structure
f the BIF. Activity reproducibility verifies whether the actions
eproduced in the simulator reproduce neural activities and pro-
esses in the brain. The evaluation of the input and output signals
or ROIs is part of the activity reproducibility evaluation. Formally,
his evaluation is the same as the performance evaluation of
onventional software (in which the degree of achievement of
LFs is determined).
Third, the approach that is adopted in many brain-inspired

oftware developments is described. As with the simulator de-
cribed above, NBP findings (φ) that are authorized by the lit-
rature and data in the neuroscience field are collected and
rganized. Subsequently, the functional mechanism is designed
n such a manner that the TFL can be realized (f → f ) while
onsidering the consistency with NBP (which is referred to as
-consistency). Thereafter, the software code (c) is implemented
ased on the functional mechanism (f → c). The evaluation of
he neuroscience software developed in this manner is the same
s that of conventional software, namely verification that the
ode matches the function (c → f ). This includes code review,
imulation of functions, and performance evaluation. Moreover,
he reproducibility of the activity is also evaluated in terms of
hether the behavior produced by the code matches the neural
ctivity of the brain (c → φ), as in the simulators.
Finally, BRA-driven development is explained. In BRA-driven

evelopment, the SCID method is introduced, which makes strong
se of brain anatomical knowledge for designing the functional

echanisms in the brain-inspired software described above. As O
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n the previous approaches, knowledge from the literature and
ata in the neuroscience field is first collected. The anatomical
nowledge is organized as the BIF (φ), and the knowledge of

behavior and processes is arranged as NBP (φ). In the design of the
functional mechanisms, not only is the functionality to achieve
TFL (f → f ) and consistency with NBP (b-consistency) taken into
account, but the consistency with anatomical structures by the
SCID method (known as s-consistency) is more strongly consid-
ered. Functional elements are assigned to anatomical structures
by defining groups of neurons with appropriate granularity as
a uniform circuit, which is subsequently constructed in such
a manner that each uniform circuit is treated as a component
argument. The evaluation of the software thus created in BRA-
driven development includes all evaluation perspectives of the
brain-inspired software described above, such as code review,
functional simulation, performance, and activity reproducibil-
ity. Furthermore, structural similarity evaluation is performed
to determine whether the structure of the code matches the
anatomical structure (c → φ), as in the simulator.

It is clear that the process for all approaches is as follows:
The specification is designed as a mechanism, the code is im-
plemented stringently according to the specification (f → c or
φ → c), and the code is evaluated (c → f or c → φ). Therefore,
o create software that realizes cognitive and behavioral functions
imilar to those of the human brain, it is very important to con-
truct the specification as a functional and physical mechanism
hat can realize these functions, while improving consistency
ith neuroscience findings.

.2. Related works

At the end of 2020, at least 72 projects relating to AGI devel-
pment were underway, and in view of the progress from 2017,
he total number did not change substantially. However, 15 new
rojects, most of which were undertaken by private companies,
ere added during this period (Baum, 2017; Fitzgerald, Boddy, &
aum, 2020).
The following subsection provides an overview of the vari-

us AGI development projects from the perspective of the three
ntologies depicted in Fig. 10, with a focus on approaches that
ntroduce neuroscience knowledge.

Four large-scale projects were identified in the above survey.

penAI can be categorized as conventional software development
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Section 5.2.1), the Blue Brain Project and Human Brain Project
an be categorized as simulator developments (Section 5.2.2),
nd DeepMind can be categorized as conventional brain-inspired
oftware development (Section 5.2.3).

.2.1. AI approach as conventional software development
Naturally, the development of AI does not necessarily involve

he use of neuroscience knowledge. In the above categorization,
any such AI developments are positioned as conventional soft-
are development methods that originate from functional design
nly.
The projects that flow from symbolic AI are relatively strongly

elated to design compared to those that depend on learning
echniques. Such projects have traditionally taken the form of
ognitive architecture research, such as Adaptive Control of
hought – Rational (ACT-R) (Anderson, 2009), SOAR
Laird, Newell, & Rosenbloom, 1987), ICARUS (Choi & Langley,
018), learning intelligent distribution agent (LIDA) (Franklin,
adl, D’Mello, & Snaider, 2014), non-axiomatic reasoning system

NARS), (Wang, Li, & Hammer, 2018), Sigma (Rosenbloom, Dem-
ki, & Ustun, 2016), and Connectionist Learning with Adaptive
ule Induction On-line (CLARION) (Sun, 2016), CogPrime (Go-
rtzel, 2012). Since 2015, an abundance of projects based on deep
earning as a technological foundation have emerged, including
oodAI, NNAISENSE, and OpenAI (Brown et al., 2020), which is
amous for natural language processing technology.

The main difficulty with this method is that, as mentioned
n the Introduction, the design space of the mechanism (or rep-
esentation or algorithm) inside the computer is vast. That is,
s the method of decomposing specific cognitive and behavioral
unctions is arbitrary, the mechanism by which functional decom-
osition can realize a particular task is generally not applicable to
ther tasks. Therefore, it is not easy to design a general-purpose
I (AGI) that can perform various tasks similar to humans.
In certain domains such as natural language processing and

mage recognition, machine learning using large amounts of data
as enabled highly versatile intelligent processing that is com-
arable to that of humans. However, when the flexible combi-
ation of multiple modalities and higher-order thinking such as
etacognition are considered, the problem of the design space
ize remains significant, even with a future increase in computa-
ional resources.

.2.2. Approach to simulate brain behavior
The simulator-type (φ → c) approach involves developing

code (c) for a simulator that mimics the behavior of the brain
from a physical entity, namely the brain (φ). This approach is
often used in the field of computational neuroscience, which
attempts to reproduce phenomena to understand how the brain
works.

However, even if the simulation stringently reflects current
neuroscience findings, this can only be achieved at the level of re-
producing neural activity. That is, the computational function as a
whole is yet to be realized (Bostrom & Sandberg, 2008; Markram,
2006). It is necessary to construct a physical mechanism in which
the components play appropriate roles and work together or-
ganically for the simulator to function as a whole. However, in
many cases, current neuroscience knowledge remains limited to
the accumulation of fragmentary evidence. Therefore, even if this
knowledge were to be reproduced effectively in the simulator,
it is inevitable that knowledge gaps will remain that hinder the
functional coordination of every component.

It may be possible to fill the above knowledge gaps by repeat-
ing various improvements of the simulator. The first improve-
ment is the overall system input and output, similar to normal
software development. Thus, the simulator can be improved so
491
that it behaves in the same manner as the results of animal
experiments when given the same stimuli. The second method is
specific to software that resembles the brain. That is, the behavior
of the representations in each component of the simulator during
task execution can also be improved to match the neural activity
of the corresponding brain region.

One project that uses this approach is Hierarchical Tempo-
ral Memory, the aim of which has been to achieve general-
purpose computational capabilities in the neocortex since the
early 2000s (Hawkins & Blakeslee, 2004; Krestinskaya, Ibrayev, &
James, 2018). The ‘‘Nengo’’ project (DeWolf, Jaworski, & Eliasmith,
2020; Eliasmith, 2013), which provides tools to construct the
overall cognitive and behavioral functions of the brain at the
level of neuronal spikes, also generally adopts this approach, and
although it does not explicitly state that it aims to realize AGI,
this appears to be the case.

It is expected that the information processing procedures of
the brain will be understood in a relatively extensive and com-
plete manner in the future. At this point, the recreation of human-
like intelligence through such simulations will be a very promis-
ing approach. However, fundamentally, this method does not
incorporate the process of designing the mechanism by which
the system achieves its goals (f → f ). Therefore, based on
the current maturity of the neuroscience field, projects using
this approach may lag in achieving human-like cognitive and
behavioral functions.

5.2.3. Brain-inspired software development approach
In the brain-inspired software development approach that

was explained in the previous section, the process of designing
a functional mechanism (f → f ) to achieve a goal is used
as the foundation, and neuroscience constraints (φ → f ) are
incorporated. In this manner, this method is expected to fill the
gap in neuroscientific knowledge that cannot be compensated
for by simulator design, in which mechanisms are designed from
physical entities.

Prior to the 2010s, the accumulation of knowledge of com-
prehensive anatomical structures through connectome studies
had not been thoroughly developed. Therefore, traditional brain-
inspired software development constrains the design process of
functional mechanisms by interpreting the neural activity (NBP)
that is observed in neuroscience experiments as a functionality
(b-consistency).

In this case, the function is the interpretation of behavior in
terms of achieving the goals of the external world. Therefore,
in this approach, the neural activities in the sensory and motor
areas that are close to sensors and actuators, which are the points
of contact with the external world, are easy to interpret and
to handle. Occasionally, neural activity may be identified that is
clearly related to objects in the external world, even deep in the
brain, which can also be handled by this approach.

Therefore, the following developments have taken place by
referring to neural activity phenomena in prior neuroscience find-
ings. Neocognitron, which was the starting point for deep learn-
ing, was based on the visual cortex. The Vicarious project (George
et al., 2018), which aimed to construct an AGI, was also based
on the visual cortex. DeepMind, which was founded in 2010 with
the aim of building an AGI, consisted of software for hippocampal
formation, including grids of cells that could easily interpret
spatial dependencies (Banino et al., 2018).

However, neural activity, which can easily be interpreted in
terms of achieving external goals, is not widespread throughout
the brain. Therefore, the b-consistency-based method of inter-
preting the function of neural activity phenomena exhibits a
major weakness in that it can only be applied to a small portion
of the entire brain (c.f. Section 3.2.2).
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A further disadvantage of this approach is its low biological
refutability, because it is not sufficiently disprovable to reject
inappropriate hypotheses by assessing the biological plausibility
of the functional mechanism. This weakness stems from the
anatomical structures not being mapped to functional mecha-
nisms. The direct problem is the inability to dismiss certain func-
tional mechanisms based on their disagreement with the anatom-
ical structures (s-consistency). Therefore, methods for evaluat-
ing functional mechanism hypotheses rely on the consistency
between the representation behavior in the code that is imple-
mented based on the representation and the neural activity that is
observed in experiments. However, functional mechanisms have
not been mapped to anatomical structures in detail. Therefore,
the neural activity that is correlated with the representation
behavior in the code is allowed to be any neuron in the ROI. Thus,
evaluations based on the similarity of activity are ambiguous and
do not allow for a rigorous assessment of the validity of certain
functional mechanism hypotheses.

However, even if a computational model that is created using
this approach does not have sufficient refutability, the possible
existence of a mechanism that can realize the input and output
of the ROI is proven. This is an important feature that can be used
in step (1-B) of the SCID method.

5.2.4. Challenges in using anatomical structures as constraints
As mentioned previously, limitations have existed in con-

straining the design space of functional mechanisms with the
knowledge of neural activity behavior alone. However, in the
2010s, comprehensive studies on anatomical structures, par-
ticularly the connectome, started to provide such insights. As
anatomical structures are static, they cannot be directly inter-
preted as functions, but mapping them to a hierarchy of functions
can provide strong constraints.

However, two key challenges must be overcome when using
anatomical structures to design functional mechanisms. First, the
anatomical granularity to be addressed has not been determined.
Owing to this indeterminate granularity, it is not possible to
write a standardized specification for the design of brain-inspired
software, nor is it possible to determine a methodology for its
design. This situation arises from the fact that different require-
ments exist for each position that is involved in brain-inspired
software. Implementers may wish to process descriptions at a
coarser granularity to reduce developmental costs, but this may
inhibit them from taking full advantage of biological constraints.
However, if the goal is to make a medical contribution, such as
pharmacological effects, a more detailed description is desirable,
which may be finer-granular than the most rapid AI can develop.
The second challenge is the lack of a methodology that will enable
the design of functional mechanisms in the broadest possible
range of brain regions, while also using anatomical knowledge at
the appropriate granularity.

5.2.5. Uniform circuits and SCID method for using anatomical struc-
tures as constraints of function

Therefore, in the BRA-driven development (WBA approach)
presented in this paper, (1) the lower limit of anatomical granu-
larity (uniform circuit) to be described is determined, and (2) the
SCID method is systematized as a method for designing functional
mechanisms at this granularity, as described in the following.

1. Determination of minimum description granularity
(uniform circuit): The minimum descriptive unit in the
brain corresponding to the software argument is defined
as a uniform circuit. The candidate brain entities that can
correspond to each uniform circuit are assumed to be
groups of neurons composed of specific cell types within

a particular brain region.
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2. Methodology for designing functional mechanisms
based on anatomical knowledge (SCID method): The
proposed SCID method is used for the construction of
functional mechanisms (f → f ) to realize TLFs in specific
brain regions (ROIs) using anatomical projection structures
at a coarser level than uniform circuits (which are relatively
well known across a wide range of brain regions) as the
main constraint (φ → f ) (see Fig. 10).

Representations of software code that is implemented based
n the functional mechanism, namely the HCD, can be mapped to
he anatomical structures of the brain via the BRA. This enables
he behavior of a particular representation in the code to be
apped to the neural activity of a specific brain region. Thus, a
ore detailed assessment of the reproducibility of the activity can
e performed.
In step 3 of the SCID method, many of the HCD (functional

tructure) candidates that are created to achieve the goal are re-
ected through the determination of the s-consistency mismatch
ith anatomical structures. Thus, the HCD refinement reflects the
efutable nature of the HCD. It is possible for the HCD to be valid
t a given time but rejected later owing to new discoveries in
euroscience, which is rather sound for a scientific stance.
In this manner, the data format for the BRA, which is a stan-

ard specification for brain-inspired software, can be defined.
his open data format will accelerate the accumulation of spec-
fications for the entire brain by allowing multiple teams to
hare design data. As locally described data begin to aggregate
hrough such sharing, the distributed constraints will interact and
he combined constraints will become more powerful. Thus, the
esign space for brain-inspired software can be rapidly reduced,
hich will further accelerate the development.

.3. Roadmap for reaching AGI

As mentioned previously, BRA-driven development consists of
BRA design comprising the BIF and HCD, as well as the de-
elopment thereof. Given the characteristics of this development
ethodology, the following five milestones need to be achieved
n the roadmap leading to the realization of brain-inspired AGI.

1. Completion of entire brain BIF: The first milestone is the
construction of a BIF that covers almost the entire brain.
It is desirable to build a BIF based on scientific knowledge
of the human brain to construct human-like intelligence.
However, the knowledge of non-human apes and humans
is referenced for the neocortex, whereas the knowledge of
rodents is referenced for many other parts. Thus, a chimeric
BIF will be constructed. The background of this technical
selection is dependent on the degree of neuroscientific
knowledge accumulation in major mammalian laboratory
animals. Neuroscientific knowledge is the most abundant
in rodents and to a lesser extent in humans, and non-
human primates will fill this gap. The basic structure of the
brain is fairly conserved among mammals, so it is also use-
ful to refer to non-human species. However, humans need
to be referenced for the neocortex, which includes areas
that carry out human-specific functions such as language.

2. Completion of entire brain HCD: The second milestone is
the construction of the HCD, which covers typical human
cognitive functions. In the construction of the HCD, the
target is reward-based decision making and navigation,
which are carried out in experiments using animals such
as rodents. At this time, the HCD is constructed on the
BIF, which is mainly present in rodents. At some stage
thereafter, HCDs relating to human-specific functions and

tasks such as language tasks, computational/logical tasks,
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and metacognition are designed. At this point, the HCD
is constructed on the BIF containing the neocortex that is
unique to humans. Thus, it is assumed that the HCD of the
entire brain will be completed at the stage when the HCD
for typical and major tasks that can be handled by humans
is described.

3. Early implementation of WBA: The third milestone is the
implementation of software that integrates almost all parts
of the brain according to the BRA. First, computational
models, each of which are partial circuits of the brain, are
implemented. At this time, the implementation often takes
the form of a simple stub, except for the target partial
circuit. This enables software that is part of the brain to
evaluate the fidelity while performing tasks. When the
major parts with a certain quality are almost ready, an
integrated WBA system will be constructed. This system
will be improved by subsequently assessing the fidelity for
various tasks.

4. Automation of architecture search: The fourth milestone
is the stage in which various brain-inspired architectures
that are candidates for AGI can be compared and searched
automatically. To achieve this, it is necessary to be able to
run and test integrated software for tasks relating to typical
human abilities in a virtual environment. The challenge is
to promote the automation of biological plausibility (fi-
delity) assessment using BRA.

5. Completion of WBA system: The final milestone is the
stage at which software that assembles almost all parts
corresponding to the brain neural circuits has been real-
ized so that typical tasks performed by humans can be
solved in a manner similar to that of the brain. If the
ability to explore computational resource-dependent ar-
chitectures can overcome the critical point of exceeding
the brain-constrained design space size, its completion will
occur after a relatively short period. It should be noted
that the strengthening of constraints on the design space
that accompanies the progress of neuroscience and the
improvement of the search ability by increasing the com-
putational resources, which will inevitably continue in the
future, will accelerate the arrival of the above critical point.

However, the system may remain insufficient even when all of
he computational mechanisms that constitute the brain appear
o work together. Regardless, we expect that the lack of techni-
al elements will become apparent once that particular stage is
eached.

.3.1. Evaluation of completion of AGI
It is necessary to decide in advance: ‘‘What is the point at

hich AGI can be determined to have been achieved?’’ to evaluate
he completion of the WBA system in the roadmap. This is also
seful as a guideline for the development of the WBA. There-
ore, we first consider the assessment of intelligence in the AGI
esearch area.

From a non-anthropocentric perspective, a universal intelli-
ence measure (Legg & Hutter, 2007) exists, which measures the
bility of an agent to achieve goals in a wide range of environ-
ents. That is, this measure integrates performance in various
nvironments (or tasks) and aims to evaluate the versatility of
ntelligence independently of human intelligence. However, this
easure is theoretical and can only be applied to very small test
nvironments on computers.
In contrast, the WBA approach, which references the brain,

ims for human-like intelligence; thus, it would be appropriate to
valuate the completion of AGI from an anthropocentric perspec-

ive. The Cattell–Horn–Carroll theory (commonly abbreviated as
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CHC) has developed a psychological hierarchical classification of
abilities relating to general human intelligence. DARPA (2005)
reported on cognitive architecture inspired by living creatures,
which were broadly categorized as the functional elements of
the human brain. Adams et al. (2012) presented a landscape
for achieving AGI based on human cognitive development, and
discussed the domains of competence and tasks that AGI should
encompass. Hernández-Orallo (2010) introduced the universal in-
telligence test as a set of concepts {space, objects, observation and
action, reward} as a class of biologically realistic environments
(or tasks). Poldrack, Kittur, Kalar, Miller, Seppa, Gil, et al. (2011)
aimed to construct an open knowledge base5 that integrates and
stores the tasks and supporting concepts that are necessary for
cognitive neuroscience.

As described above, research relating to AGI evaluation has
been conducted for many years using various approaches
(Hernández-Orallo, 2017), and its development is expected to
continue. If standard AGI evaluation methods are already estab-
lished near the end of the roadmap, it would be appropriate to
use these in the evaluation of the WBA system. However, if an
agreed-upon standard list of capabilities is not yet available at
that time, it will be necessary to select typical capabilities from
among many previous studies, and subsequently, to select a task
set for evaluating these capabilities.

In the WBA approach, which references the brain at a rela-
tively detailed level, several constraints can be imposed on the
task set. That is, the task set is designed such that the components
that are implemented for all brain organs are used in at least one
or more of the tasks. In this manner, the completeness of the
task set can be improved by checking for leaks from the neural
circuitry aspect of the brain.

5.4. Applications of AI systems based on BRA

AI systems that are developed based on BRA can be expected
to replicate human cognitive and behavioral capabilities almost
exactly. Therefore, BRA offers several practical applications. It
enables the construction of an AI that exhibits familiarity with
humans when communicating with them. Furthermore, it can be
applied computationally to research fields that deal with mental
illness and cognitive impairment. Conversely, findings regarding
human cognitive impairment may be used for problematic be-
havior that is observed in brain-inspired AI. Moreover, we believe
that this approach can also be used as a computational model that
will serve as a device for mind uploading.

6. Conclusions

In this paper, the current WBA approach has been introduced
and BRA-driven development to accelerate brain-inspired AGI has
been discussed. The BRA includes standardized data that reflect
the brain architecture for the purpose of limiting the large design
space that is required for a human-level AGI that cannot be
grasped by the cognitive ability of an individual. Even developers
who do not have a deep understanding of the brain can develop
brain-inspired software based on BRAs that are designed by peo-
ple with expertise in neuroscience. We explained that the BRA
is a description consisting of a BIF supported by a mesoscopic
neural circuit and an HCD that is consistent with the BIF. Subse-
quently, to compensate for the lack of neuroscientific findings, we
introduced the SCID method, which formulates the creation of an
HCD that is consistent with the anatomical structure of the brain.
Furthermore, even if a BRA is used for development, individual
development results tend to diverge depending on the diversity

5 https://www.cognitiveatlas.org/, accessed: 2021-7-5.

https://www.cognitiveatlas.org/
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f the target tasks. To address this problem, integration develop-
ent is planned, which will move AGI closer to the functioning
f the brain. Moreover, we discussed the evaluation of biological
lausibility using BRA to prevent the developed software from
eering away from the brain.
The main contribution of this study on BRA-driven devel-

pment, with the following features, is the establishment of a
ethodology for accumulating data on brain constraints in a form

hat can be used for software development.

1. Separation of design information: BRA data can be used in
various development projects because they are described
in a standard format for software development, which is
not dependent on a particular development environment.

2. Standardization of description granularity: As a rule, the
description of BRA data at a coarser granularity than the
mesoscopic level reduces the possibility that the develop-
ment will focus on details that are unnecessary for the
realization of the target cognitive behavioral level.

3. BRA design: The method of designing computational func-
tions according to anatomy (the SCID method) enables
BRAs to be created while compensating for the lack of
neuroscientific knowledge in a wide range of brain areas.

4. Tolerance of diversity: Even BRAs that contain mutually
contradictory HCDs can be registered if they exhibit a cer-
tain level of validity, thereby reducing the risk of overly
narrowing the considered design space.

The above features of the BRA will provide a foundation for
arge-scale whole-brain software development as the compre-
ensiveness of its data increases. Thus, the brain architecture
ill provide an anchor for the efficient convergence and eventual
ompletion of the development of human-like AGI, whereas the
evelopment results in this field tend to diverge at present.
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