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Abstract
Sequential variational autoencoders (VAEs) with a global latent variable z have been stud-
ied for disentangling the global features of data, which is useful for several downstream 
tasks. To further assist the sequential VAEs in obtaining meaningful z, existing approaches 
introduce a regularization term that maximizes the mutual information (MI) between the 
observation and z. However, by analyzing the sequential VAEs from the information-the-
oretic perspective, we claim that simply maximizing the MI encourages the latent variable 
to have redundant information, thereby preventing the disentanglement of global features. 
Based on this analysis, we derive a novel regularization method that makes z informative 
while encouraging disentanglement. Specifically, the proposed method removes redundant 
information by minimizing the MI between z and the local features by using adversarial 
training. In the experiments, we trained two sequential VAEs, state-space and autoregres-
sive model variants, using speech and image datasets. The results indicate that the pro-
posed method improves the performance of downstream classification and data generation 
tasks, thereby supporting our information-theoretic perspective for the learning of global 
features.
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1 Introduction

Uncovering the global factors of variation from high-dimensional data is a significant 
and relevant problem in representation learning (Bengio et  al. 2013). For example, a 
global representation of images that presents only the identity of the objects and is 
invariant to the detailed texture would assist in downstream semi-supervised classifica-
tion (Ma et al. 2019). In addition, the representation is useful for the controlled genera-
tion of data. Obtaining the representation allows us to manipulate the voice of a speaker 
(Yingzhen and Mandt 2018), or generate images that share similar global structures 
(e.g., structure of objects) but varying details (Razavi et al. 2019).

Sequential variational autoencoders (VAEs) with a global latent variable z play an 
important role in the unsupervised learning of global features. Specifically, we consider 
the sequential VAEs with a structured data-generating process in which an observation 
x at time t (denoted as xt ) is generated from a global z and local latent variable st . Then, 
the z of these sequential VAEs can only acquire global features invariant to t. For exam-
ple, Yingzhen and Mandt (2018) demonstrated that disentangled sequential autoencod-
ers (DSAEs), which combine state-space models (SSMs) with a global latent variable 
z, can uncover the speaker information from speeches. Furthermore, Chen et al. (2017), 
Gulrajani et al. (2017) proposed VAEs with a PixelCNN decoder (denoted as PixelCNN-
VAEs), which combines autoregressive models (ARMs) and z. In both methods, the hid-
den state of the sequential model (either SSMs or ARMs) is designed to capture local 
information, whereas an additional latent variable z captures the global information.

Unfortunately, the design of a structured data-generating process alone is insufficient 
to uncover global features in practice. A typical issue is that the latent variable z is 
ignored by a decoder (SSMs or ARMs) and becomes uninformative, which is referred to 
as posterior collapse (PC). This phenomenon occurs as follows: with expressive decod-
ers, such as SSMs or ARMs, the additional latent variable z cannot assist in improving 
the evidence lower bound (ELBO), which is the objective function of VAEs; therefore, 
the decoders will not use z (Chen et al. 2017; Alemi et al. 2018). To alleviate this issue, 
existing approaches regularize the mutual information (MI) between x and z to be large 
by using �-VAE (Alemi et al. 2018) or adversarial training (Makhzani and Frey 2017), 
for example. Because a higher MI I(x; z) indicates that z consists of significant informa-
tion regarding x, this regularization prevents z from becoming uninformative.

In this study, we further analyze the MI-maximizing approach and claim that merely 
maximizing I(x; z) is insufficient to uncover the global features. Figure 1a summarizes 
the issue of MI-maximization. As illustrated in the Venn diagram, the MI can be decom-
posed into I(x;z) = I(x;z|s) + I(x;z;s) . Although maximizing the first term I(x;  z|s) is 
beneficial, maximizing the second term I(x;  z;  s) may cause a negative effect because 
the latter results in increasing I(z;  s). Obtaining a large I(z;  s) is undesirable because 
it indicates that the latent variables z and s = [s1, ..., sT ] consist of redundant informa-
tion. For example, when I(x; z) increases to the point where z retains all the (local and 
global) information of x, that is, z has redundant information, the downstream classifica-
tion performance is degraded. Also, when s remains to contains global information, that 
is, s has redundant information, the decoder can extract global information either from 
z and s; thereby, it becomes difficult to control the decoder output using z (e.g., control 
speaker information in speech). In Sect. 6.2, we provide the empirical evidence indicat-
ing that MI maximization increases I(z; s).
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Based on this analysis, we propose a new information-theoretic regularization term 
for disentangling global features. Specifically, the regularization term not only maxi-
mizes I(x;  z), but also minimizes I(z;  s), as illustrated in Fig.  1b. As I(z;  s) measures 
the dependence between z and s, our method encourages z and s to contain different 
information, that is, the disentanglement of global and local factors. We call the term 
CMI-maximizing regularization, because it is the lower bound of the conditional mutual 
information (CMI) I(x; z|s). In practice, because this term is difficult to compute ana-
lytically, we estimate it using adversarial training (Ganin et al. 2016). Specifically, we 
approximate the upper bound of I(z; s) using a density ratio trick (DRT) (Nguyen et al. 
2008), where an adversarial classifier models the density ratio. Once we estimate the 
bound, I(z; s) can be minimized via backpropagation through the classifier.

In our experiments, we used DSAEs and PixelCNN-VAEs as illustrative examples 
of SSMs and ARMs. DSAEs and PixelCNN-VAEs are trained on speech and image 
datasets, respectively. The experiment regarding the speech domain demonstrates that 
CMI-maximizing regularization yields z and s that have more and less global (speaker) 
information than MI-maximizing regularization, respectively. In the image domain, we 
first evaluate the quality of z, similar to previous studies, and demonstrate that CMI-
maximizing regularization yields z that have more global information (class label infor-
mation). In addition, we evaluated the ability of controlled generation using a novel 
evaluation method inspired by Ravuri and Vinyals (2019), and confirmed that CMI-
maximizing regularization consistently outperformed MI-maximizing regularization. 
These results support (1) our information-theoretic view of learning global features: the 
sequential VAEs can suffer from obtaining redundant features when merely maximizing 
the MI. The results also support that (2) regularizing I(x; z) and I(z; s) are complemen-
tary: learning global features can be facilitated by not only making z informative, but 
also by controlling which aspect of the x information (global or local) goes into z.

Our contribution can be summarized as follows: (1) Through our analysis and experi-
ments, we reveal a problem in MI-maximizing regularization that was overlooked, 
although the regularization has been commonly employed in learning global representa-
tion with sequential VAEs. (2) To learn a global representation, we proposed regulariz-
ing I(x; z) and I(z; s) simultaneously. I(x; z) and I(z; s) are shown to work complementa-
rily in our experiments using two models and two domains (speech and image datasets), 
indicating that it would help improve various sequential VAEs proposed previously.

Fig. 1  Comparison of a MI-maximizing regularization and b the proposed method, using a Venn diagram 
of information-theoretic measures of x, z, and s 
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2  Preliminary

2.1  Sequential VAEs for learning global representations

Here, we first present the standard VAE, followed by the overviews of two types of sequen-
tial VAEs. Namely, this study considers the SSMs and ARMs with a global latent variable 
z, using DSAE and PixelCNN-VAEs as illustrative examples. Both models are interpreted 
as having two types of latent variables, global z and local st ; although it is not explicitly 
stated for PixelCNN-VAE. Here, st is designed to influence particular timesteps or dimen-
sions of x (e.g., a single frame in a speech or a small area of pixels in an image). However, 
z influences all the timesteps of x. Then, when successfully trained, z and st capture only 
the global and local features of the data, respectively.

2.1.1  Variational autoencoder (VAE)

Let p(x) ∶= ∫ p(z)p(x|z)dz be a latent variable model whose decoder p(x|z) is parameter-
ized by deep neural networks (DNNs). Using an encoder distribution q(z|x), which is also 
parameterized by DNNs, the VAEs maximize the ELBO:

Here, pd(x) denotes the data distribution. ELBO contains the following two terms: the 
reconstruction error and the Kullback-Leibler (KL) divergence between encoder q(z|x) and 
the prior p(z).

2.1.2  State space model with global latent variable

This study considers SSMs that have a global latent variable z and a local latent variable st 
to model the global and local features of the data, respectively. It generates an observation 
xt at time t from z and st . In addition, it uses encoder distributions to infer latent variables 
similar to the standard VAEs. Then, the ELBO can be expressed as follows:

Here, T is the sequence length, p(st|st−1) is the prior, q(z|x≤T ) and q(st|x≤T , z, st−1) are 
the encoders, p(xt|st, z) is a decoder, and q(x, z, s) ∶= pd(x)q(z|x)q(s|x, z) . Furthermore, x<t 
denotes all the elements of the sequences up to t, and x denotes x ∶= x≤T . Figure 2a illus-
trates the data generating process. One of the SSM variants is DSAE (Yingzhen and Mandt 
2018), which has demonstrated being useful in controlling the outputs (e.g., performing 
voice conversion) using the disentangled latent variables.

(1)LELBO ∶= �pd(x)

[
�q(z|x)[log p(x|z)] − DKL(q(z|x)||p(z))

]
.

(2)

LSSM ∶= −Recon − KL(z) − KL(s),

where Recon = −�q(x,z,s)

[
T∑

t=1

log p(xt|st, z)
]
,

KL(z) = �q(x,z,s)[DKL(q(z|x≤T )||p(z))],

KL(s) = �q(x,z,s)

[
T∑

t=1

DKL(q(st|x≤T , z, st−1)||p(st|st−1))
]
.
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2.1.3  Autoregressive model with global latent variable

In addition to the SSMs, this study considers ARMs that have a global latent varia-
ble z. These ARMs can also be interpreted as a structured VAE in which xt is gen-
erated from the global latent variable z and local variable st as follows. First, the 
autoregressive decoder is expressed as p(x≤T |z) = ΠT

t=1
p(xt|z, x<t) . This implies that 

for every time step t, xt is sampled from p(xt|z, x<t) using previous observations x<t 
and the latent variable z. Second, we assume that the decoder can be decomposed as 
p(xt|z, x<t) = p(xt|z, st)𝛿(st − f (x<t)) , where f denotes a deterministic function parameter-
ized by neural networks, st denotes a random variable, and � denotes the Dirac delta. 
In other words, the decoder p(xt|z, x<t) can be decomposed into two parts: an embed-
ding part st = f (x<t) and a decoding part p(xt|z, st) . For the rest of the paper, we denote 
𝛿(st − f (x<t)) = q(st|x<t) = p(st|x<t) to simplify the notation. With this notation, xt can be 
regarded as being generated from z and st , which is sampled from p(st|x<t) (see Fig. 2b). 
Furthermore, the ELBO is given as follows:

One of the ARM variants is PixelCNN-VAEs, whose z is intended to maintain only the 
global information by discarding local information, such as the textures and sharp edges 
of images (Gulrajani et  al. 2017). Details regarding the data-generating process for Pix-
elCNN-VAEs are provided in Appendix 1.

2.2  Mutual information‑maximizing regularization for sequential VAEs

Sequential VAEs with a global latent variable z can, in principle, uncover the global 
representation of data by exploiting its structured data-generating process. However, 
despite the intentional data-generating process of sequential VAEs, the global latent 
variable z often becomes uninformative owing to the PC. To alleviate this issue and 
encourage z to obtain x information, prior studies regularized the MI I(x; z), which is 
defined by the encoder distribution as follows:

Note that I(x; z) here is not defined in terms of the true posterior, but is defined with 
the product of data distribution pd(x) and the variational posterior q(z|x).

(3)LARM = − Recon − KL(z).

(4)I(x;z) = �pd(x)q(z|x)

[
log

pd(x)q(z|x)
pd(x)q(z)

]
.

Fig. 2  Graphical models for a SSMs with a global latent variable z, and b ARMs with z 
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In practice, prior studies regularized I(x; z) by optimizing it along with ELBO LELBO 
as follows:

where � is a weighting parameter. Because I(x; z) is difficult to analytically compute, prior 
studies have proposed various approaches to approximate it [e.g., using variational bounds 
(Alemi et al. 2018) or adversarial training (Zhao et al. 2019)], which will be presented in 
Sect. 5.

3  Problem in MI‑maximizing regularization

In this section, we claim that the MI-maximizing regularization for sequential VAEs 
remains insufficient to uncover the global features. More precisely, we claim that compared 
to optimizing only the ELBO LELBO , optimizing Eq.5 provides the same or larger I(z; s) 
value. Here, I(z; s) is defined as follows:

The increase in I(z; s) is undesirable because this indicates that the latent variables z and 
s have redundant information, which contradicts the original intention of disentangling the 
global features of data.

Note that, although the graphical model of the SSMs (Fig. 2a) is designed such that z 
and s are independent, I(z; s) is not necessarily zero because p(z, s) = p(z)p(s) (independ-
ence of prior distribution) does not definitely indicate that q(z, s) = q(z)q(s) (independence 
of encoder distribution). For example, although p(z, s) = q(z, s) enables q(z, s) = q(z)q(s) , it 
needs certain conditions. Namely, since q(z, s) is defined as q(z, s) = ∫ q(z, s|x)pd(x)dx and 
p(z, s) is defined as p(z, s) = ∫ p(z, s|x)p(x)dx , the sufficient condition for p(z, s) = q(z, s) is 
q(z, s|x) = p(z, s|x) and pd(x) = p(x) . Here, (i) pd(x) = p(x) holds only if the latent variable 
model p(x) matches data distribution pd(x) , which is often impractical when the data is 
high-dimensional. Also, (ii) q(z, s|x) = p(z, s|x) means that the approximation error of the 
posterior is null, which is difficult although some recent studies have tackled to reduce the 
error in standard VAE settings (Kingma et al. 2016; Park et al. 2019).

Prior to discussing the validity of the claim, an intuitive explanation of why the phe-
nomenon occurs is presented. This would also facilitate a better understanding of why the 
increase in I(z; s) is undesirable. Namely, regularizing I(x; z) to be large may cause either 
of the following two phenomena: 

 (Case 1) If global information is encoded into z, I(x; z) becomes larger. However, it also 
increases I(z; s) if s has all (local and global) the information regarding x.

 (Case 2) If all (local and global) information is encoded into z, I(x; z) remains to become 
larger. However, it also increases I(z; s) despite s having only local information.

Case 1 and Case 2 indicate that a larger I(x; z) value would result in redundant s and z, 
respectively. One of the possible factors that determines which case occurs is the neural 

(5)maxLELBO + �I(x;z),

I(z;s) =�q(z,s)[log
q(z)q(s|z)
q(z)q(s)

],

where q(z;s) ∶= ∫ pd(x)q(z|x)q(s|x, z)dx.
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network architecture, which controls the retrieval of information from z. For example, z of 
PixelCNN-VAEs is input to the decoder after being linearly transformed into time-dependent 
feature maps (see Appendix 1). In contrast, z of DSAEs is input into the decoder without this 
linear transformation. Then, the z of PixelCNN-VAEs can easily have local (time-dependent) 
information, and Case 2 could occur. However, the z of the DSAEs is constrained to have no 
local information; therefore, Case 1 is likely to occur.

Next, we identify the concrete problems which large I(z; s) induces in the DSAEs and Pix-
elCNN-VAEs. For DSAEs, z and s are expected to express only the speaker and linguistic 
information in speech sequences, respectively. However, if s still contains speaker informa-
tion due to redundancy (i.e., Case 1 occurs), the decoder can extract speaker information from 
either s or z, and there is no guarantee that z will be used. For PixelCNN-VAE, previous stud-
ies (Alemi et al. 2018; Razavi et al. 2019) have shown that by stochastically sampling x from 
PixelCNN-VAE with a given z, one can obtain images with different local patterns but similar 
global characteristics (e.g., color background, scale, and structure of objects). However, when 
I(x; z) becomes significantly large, making z have all (local and global) the information (i.e., 
Case 2 occurs), the diversity of the generated images decreases because the decoder resembles 
one-to-one mapping from z to x.

Finally, we discuss the validity of our claim. From a theoretical perspective, the following 
decomposition of I(x; z) illustrates the issue:

where we denote pd(x)q(z, s|x) = q(x, z, s) for better visibility. Then, simply maximizing 
I(x; z) indicates increasing I(z; s) on the right-hand side of Eq. 6, assuming the remain-
ing term ( −I(z;s|x) + I(x;z|s) ) does not increase. Although our claim relies on this assump-
tion, we leave its generality excluded from the scope of this study. Instead, in Sect. 6.2, 
we experimentally confirm that the regularization of I(x; z) and the increase in I(z; s) are 
linked. In addition, in Sects. 6.3 and 6.4, we present empirical evidence indicating that 
Case 1 and Case 2 occur in DSAEs and PixelCNN-VAEs, respectively.

4  Proposed method

4.1  Conditional mutual information‑maximizing regularization

Considering the limitations of MI regularization, we need a method that can encourage both 
(i) an increase in I(x; z) to prevent z from becoming uninformative, and (ii) the decrease of 
I(z; s) to prevent z and s from having information that is irrelevant to the global and local 
structures, respectively. Therefore, we propose maximizing the following objective:

where �I(x;z) − �I(z;s) is a regularization term with weights � ≥ 0 and � ≥ 0 . As I(z;  s) 
measures the mutual dependence between s and z, minimizing I(z; s) encourages z and s 

(6)

I(x;z) =I(z;s) − I(z;s|x) + I(x;z|s).

proof ∶ r.h.s. =�q(x,z,s)

[
log

q(z, s)

q(z)q(s)
(
q(x, z, s)q(x)

q(x, z)q(x, s)
)−1

q(x, z, s)q(s)

q(x, s)q(z, s)

]

=�q(x,z,s)

[
log

q(x, z)

q(z)q(x)

]

=I(x;z),

(7)maxLELBO + �I(x;z) − �I(z;s),
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to avoid redundant information. Then, the induced global variable z would have more x 
information, whereas z and s maintain only the global and local information, respectively.

We refer to the proposed method as the CMI-maximizing regularization for convenience 
because it closely relates to CMI I(x; z|s). Specifically, when assuming � ≥ �,

It indicates that the proposed regularization term �I(x;z) − �I(z;s) is a constant multiple 
of a lower bound of I(x; z|s); therefore, Eq. 7 is the weighted sum of ELBO and the lower 
bound. Here, the approximation error becomes smallest when � = � (further discussed in 
Appendix 2). In addition, the relation between I(x; z), I(z; s), and I(x; z|s) is intuitively pro-
vided in the Venn diagram in Fig. 1: while I(x; z|s) comprises of I(x; z), it is irrelevant to 
I(z; s).

4.2  Estimation method of the regularization term

In this section, we present one of the tractable instances for estimating �I(x;z) − �I(z;s) . A 
simple way to estimate �I(x;z) − �I(z;s) may be to estimate I(x; z) and I(z; s) separately, and 
tune the strength of them independently. However, because both I(x; z) and I(z; s) are dif-
ficult to compute analytically, this approach must approximate both, which may complicate 
optimization. Therefore, we derive a lower bound of �I(x;z) − �I(z;s) to reduce the number 
of terms to be approximated to only one. By setting the weights as � ≥ � , we can derive the 
bound as follows:

where the first term is the upper bound of I(x; z), and the second term is the lower bound 
of −I(z;s) . Here, � ≥ � indicates that the second term is weighted more. In addition, the 
lower bound of Eq. 9 becomes the tightest when � = � . Note that, � = � also minimizes the 
approximation error in Eq. 8, which makes the connection between the CMI I(x; z|s) and 
Eq. 9 clearer.

While the first term is the same as KL(z) in Eq. 1 and is simple to calculate, the second 
KL term is difficult to calculate analytically. However, we provide options to approximate it. 
For example, it can be replaced with other distances, such as the maximum mean discrepancy 
(MMD) (Zhao et al. 2019), minimized via the Stein variational gradient (Zhao et al. 2019), or 
approximated with DRT (Nguyen et al. 2008; Sugiyama et al. 2012). Among these options, 
we chose to utilize DRT, as performed in generative adversarial networks (GANs) (Mohamed 
and Lakshminarayanan 2017) and infoNCE (van den Oord et al. 2019). A possible advantage 

(8)

I(x;z|s) = I(x;z) − I(z;s) + I(z;s|x)
≥ I(x;z) − I(z;s)

≥ 1

�

(
�I(x;z) − �I(z;s)

)
.

(9)

�I(x;z) − �I(z;s) =��pd(x)

[
DKL(q(z|x)||p(z))

]
− �DKL(q(z)||p(z))

− �DKL(q(z, s)||q(z)q(s))
=��pd(x)

[
DKL(q(z|x)||p(z))

]
− �DKL(q(z)||p(z))

− �DKL(q(z, s)||p(z)q(s)) + �DKL(q(z)||p(z))
=��pd(x)

[
DKL(q(z|x)||p(z))

]
+ (� − �)DKL(q(z)||p(z))

− �DKL(q(z, s)||p(z)q(s))
≥��pd(x)

[
DKL(q(z|x)||p(z))

]
− �DKL(q(z, s)||p(z)q(s)),
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of using DRT is the scalability to the dimension size. Scalability could be significant because 
the dimension size of s = [s1, ..., sT ] depends on the sequence length T and the dimension 
size of st . However, a comparison of these methods is excluded from the scope of this study 
because our main proposal aims to regularize I(x; z) and I(z; s) simultaneously.

Here, we present how the second term can be approximated with the DRT. By intro-
ducing the labels y = 1 for samples from q(z,  s) and y = 0 for those from p(z)q(s), we re-
express these distributions in a conditional form, that is, q(z, s) =∶ p(z, s|y = 1) and 
p(z)q(s) =∶ p(z, s|y = 0) . The density ratio between q(z,  s) and p(z)q(s) can be computed 
using these conditional distributions as follows:

where we used Bayes’ rule and assumed that the marginal class probabilities were equal, 
that is, p(y = 0) = p(y = 1) . The condition p(y = 0) = p(y = 1) can be easily satisfied by 
sampling the same number of z and s from q(z, s) and p(z)q(s) because p(y) represents the 
frequency of sampling from q(z, s) and p(z)q(s). Here, p(y = 1|z, s) can be approximated 
with a discriminator D(z, s), which outputs D = 1 when z, s ∼i.i.d. q(z, s) , and D = 0 when 
z, s ∼i.i.d. q(s)p(z) . Then, Eq. 9 can be approximated as follows:

We parameterize D(z, s) with DNNs and train it alternately with the VAE objectives. Spe-
cifically, we train D to maximize the following objective using Monte Carlo estimates:

In Eqs. 10 and 11, we need to sample z and s from q(z, s) = ∫ pd(x)q(z, s|x)dx . Therefore, 
we first sample x from pd(x) , and then sample z and s from q(z, s|x) using the sampled data x.

4.3  Objective function for DSAEs and PixelCNN‑VAEs

In this section, we introduce the concrete objectives of the DSAEs and PixelCNN-VAEs with 
a CMI regularization term. Adding ICMI-DRT as a regularization term to Eqs. 2 and 3, we obtain 
the objective functions of our proposed method as follows:

(10)

q(z, s)

p(z)q(s)
=

p(z, s|y = 1)

p(z, s|y = 0)

=
p(y = 1|z, s)
p(y = 0|z, s)

=
p(y = 1|z, s)

1 − p(y = 1|z, s)
,

(11)
�I(x;z) − �I(z;s) ≈ ��pd(x)

[
DKL(q(z|x)||p(z))

]
− ��q(z,s)

[
log

D(z, s)

1 − D(z, s)

]

=∶ ICMI-DRT.

(12)�q(z,s)[logD(z, s)] + �p(z)q(s)

[
log

(
1 − D(z, s)

)]
.

(13)
maxJSSM ∶=LSSM + ICMI-DRT

= − Recon − KL(s) − (1 − �)KL(z) − �I�(z;s),
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Note that, Eqs. 13 and 14 are alternately optimized with Eq. 12 because the approxima-
tion of Eq. 11 requires the assumption that D

1−D
 approximates the true density ratio, as well 

as GANs.
Comparison with �-VAE Our objective functions (Eqs. 13, 14) are similar to those of 

�-VAE. �-VAE is a representative example of MI-maximizing regularization, which was 
shown to be a simple and effective method for PC (Alemi et al. 2018) and also used as a 
baseline method in He et  al. (2019). The concrete �-VAE objectives for DSAE and Pix-
elCNN-VAE are:

Because KL(z) is an upper bound of I(x;  z), we can control I(x;  z) to some extent by 
varying the weighting parameter � (Alemi et al. 2018; He et al. 2019). Note that, Alemi 
et al. (2018), He et al. (2019) used 𝛽 < 1 to regularize I(x; z) to be large, although �-VAE 
was originally invented to encourage the independence of each dimension of z with 𝛽 > 1 
by Higgins et al. (2017).

When setting 1 − � = � , the first and second terms of the objective functions (Eqs. 13 
and 14) equal to those of �-VAE (Eqs. 15, 16). This indicates that our objective function 
requires only one modification (minimizing I�(z;s) ) from �-VAE, simplifying optimization. 
Here, the additional term for minimizing I�(z, s) is employed to decrease the redundancy of 
z and s.

5  Related works

Sequential VAEs with a global latent variable have been studied for disentangling global 
and local features of data in various domains: topics and details of texts (Bowman et al. 
2016), object identities and the detailed textures of images (Chen et al. 2017), content and 
motion of movies (Hsieh et al. 2018), and speaker and linguistic information of speeches 
(Hsu et  al. 2017; Yingzhen and Mandt 2018). Although this study uses DSAE and Pix-
elCNN-VAE as examples in the experiment, our method could also be combined with 
them. In addition, these models are closely related to the literature regarding disentangled 
representation. Locatello et al. (2019) claimed that pure unsupervised disentangling (Chen 
et al. 2016; Higgins et al. 2017; Kim and Mnih 2018) is fundamentally impossible, whereas 
using rich supervision (Kulkarni et al. 2015) can be costly. Thus, the use of inductive bias 
or weak supervision (Shu et al. 2020) has been encouraged. The assumption that data are 
generated from global and local factors is a representative example of a inductive bias. 
The sequential VAEs leverage the bias by utilizing the carefully designed data-generating 
process.

Unfortunately, the design of structured data-generating processes alone is often insuf-
ficient to learn the global features. To address this issue, Bowman et  al. (2016); Chen 

(14)

maxJARM ∶=LARM + ICMI-DRT

= − Recon − (1 − �)KL(z) − �I�(z;s),

where I�(z;s) = �q(z,s)

[
log

D(z, s)

1 − D(z, s)

]
.

(15)maxVSSM ∶= −Recon − �KL(z) − KL(s),

(16)maxVARM ∶= −Recon − �KL(z).
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et al. (2017) initially proposed to weaken the decoder because PC often occurs when using 
highly expressive decoders. Subsequently, various methods have been proposed to control 
the MI I(x; z) with a regularization term, which does not require the problem-specific archi-
tectural constraints of Bowman et al. (2016); Chen et al. (2017). Concrete examples of MI-
maximizing regularization methods are as follows:

• InfoVAE: Zhao et al. (2019) regularizes I(x; z) to be large by using the MMD, Stein 
variational gradient, or adversarial training.

• �-VAE: Alemi et al. (2018) demonstrate that because the ELBO (Eq. 1) contains a posi-
tive lower bound and a negative upper bound of I(x; z), the MI can be controlled by 
balancing the two terms using a weighting parameter � . They then observed that the 
objective with 𝛽 < 1 alleviates the PC. �-VAE is simpler than InfoVAE because it does 
not require an approximation of I(x; z).

• Auxiliary loss: Lucas and Verbeek (2018) uses the auxiliary tasks of predicting x from 
z, which approximates the minimization of conditional entropy H(x|z). The minimiza-
tion of H(x|z) is equivalent to maximizing I(x; z) because the data entropy H(x) is con-
stant.

• Discriminative objective: Hsu et al. (2017) predicts a sequence index from z, which also 
approximates H(x|z) minimization in the finite sample case.

Additionally, studies (He et al. 2019; Lucas et al. 2019) have proposed methods for alle-
viating PC, which are complementary to MI maximization. Our study differs from these 
studies for alleviating PC in that it aims to obtain information and disentangled representa-
tions with sequential VAEs, and are complementary to them.

Similar to our method, Zhu et al. (2020) proposed to regularize I(z; s) to be small for 
DSAEs. Furthermore, apart from the studies regarding sequential VAEs, various studies 
have attempted to separate relevant from irrelevant information via information-theoretic 
regularization, which is similar to our regularization term of minimizing I(z; s). Specifi-
cally, the studies regarding domain-invariant representation have been proposed to learn 
the invariant representation using adversarial training (Ganin et al. 2016; Xie et al. 2017; 
Liu et  al. 2018), variational information bottleneck frameworks (Moyer et  al. 2018), or 
Hilbert-Schmidt independence criterion (Jaiswal et al. 2019). Our regularization term dif-
fers from the methods of these studies in considering PC, that is, maximizing I(x; z), at the 
same time.

Also, the separation of global and local information may be achieved by using some net-
work architectures other than sequential VAE. For example, VQ-VAE2 (Razavi et al. 2019) 
uses a multi-scale hierarchical encoder to separate global and local information. However, 
since our purpose is to improve the existing approach of learning global representation by 
sequential VAEs, we leave the comparison between sequential VAEs and such methods out 
of the scope of this study. Moreover, note that VQ-VAE2 and the sequential VAEs have 
different goals and applications. For example, while sequential VAEs can handle variable-
length data, VQ-VAE2 cannot handle them. Also, as the latent representation of VQ-VAE2 
has a spatial structure, it might not be suitable for downstream classification and verifica-
tion tasks that we employed in Sect. 6.

From a technical perspective, our study also relates to a feature selection technique 
based on CMI (Fleuret 2004). CMI is useful for selecting features that are both individually 
informative and two-by-two weakly dependent. Then, the CMI-based technique is differ-
ent from the MI-based technique in considering the independence of the features. Moreo-
ver, it is different from the previous studies for disentangled representation learning, for 



2250 Machine Learning (2021) 110:2239–2266

1 3

example, Higgins et al. (2017), Kim and Mnih (2018), Liu et al. (2018) controlled only the 
independence of latent factors. Also, Mukherjee et al. (2019) first proposed the estimation 
of CMI using DNNs; however, our method is different in that it utilizes the encoder distri-
bution of VAEs similar to Zhao et al. (2019), which might improve the estimation (Poole 
et al. 2019).

6  Experiments

6.1  Settings

In the experiments, we provide empirical evidence that MI-maximizing regularization 
causes the problem discussed in Sect. 3. Also, we confirmed that CMI-maximizing regu-
larization can alleviate the problem. The base model architectures used in our experiment 
were chosen as follows. Firstly, although this paper targets two sequential models, the SSM 
and the ARM, there are several possible options for the network architecture that parame-
terizes these data generating processes. Then, we chose to use DSAE (Yingzhen and Mandt 
2018) as an instance of the SSM because, to our knowledge, it is the first and representa-
tive VAE-based SSM with a global latent variable. Also, we adopted PixelCNN-VAEs (He 
et al. 2019) as an instance of the ARM, which is a representative VAE-based ARM with a 
global variable in the literature on image modeling. However, note that the proposed regu-
larization method is applicable regardless of the architecture choice as long as the model 
has the data generating process shown in Fig. 2.

In addition, we used the speech corpus TIMIT (Garofolo et  al. 1992) for the DSAE, 
and evaluated the representation quality using a speaker verification task, as performed in 
previous studies (Hsu et  al. 2017; Yingzhen and Mandt 2018). For PixelCNN-VAE, we 
trained the VAE with a 13-layer PixelCNN decoder on the statically binarized MNIST and 
Fashion-MNIST (Xiao et al. 2017) datasets. Using the trained models, we performed linear 
classification from z to class labels to evaluate the representation quality, as performed in 
Razavi et al. (2019), and then evaluated the ability of controlled generation. z, which has a 
dimensional size of 32, was concatenated with the feature map output from the fifth layer 
of the PixelCNN (which corresponds to s, see Appendix 1), and was passed to the sixth 
layer. Further experimental details are provided in Appendix 3.

As the proposed method, we employed the objective functions JSSM and JARM in 
Eqs.  13 and 14 (denoted as CMI-VAE). We implemented a discriminator D as a CNN 
that receives s and z as inputs (Appendix 5) and trained it alternately with the VAEs. As 
baseline methods, we employed two MI-maximizing regularization methods: �-VAE and 
AdvMI-VAE. �-VAE is a representative example of MI-maximizing regularization. The 
objectives of the �-VAE are provided in Eqs. 15 and 16, and are equal to CMI-VAE, except 
for not having the I�(z;s) term. Moreover, we employed the regularization method denoted 
as AdvMI-VAE, which was proposed in Makhzani and Frey (2017), Zhao et  al. (2019). 
AdvMI-VAE estimates I(x; z) in Eq. 5 with adversarial training. Details regarding AdvMI-
VAE can be found in Appendix 4.

The hyperparameters � and � are set as follows. A naive way to choose these param-
eters would be to use grid search. However, grid search for multiple hyperparameters 
requires exponential computational costs. Therefore, we set � = � in our experiments. 
Although � = � is a heuristic choice and tuning the strength of them independently is 
left as future work, it has the advantage that it does not break the balance of I(x; z) and 
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I(z;  s) significantly, and also minimizes the approximation error of Eqs.  8 and 9. Then, 
we trained the methods with various values of � : � ∈ {0, 0.4, 0.8, 0.9, 0.99} for DSAEs, 
� ∈ {0, 0.1, 0.2, ..., 0.7} for PixelCNN-VAEs on MNIST, � ∈ {0, 0.1, 0.2, ..., 0.9} for Pix-
elCNN-VAEs on Fashion-MNIST. The reason for not setting 𝛾 = 𝛼 > 1 is to avoid a sig-
nificant change from the original VAE objective function due to flipping the sign of the 
KL term in Eqs. (13) and (14). Also, we will report the performance for various values of � 
rather than reporting only the performance for “the best” � after hyperparameter search in 
order to confirm that the proposed method robustly outperforms the baseline performance 
for various hyperparameters. The baseline models ( �-VAE and AdvMI-VAE) were also 
trained with various values of hyperparameter � . Here, instead of using � for �-VAE, we 
use the notation � = 1 − � to match the notation of the proposed method.

6.2  Comparing estimated I(z; s) values

In this section, we evaluate the I(z; s) values of the DSAE (trained on TIMIT) and Pix-
elCNN-VAEs (trained on Fashion-MNIST). Because I(z; s) is intractable, we reported the 
estimated value (denoted as Î(z;s) ) with DRT in the same manner as indicated in Sect. 4.2. 
Here, all methods are trained with various values of the weighting parameter � . For �-VAE 
and AdvMI-VAE, a larger � indicates that I(x; z) is regularized to be larger.

From the results in Table 1, we can make the following observations: (1) the table shows 
that I(z; s) can be larger than 0. It is worth noting that, for DSAEs, the MI defined in terms 
of true posterior p(z, s|x) must be null because z and s are defined as independent random 
variables. Therefore, the result indicates that even though the MI defined in terms of the 
true posterior is null, the MI I(z; s), which is defined by approximated posterior q(z, s|x), is 
not necessarily null, which supports the need for regularizing I(z; s). (2) Also, when using 
the MI-maximizing regularization ( �-VAE and AdvMI-VAE), a larger � tends to result 
in larger Î(z;s) values. This indicates that when we simply regularize I(x; z) to be larger, 
z and s have more redundant information. In contrast, when we do not regularize I(x; z) 
(i.e., � = 0 ), Î(z;s) becomes small; however, it is also undesirable because, in this case, 
z is uninformative regarding x owing to the PC. Contrastingly, CMI-VAE tends to sup-
press the increase in Î(z;s) compared to �-VAE and AdvMI-VAE, especially when the regu-
larization becomes stronger (e.g., � ≥ 0.9 for DSAEs and � ≥ 0.3 for PixelCNN-VAEs). 
This may be because CMI-VAE regularizes I(z;  s) to be small at the same time when � 
becomes larger. Also, note that the difference between AdvMI-VAE and CMI-VAE’s per-
formance seems negligible for small � values (e.g., � = 0.4 for DSAEs) probably because 

Table 1  Estimated values of I(z; s) with the DRT

Each model was trained with a weight �
The scores in bold indicate that they are the best scores within given hyperparameter �

Model DSAEs PixelCNN-VAEs

� 0 0.4 0.8 0.9 0.99 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

�-VAE 1.61 2.60 2.84 2.89 3.27 2.00 2.40 2.78 2.94 3.24 3.36 3.39 3.41 3.37 3.47
AdvMI-VAE – 2.46 3.03 2.86 2.92 2.37 2.69 2.92 3.21 3.31 3.33 3.34 3.31 3.31
CMI-VAE – 2.44 2.83 2.70 2.85 – 2.53 2.46 2.03 2.11 2.29 2.43 2.00 2.35 2.74
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the regularization for I(z; s) was not enough to offset the increase in I(z; s) caused by the 
side effect of increasing I(x; z). This problem could be mitigated by carefully choosing � 
values, and is left as future work.

6.3  Speaker verification experiment with disentangled sequential autoencoders

To quantitatively assess the global representation of DSAE, we evaluate whether z can 
uncover speaker individualities, which are the global features of speech. Specifically, we 
extract z and s≤T from the test utterances using the mean of the encoders of the learned 
DSAE. Subsequently, we performed speaker verification by measuring the cosine similar-
ity of the variables and evaluated the equal error rate (EER). Here, EER is measured for 
both z and s (denoted as EER(z) and EER(s), respectively), and s≤T is averaged over each 
utterance prior to its measurement. A lower EER(z) is preferable because it indicates that 
the model has an improved global representation, containing sufficient information of the 
speakers in a linearly separable form. Furthermore, a higher EER(s) is preferable because it 
indicates that s does not have redundant speaker information. In addition, we report KL(z) 
(see Eq. 2), which approximates the amount of information in z.

Table 2 presents the values of KL(z) and EER for the vanilla DSAE, �-VAE, and CMI-
VAE. For a comparison with AdvMI-VAE, please refer to Appendix 6.1. Note that, our 
results for vanilla DSAE differ from those reported in Yingzhen and Mandt (2018) (DSAE  
in the table), which may be due to differences in the unreported training settings. Although 
it is difficult to tell the difference because an official implementation cannot be obtained, 
a possible factor is the difference in calculation way of the three terms in Eq. 2. For exam-
ple, if one uses the average over time and features to calculate Recon and KL(s) , instead 
of using the sum as we did, the balance of the three terms would change. However, the 
balance is a significant factor on EER as the results for �-VAE show in the next paragraph. 
Also, differences in optimizers, early stopping criteria, and data preprocessing such as 
silence removal could have affected the performance.

Table 2  KL term and EER 
values of DSAE trained using 
TIMIT

Each model was trained with a weight � . ↑ and ↓ indicate that the pur-
pose was to obtain high and low scores, respectively
The scores in bold indicate that they are the best scores within given 
hyperparameter �

Model � KL(z) EER(z) ↓ EER(s) ↑

DSAE∗ 0.00 – 4.82 18.89
DSAE(our 

implementa-
tion)

18.00 11.01 18.64

+ �-VAE 0.40 ( � = 0.6) 53.28 3.88 29.45
+ CMI-VAE 54.13 3.43 30.96
+ �-VAE 0.80 ( � = 0.2) 145.88 4.33 38.84
+ CMI-VAE 145.09 3.99 41.30
+ �-VAE 0.90 ( � = 1e − 1) 202.52 4.55 39.42
+ CMI-VAE 199.89 4.39 41.25
+ �-VAE 0.99 ( � = 1e − 2) 364.71 6.33 38.63
+ CMI-VAE 361.03 5.06 40.08
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The table presents that (1) �-VAE with a smaller � (such as 0) provides a lower EER(s), 
which indicates that s has global information instead of z owing to the PC. Furthermore, 
(2) �-VAE with a larger � (such as 0.99) provides an EER(s) value of approximately 38%, 
which remains substantially different from random chance. Therefore, although MI-max-
imizing regularization was employed, s remained to have global information, indicating 
that Case 1 in Sect. 3 may occur. In addition, (3) given a fixed � , CMI-VAE consistently 
achieved a lower EER(z) and a higher EER(s), while having the same level of KL(z) com-
pared to �-VAE. This indicates that regularizing I(z; s) is complementary to MI maximiza-
tion ( �-VAE), yielding a better z and s that have sufficient global or local information, but 
are well compressed.

One may wonder why � ≥ 0.8 yields a higher EER(z) than � = 0.4 . This may be due 
to the fact that the independence of each dimension of z is worsened by increasing � , as 
indicated in Higgins et  al. (2017), and the induced non-linear relation cannot be meas-
ured by the cosine similarity. In fact, � ≥ 0.8 presented a better performance in our sup-
plementary experiment using the voice conversion task in Appendix 7, indicating that z 
with � ≥ 0.8 has more global information, although the EER(z) is worse. In addition, note 
that the EER(z) value lower than our results here is reported in Hsu et al. (2017). However, 
we believe that our claim, “regularizing I(x; z) and I(z; s) is complementary” is defended, 
despite not achieving state-of-the-art results.

6.4  Experiments with PixelCNN‑VAEs

6.4.1  Unsupervised learning for image classification

For a quantitative assessment of the representation z of PixelCNN-VAEs, we performed 
a logistic regression from z to the class labels y on MNIST and Fashion-MNIST. Specifi-
cally, we first extracted z from 1000 training samples using the mean of q(z|x), where each 
of the 10 classes had 100 samples, and trained the classifier with a total of 1000 samples. 
We then evaluated the accuracy of the logistic regression (AoLR) on the test data. A high 
AoLR indicates that z succeeds in capturing the label information in a linearly separable 
form. Note that we use a small sample size (1000 samples) in order to mimic the settings 
of semi-supervised learning. In other words, we assumed that a large amount of unlabeled 
data and a small amount of labeled data are available, and evaluated whether the methods 
can learn good representation with the unlabeled data to facilicate downstream classifica-
tion task.

Figure  3a, b present AoLR for �-VAE, AdvMI-VAE, and CMI-VAE, along with the 
ELBO (3a) or KL(z) (3b); the upper left curve indicates that the method balances better 
compression (low KL(z)) and high downstream task performance. As shown in the figures, 
given a fixed � , the AoLRs for CMI-VAE are consistently better than those for �-VAE and 
AdvMI-VAE, although all methods have the same level of KL(z). This indicates that CMI-
VAE can extract more global information when compressing data to the same size as �
-VAE. Note that, a small � (such as � = 0 ) and a significantly large � degrade the AoLRs, 
which may be attributed to the same reason indicated in Sect. 6.3. Furthermore, the AoLRs 
of AdvMI-VAE are lower than those of �-VAE, which may be owing to the adversarial 
training in AdvMI-VAE causing optimization difficulties, as stated in Alemi et al. (2018).
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6.4.2  Controlled generation

Most previous studies Yingzhen and Mandt (2018), He et al. (2019) have primarily focused 
on evaluating the quality of global representation. However, a better representation does 
not necessarily improve the performance of the controlled generation, as claimed by Nie 
et  al. (2020). To evaluate the ability of the controlled generation, we propose a modi-
fied version of the classification accuracy score (CAS) (Ravuri and Vinyals 2019), called 
mCAS. CAS trains a classifier that predicts class labels only from the samples generated 
from conditional generative models, and then evaluates the classification accuracy on real 
images, thus measuring the sample quality and diversity of the model. CAS is not directly 
applicable to non-conditional models such as PixelCNN-VAEs. Instead, mCAS meas-
ures the ability of the model to produce high-quality, diverse, but globally coherent (i.e., 
belonging to the same class) images for a given z.

In mCAS, we first prepared 100 real images {xi}100i=1
 , along with their class labels {yi}100i=1

 , 
where each of the 10 classes had 10 samples. Then, using the trained VAEs, we encoded 
each xi into zi and decoded zi to obtain 10 images {x̂i,j}10j=1 for every zi , thereby resulting 
in 1000 generated images (sample images x̂ can be found in Appendix 6.3). Finally, we 
trained the logistic classifier with pairs {(x̂i,j, yi)|i ∈ {1, ..., 100}, j ∈ {1, ..., 10}} , and evalu-
ated the performance on real test images. Intuitively, when the decoder ignores z, the gen-
erated samples may belong to a class different from the original ones, which produces label 
errors. Moreover, when z has excessive information regarding x and the VAE resembles an 
identity mapping, the diversity of the generated samples decreases (recall that 10 samples 
are generated for every zi ), which induces overfitting of the classifier. Therefore, to achieve 
a high mCAS, z should capture only global (label) information.

Figure 3c, d compare the mCAS along with KL(z) on MNIST and Fashion-MNIST. In 
addition, the black horizontal line indicates the classification accuracy when the classi-
fier is trained on 100 real samples {(xi, yi)}100i=1

 , and evaluated on real test images, which 
are referred to as the baseline score. The following can be observed from the figures: (1) 
The mCAS of the three methods outperformed the baseline score, despite using only 100 
labeled samples, as well as in the baseline score, indicating that properly regularized Pix-
elCNN-VAEs could be used for data augmentation. (2) As expected, a significantly low 

AoLR(MNIST) AoLR(Fashion) mCAS(MNIST) mCAS(Fashion)(a) (b) (c) (d)

Fig. 3  Comparison of CMI-VAE with �-VAE and AdvMI-VAE. In each figure, the inverted triangle mark-
ers (i.e., the markers for �-VAE) are annotated with the value of � like 0.0, 0.1, etc. In the figures, an upper 
left curve is desirable because it indicates that the method balances better compression (low KL(z)) and 
high downstream task performances (AoLR and mCAS; see explanations in Sect. 6.4). In addition, detailed 
results can be found in Appendix 6.2



2255Machine Learning (2021) 110:2239–2266 

1 3

KL(z) results in a low mCAS because the decoder of the VAE does not utilize z. Moreover, 
a significantly high KL(z) also tends to degrade mCAS because the decoder may resemble 
a one-to-one mapping from z to x, and therefore, degrade the diversity. This indicates that 
Case 2 in Sect. 3 may have occurred. This phenomenon can also be observed in the sample 
images in Appendix 6.3: there seems to be less diversity in the samples drawn from �-VAE 
and CMI-VAE with � = 0.6 than � = 0.3 . (3) Finally, the curves for CMI-VAE are consist-
ently left to those for �-VAE, indicating that regularizing I(z; s) is also complementary to 
regularizing I(x; z) at the controlled generation.

7  Discussions and future works

Based on the experimental results, it was confirmed that MI-maximizing regularization 
could cause the problems stated in Sect. 3. It was also confirmed that regularizing I(z; s) 
is complementary to regularizing I(x;  z) and leads to an improvement in the learning of 
global features. Here, we chose to extend �-VAE to construct the proposed objective func-
tion (recall that our regularization term needs only one modification from �-VAE). It is 
because we believe that �-VAE is the simplest MI-maximization method that requires fewer 
hyperparameters, which is widely used in the (sequential) VAE community (e.g., He et al. 
2019; Alemi et al. 2018). However, other MI estimation methods, such as AdvMI-VAE and 
the discriminative objective, can be extended to CMI regularization by the addition of the 
I(z; s) minimization term (see Sect. 4.2). Leveraging these MI maximization methods into 
the estimation of CMI, or stabilizing adversarial training with certain techniques (Miyato 
et  al. 2018) may improve the performance, and this remains an issue to be addressed in 
future work. It would also be noteworthy to tune the strength of I(x; z) and I(z; s) indepen-
dently. Future studies may also apply the proposed method to encourage the learning of 
representations that capture the global factors of the environment, such as maps, to support 
reinforcement learning, as suggested in Gregor et al. (2019).

Appendix 1: Data generating process of PixelCNN‑VAEs

Here we show the detailed data generating process of PixelCNN-VAEs. Especially, we show 
how the autoregressive data generating process ΠT

t=1
p(xt|z, x<t) = ΠT

t=1
p(xt|z, st)q(st|x<t) is 

applied to PixelCNN-VAEs. We consider the 13-layer PixelCNN used in He et al. (2019), 
which has five (7 × 7)-kernel-size layers, followed by, four (5 × 5) layers, and then four 
(3 × 3) layers. Each layer has 64 feature maps with dimensions 28 × 28 dimensions. The 
latent variable z is extracted by an encoder, linearly transformed into (28, 28, 4) feature 
maps, and then concatenated to the each layer of the PixelCNN feature maps after the sixth 
layer. We denote the output of the i-th ( i ∈ {1, ..., 13} ) layer as hi,t , where t denotes the 
timestep (that is, x and y coordinates; here, t ∈ {1, ..., 28 × 28 = 784} ). Then, we can put 
st ∶= h6,<t and the decomposition ΠT

t=1
p(xt|z, x<t) = ΠT

t=1
p(xt|z, st)q(st|x<t) holds because 

only h6,<t (not h6,≥t ) are used to generate xt with causal convolution.
One might wonder whether the activations of the PixelCNN, which is the deterministic 

function of x, can be treated as random variables. However, because we regularize s only 
via minimizing I(z; s) (Sect. 4.1) and z and s have no deterministic relation, s can be mean-
ingfully referred to as random variables. Furthermore, it is common to treat the activations 
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of hidden layers as random variables and to consider their MI (or conditional entropy) in 
other literature, e.g., domain-invariant representation learning (Xie et al. 2017).

Note that, the definition of s is an important factor for the “control” of what will be 
learned in z. For example, Chen et al. (2017) proposed improving global representation z 
by using smaller receptive fields for q(st|x<t) and constraining st to more local information. 
Although this architectural constraint can make z informative, it requires weakening the 
expressiveness of PixelCNN and can degrade ELBO (Chen et al. 2017). By contrast, our 
method can be applied regardless of the size of the receptive fields because it prevents s 
from having global information with an information theoretic regularization term. There-
fore, in our experiments, the architectural change of Chen et al. (2017) was not employed 
and large receptive fields were used to balance sufficient ELBO and representation quality.

Appendix 2: The lower bound of I(x; z|s)

Here we derive Eq. 8 and discuss the approximation error between I(x; z|s) and its lower 
bound. Firstly, we can take the lower bound as follows:

since the MI I(z; s|x) is positive. Then, the lower bound I(x;z) − I(z;s) has approximation 
error I(z; s|x). Note that the error can be small under a particular condition. Namely, the 
error can be decomposed as:

Here, both H(z|x) and H(z|x,  s) is thought to be small when x is high-dimensional 
data such as images, movies, and audios, because observing such x would enable us to 
predict z accurately. Also, empirically, it has been shown that the performance of infer-
ence model did not drop much even if the encoders of DSAE are decomposed into 
q(z, s|x) = q(z|x)q(s|x) (Yingzhen and Mandt 2018), which indicates the error is small.

In addition, as long as � ≥ 1 , the following condition holds:

because the MI I(z;  s) is positive. This approximation error becomes the smallest when 
� = 1.

Appendix 3:  Details of experimental settings

Appendix 3.1: Disentangled sequential autoencoder

Data preprocessing We use the TIMIT data (Garofolo et al. 1992), which contains broad-
band 16 kHz recordings of phonetically-balanced read speech. A total of 6300 utterances 
(5.4 h) are presented with 10 sentences from each of the 630 speakers (70% male and 30% 
female). The data have split by Garofolo et al. (1992) into train/test subset. We followed 
Hsu et  al. (2017); Yingzhen and Mandt (2018) for data preprocessing: the raw speech 
waveforms are first split into sub-sequences of 200 ms, and then preprocessed with sparse 

(17)I(x;z|s) = I(x;z) − I(z;s) + I(z;s|x) ≥ I(x;z) − I(z;s),

I(z;s|x) = H(z|x) − H(z|x, s).

(18)I(x;z) − I(z;s) ≥ I(x;z) − �I(z;s),
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fast Fourier transform to obtain a 201 dimensional log-magnitude spectrum, with the win-
dow size 25ms and shift size 10 ms. This results in T = 20 for the observation x1∶T.

Optimization we follow Yingzhen and Mandt (2018) for model architecture, data pre-
processing, and evaluation procedures. The dimensionality of st and z were fixed at 64; 
we set T = 20 for the observation x≤T . We used Adam optimizer with learning rate 2e−4 
for the VAE and 2e−3 for the discriminator, and trained the models for 6000 epochs to get 
good convergence on the training set. The batch size is set to 32. The VAE architecture 
followed full model in Yingzhen and Mandt (2018), and the discriminator architecture is 
described in Appendix 5. The discriminator is updated twice while the VAE is updated 
once. The results are averaged over three random seed trials.

Appendix 3.2: PixelCNN‑VAE

Data preprocessing We use the statically binarized version of MNIST and Fashion-MNIST 
datasets: each pixel value ∈ [0, 1] is binarized with the threshold 0.5. The datasets are orig-
inally split into train/test subsets, and we further split the train subsets into 80% of train and 
20% of validation subsets.

Optimization Regarding the optimization of VAEs, we used the Adam optimizer with a 
learning rate of 0.0001, trained for 300 epochs. The batch size is set to 50. We reported the 
values for the test data when the objective function for the validation data was maximized. 
Regarding the discriminators, we used the Adam optimizer with learning rate 0.001. The 
discriminator architecture is described in Appendix 5, and is updated twice while the VAE 
is updated once.

Appendix 4: Details of AdvMI‑VAE in our experiments

We employ I(x;  z) maximization method proposed by Makhzani and Frey (2017), Zhao 
et al. (2019) as a baseline method in our experiment. Briefly, we add I(x; z) to the standard 
VAE objectives as a regularization term with weighting term � as in Eq. 5. Here, to esti-
mate I(x; z), Makhzani and Frey (2017) utilize the follwing relation based on the DRT:

where p(y = 0) =
1

2
 and p(y = 1) =

1

2
 . Then, although conditional probability p(y|z) cannot 

be obtained, it can be approximated with a discriminator D(z), which outputs D = 1 when 
z ∼i.i.d. q(z) and D = 0 when z ∼i.i.d. p(z) . Then, I(x; z) can be approximated as follows:

D(z) is parameterized with some DNN, and trained alternately with VAEs’ objectives. 
Namely, D is trained to maximize the following objective with Monte Carlo sampling:

(19)
q(z)

p(z)
=∶

p(z|y = 1)

p(z|y = 0)
=

p(y = 1|z)
p(y = 0|z)

,

I(x;z) = �pd(x)
[DKL[q(z|x)||p(z)] − DKL(q(z)||p(z))]

≈ �[DKL[q(z|x)||p(z)] − log
D(z)

1 − D(z)
].

�q(z)[logD(z)] + �p(z)[log
(
1 − D(z)

)
].
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Appendix 5:  Discriminator settings

We have used discriminators for CMI-VAE and AdvMI-VAE. For the discriminator of 
CMI-VAE, to obtain the embedding of s1∶T , we first applied convolutional encoder and 
took mean pooling along time axis. Then, in PixelCNN-VAE, we took innner product 
of the embedding and z and treated it as logit of the discriminator. On the other hand, in 
DSAE, we took cosine similarity of the embedding and z, multiplied the similarity by a 
learnable scale parameter, and treated it as logit of the discriminator. The encoder archi-
tectures for PixelCNN-VAE and DSAE are summarized as follows, with the format Conv 
(depth, kernel size, stride, padding):

PixelCNN-VAE

• Input (28, 28, 1)
• Conv2D (256, 4, 2, 1)
• BatchNorm
• ReLU
• Conv2D (256, 4, 2, 1)
• BatchNorm
• ReLU
• Conv2D (z-dim, 4, 2, 1)

DSAE

• Input (20, 201)
• Conv1D (256, 4, 2, 1)
• BatchNorm
• ReLU
• Conv1D (256, 4, 2, 1)
• BatchNorm
• ReLU
• Conv1D (z-dim, 4, 2, 1)

AdvMI-VAE The discriminator architecture for AdvMI-VAE is summarized as follows, 
with the format Linear (input size, output size):

• Input (z-dim)
• Linear (z-dim, 400)
• ReLU
• Linear (400, 1)
• Softmax
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Appendix 6: Detailed experimental results

Appendix 6.1: Detailed experimental results for DSAE

In this section, we present detailed experimental results for DSAEs, including the compari-
son with AdvMI-VAE. Table 3 presents the ELBO, KL, Recon, EER, and Î(z;s) values of 
DSAE on TIMIT corpus. The ELBO, Recon, and KL(S) values are not divided by T = 20 . 
Also, the Recon values can be nevative because the variance of our decoder are learnable 
parameters. Here, note that KL(z) approximates I(x; z) because it upper bounds I(x; z), and 
can be used for the metric to assess whether a decoder ignores z or not (Bowman et  al. 
2016; Alemi et al. 2018; He et al. 2019).

Comparison with �-VAE Please see Sect. 6.3 for the explanations of main results. Also, 
note that, even for large � , there is still reasonable reconstruction performance for the both 
methods.

Comparison with AdvMI‑VAE

As shown in the table, given a fixed � , AdvMI-VAE has the smallest EER(z) and the small-
est EER(s) compared to �-VAE and CMI-VAE. The reason of the smallest EER(z) might be 
attributed to the independence of each dimension of z; since MI-VAE encourages p(z) and 
q(z) to be the same, the independence would improve and z would become a linear-sepa-
rable form. The smallest EER(z) is apparentaly preferable; however, the smallest EER(s) 
indicates that s has redundant global (speaker) information. As we discussed in Sect.  3, 
such s is undesirable because the decoder can extract global information either from z and 
s; thereby it becomes difficult to control decoder’s output using z. As evidence of this, our 
supplementary experiment in Appendix 7 shows that AdvMI-VAE has the worset perfor-
mance in voice conversion task.

Statistical test

We conducted statistical tests to investigate whether the values of Î(z;s) and EER differ 
between the methods. Since we used only three random seeds due to the high computa-
tional costs of training DNNs, we did not verify whether the results for a fixed � value 
differed between the methods. Instead, we performed paired samples t tests, in which we 
regarded the results of two methods with a fixed � and fixed seed as a pair, and verify 
whether the results for all � values differed between the methods. More specifically, we set 
a null hypothesis as follows: regarding two groups (CMI-VAE v.s. �-VAE or CMI-VAE v.s. 
AdvMI-VAE), the mean value of the difference between pairs equals zero. As a result, we 
obtained p-values smaller than 0.05 for all the tests, indicating that the difference of the 
values of Î(z;s) , EER(s), and EER(z) between the methods is statistically significant.

Appendix 6.2: Detailed experimental results for PixelCNN‑VAE

In this section, we present detailed experimental results for PixelCNN-VAEs. Tables 4 and 
5 present the ELBO, KL(z), Recon, Î(z;s) , mCAS, and AoLR values of PixelCNN-VAEs on 
MNIST and Fashion-MNIST. Moreover, these tables present mCAS(SVM) and AoSVM, 
which are the same with mCAS and AoLR except for using a support vector machine 
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(SVM) with RBF kernel, i.e., a more powerful non-linear classifier, instead of the logistic 
classifier. Also, note that KL(z) approximates I(x; z) because it upper bounds I(x; z), and 
has been used for the metric to assess whether a decoder ignores z or not (Bowman et al. 
2016; Alemi et al. 2018; He et al. 2019). Here, the ELBO and Recon values are not divided 
by T = 28 × 28.

For the explanations of main results in the tables, please see Sect. 6.4. Also, as shown 
in the tables, even when we used a non-linear classifier SVM to calculate mCAS(SVM) 
and AoSVM, CMI-VAE achieved competitive or higher performance than the baselines 
in most cases. Note that, the exception is that given a 𝛾 > 0.4 , there were not much differ-
ences in mCAS(SVM) for Fashion-MNIST within the three methods. One possible reason 
is that using the non-linear classifier increases the number of factors to be considered, such 
as overfitting, and makes fair comparisons difficult. Also, we note that using a very large � 
for PixelCNN-VAEs might not be a good idea. It is because when � becomes too large, the 
decoder of PixelCNN tends to resemble an identity mapping from z to its output, regardless 
of the regularization method (e.g., see, generated samples for � = 0.6 in Appendix 6.3). 
To improve performance while avoiding this phenomenon, it might be useful to using a 
weighting parameter 𝛾 > 𝛼 in Eq. 7, and this remains an issue to be addressed in a future 
work.

Table 4  The ELBO, KL(z), Recon, mCAS, AoLR, mCAS(SVM), and AoSVM values of PixelCNN-VAEs 
on MNIST

Each model was trained with a weighting parameter �

� Model ELBO KL(z) Recon mCAS AoLR mCAS(SVM) AoSVM Î(z;s)

0.0 �-VAE 56.21 3.60 52.61 0.3966 0.6094 0.5722 0.6447 1.81
0.1 �-VAE 56.28 5.33 50.95 0.5917 0.8161 0.7172 0.8458 2.11

CMI-VAE 56.24 4.80 51.43 0.5421 0.7243 0.6499 0.7809 1.97
AdvMI-VAE 56.23 5.16 51.07 0.5325 0.7602 0.6651 0.8080 2.05

0.2 �-VAE 56.68 9.21 47.47 0.6924 0.8479 0.7750 0.8980 2.45
CMI-VAE 56.68 9.32 47.36 0.7229 0.8692 0.7934 0.9026 2.29
AdvMI-VAE 56.50 8.90 47.60 0.6734 0.8208 0.7606 0.8762 2.38

0.3 �-VAE 58.33 18.04 40.29 0.7448 0.8354 0.8109 0.9027 2.85
CMI-VAE 58.03 17.52 40.51 0.7716 0.8630 0.8136 0.9182 1.80
AdvMI-VAE 57.81 16.37 41.44 0.7399 0.8238 0.8014 0.8938 2.85

0.4 �-VAE 61.22 29.00 32.21 0.7476 0.8204 0.8063 0.8962 3.28
CMI-VAE 61.27 29.56 31.71 0.7664 0.8401 0.8122 0.9114 2.21
AdvMI-VAE 60.52 27.10 33.43 0.7461 0.7903 0.7985 0.8742 3.11

0.5 �-VAE 64.55 37.79 26.76 0.7555 0.8279 0.8060 0.9010 3.16
CMI-VAE 64.69 38.40 26.28 0.7575 0.8405 0.8075 0.9088 1.79
AdvMI-VAE 63.57 35.62 27.95 0.7454 0.7719 0.7963 0.8582 3.18

0.6 �-VAE 68.74 46.29 22.45 0.7642 0.8306 0.8120 0.9056 3.27
CMI-VAE 69.00 47.11 21.90 0.7618 0.8486 0.8079 0.9190 2.57
AdvMI-VAE 67.72 44.16 23.57 0.7484 0.7722 0.7949 0.8572 3.19

0.7 �-VAE 74.47 56.04 18.43 0.7531 0.8454 0.7984 0.9148 3.27
CMI-VAE 74.71 56.28 18.43 0.7553 0.8486 0.8019 0.9179 1.81
AdvMI-VAE 72.92 52.88 20.05 0.7496 0.7753 0.7912 0.8601 3.19
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Appendix 6.3: Sample images for PixelCNN‑VAE

Figures 4 present the generated images with PixelCNN-VAEs.

Appendix 7: Supplementary Experiment: voice conversion using 
disentangled sequential autoencoder

See Table 6.
For a quantitative assessment of controlled generation by DSAE, we performed voice 

conversion and evaluated the models with a score similar to mCAS (see, Sect.  6.4), 
which we call VC-mCAS. First, we prepared 500 real speeches (spectrograms with 

Table 5  The ELBO, KL(z), Recon, mCAS, AoLR, mCAS(SVM), and AoSVM values of PixelCNN-VAEs 
on fashion-MNIST each model was trained with a weighting parameter �

� Model ELBO KL(z) Recon mCAS AoLR mCAS(SVM) AoSVM Î(z;s)

0.0 �-VAE 88.60 4.02 84.58 0.4820 0.6906 0.6342 0.7552 2.00
0.1 �-VAE 88.86 6.71 82.16 0.5716 0.7172 0.6556 0.7790 2.40

CMI-VAE 88.90 6.47 82.43 0.5837 0.7201 0.6618 0.7757 2.53
AdvMI-VAE 88.84 6.72 82.12 0.5645 0.7166 0.6592 0.7742 2.37

0.2 �-VAE 89.94 10.95 78.99 0.6174 0.7092 0.6792 0.7708 2.78
CMI-VAE 90.25 11.49 78.76 0.6463 0.7258 0.6885 0.7779 2.46
AdvMI-VAE 89.78 10.55 79.23 0.6132 0.6991 0.6760 0.7655 2.69

0.3 �-VAE 91.45 16.11 75.34 0.6427 0.7030 0.6811 0.7665 2.94
CMI-VAE 91.55 16.39 75.16 0.6578 0.7238 0.6873 0.7713 2.03
AdvMI-VAE 91.14 15.09 76.06 0.6241 0.6817 0.6897 0.7507 2.92

0.4 �-VAE 93.98 24.33 69.65 0.6536 0.7062 0.6858 0.7636 3.24
CMI-VAE 93.81 23.35 70.46 0.6662 0.7145 0.6868 0.7701 2.11
AdvMI-VAE 93.36 22.38 70.98 0.6366 0.6787 0.6886 0.7278 3.21

0.5 �-VAE 97.36 33.02 64.34 0.6547 0.6919 0.6845 0.7521 3.36
CMI-VAE 97.14 32.14 65.00 0.6651 0.7193 0.6867 0.7688 2.29
AdvMI-VAE 96.47 31.19 65.27 0.6343 0.6506 0.6823 0.7056 3.31

0.6 �-VAE 101.76 42.40 59.36 0.6633 0.6899 0.6853 0.7524 3.39
CMI-VAE 101.83 41.97 59.86 0.6685 0.7112 0.6904 0.7659 2.43
AdvMI-VAE 100.66 39.96 60.70 0.6535 0.6420 0.6854 0.6961 3.33

0.7 �-VAE 107.77 52.57 55.20 0.6680 0.6983 0.6900 0.7545 3.41
CMI-VAE 107.49 51.97 55.52 0.6729 0.7103 0.6910 0.7681 2.00
AdvMI-VAE 106.05 49.14 56.91 0.6578 0.6278 0.6838 0.6791 3.34

0.8 �-VAE 117.00 65.76 51.25 0.6649 0.7044 0.6855 0.7665 3.37
CMI-VAE 116.21 64.68 51.53 0.6634 0.7098 0.6851 0.7705 2.35
AdvMI-VAE 113.98 60.19 53.79 0.6599 0.6108 0.6890 0.6709 3.31

0.9 �-VAE 132.62 85.13 47.49 0.6695 0.7097 0.6844 0.7787 3.47
CMI-VAE 131.01 82.97 48.04 0.6703 0.7169 0.6860 0.7780 2.74
AdvMI-VAE 128.34 77.72 50.61 0.6565 0.6209 0.6880 0.6882 3.31
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T = 20 ) {xi}500i=1
 , along with their gender labels (male or female) {yi}500i=1

 , where each of 
the 2 classes had 250 samples. Then, we randomly created 250 pairs {(xi, xj)|yi ≠ yj} , 
i.e., each pair consists of one male and one female speech. Using the trained DSAE, we 
encoded each x into z and s, created the pairs {(zi, si, zj, sj)|yi ≠ yj} , and decoded zi and sj 
( zj and si ) to obtain x̂i,j ( ̂xj,i ), which ideally has the speaker characteristics of xi and the 
linguistic contents of xj . Thus, we obtain 500 generated samples, where each x̂i,j was 
labeled with yi , assuming that the characteristics that tend to depend on gender (such as 
pitch) were successfully converted. Finally, we trained a logistic classifier with the 500 
pairs {(x̂i,j, yi)} and evaluated the performance on real test speeches. Note that, because 
the raw x̂i,j has an excessively high dimension ( 20(T) × 201(features) ) for the logistic 
classifier, x̂ was averaged over the time-axis prior to its measurement. Intuitively, when 
the decoder ignores z, the generated samples might belong to a class different from the 
labeled ones, which produces label errors. Therefore, to achieve a high VC-mCAS, z 

CMI-VAE with γ = 0.3 β-VAE with γ = 0.3

CMI-VAE with γ = 0.6 β-VAE with γ = 0.6

(a) (b)

(c) (d)

Fig. 4  Real images (the first column) and generated images by PixelCNN-VAEs (the other 10 columns). 
The images in each row are stochastically sampled from the decoder p(x|z) using the same z, which is 
extracted from x in the first column. The figures present that the diversity of the images in � = 0.3 is better 
than that in � = 0.6 , which may be because PixelCNN-VAE would resemble an identity mapping with a 
large � . In contrast, � = 0.3 apparently produces more label errors than � = 0.6 because the decoder ignores 
z with a small � (see, e.g., the rows for 3 and 4). Furthermore, when comparing a (CMI-VAE with � = 0.3 ) 
and b ( �-VAE with � = 0.3 ), apparently, a produces less label errors (see, e.g., the rows for 2 and 3). This 
result is consistent with the mCAS scores in Fig. 3 (Sect. 6.4), which indicates that CMI-VAE achieved bet-
ter diversity and less label errors than �-VAE
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should capture global information but s should not. Also, the generated samples should 
be realistic to reduce the domain gap between train (generated) and test (real) data.

Table  6 presents the values of VC-mCAS for the objectives of �-VAE, AdvMI-VAE, 
and CMI-VAE. Note that we report the mean and best scores within three random seed tri-
als for each � . The table illustrates that (1) given a fixed � , CMI-VAE nearly consistently 
achieved a higher VC-mCAS compared to the baseline methods, indicating that regular-
izing I�(z;s) is complementary to MI-maximizing regularization. Furthermore, (2) although 
� = 0.8 yields a higher EER(z) than those with � = 0.4 in Table 2, it yields a higher VC-
mCAS. Also, (3) given a fixed � , although AdvMI-VAE yields the smallest EER(z) among 
the three methods (Appendix 6.1), it yields the lowest performance in VC-mCAS. The 
observations (2) and (3) indicates that EER(z), which was used in previous studies (Hsu 
et al. 2017; Yingzhen and Mandt 2018) for evaluating the quality of global representation, 
does not always be suitable for evaluating the “usefulness” of the representation. There-
fore, we recommend that future studies should evaluate the performance of the controlled 
generation in addition to measuring EER.
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Table 6  VC-mCAS for �-VAE, 
AdvMI-VAE, and CMI-VAE

See explanations in Appendix 7
The scores in bold indicate that they are the best scores within given 
hyperparameter �

Model � VC-mCAS (mean) VC-
mCAS 
(max)

DSAE + �-VAE 0.40 83.73 85.8
DSAE + AdvMI-VAE 0.40 80.87 85.4
DSAE + CMI-VAE 0.40 84.33 86.6
DSAE + �-VAE 0.80 87.27 87.6
DSAE + AdvMI-VAE 0.80 86.73 87.0
DSAE + CMI-VAE 0.80 87.47 88.0
DSAE + �-VAE 0.90 87.20 87.6
DSAE + AdvMI-VAE 0.90 85.87 86.6
DSAE + CMI-VAE 0.90 87.00 87.6
DSAE + �-VAE 0.99 87.33 87.6
DSAE + AdvMI-VAE 0.99 86.93 87.2
DSAE + CMI-VAE 0.99 87.60 88.6
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