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Abstract

Vision Transformer (ViT) is becoming more pop-
ular in image processing. Specifically, we investi-
gate the effectiveness of test-time adaptation (TTA)
on ViT, a technique that has emerged to correct
its prediction during test-time by itself. First, we
benchmark various test-time adaptation approaches
on ViT-B16 and ViT-L16. It is shown that the
TTA is effective on ViT and the prior-convention
(sensibly selecting modulation parameters) is not
necessary when using proper loss function. Based
on the observation, we propose a new test-time
adaptation method called class-conditional feature
alignment (CFA), which minimizes both the class-
conditional distribution differences and the whole
distribution differences of the hidden representa-
tion between the source and target in an online
manner. Experiments of image classification tasks
on common corruption (CIFAR-10-C, CIFAR-100-
C, and ImageNet-C) and domain adaptation (digits
datasets and ImageNet-Sketch) show that CFA sta-
bly outperforms the existing baselines on various
datasets. We also verify that CFA is model agnostic
by experimenting on ResNet, MLP-Mixer, and sev-
eral ViT variants (ViT-AugReg, DeiT, and BeiT).
Using BeiT backbone, CFA achieves 19.8% top-1
error rate on ImageNet-C, outperforming the exist-
ing test-time adaptation baseline 44.0%. This is a
state-of-the-art result among TTA methods that do
not need to alter training phase. 1

1 Introduction
Inspired by the success in natural language processing, Trans-
former [Vaswani et al., 2017] is becoming more and more
popular in various image processing tasks, including image
recognition [Dosovitskiy et al., 2020; Touvron et al., 2021],
object detection [Carion et al., 2020], and video process-
ing [Zhou et al., 2018; Zeng et al., 2020]. Notably, [Doso-
vitskiy et al., 2020] proposed Vision Transformer (ViT),

∗Contact Author
1Code is available at https://github.com/kojima-takeshi188/CFA.

which adapts Transformer architecture to image classifica-
tion tasks and shows that it achieves comparable or superior
performance to that of the conventional convolutional neu-
ral networks (CNNs). Follow-up research also shows that
ViT is more robust to the common corruptions and perturba-
tions than convolution-based models (e.g., ResNet) [Paul and
Chen, 2021; Morrison et al., 2021], which is an important
property for safety-critical applications.

This study seeks to answer the following question: can
we improve the robustness of ViT without retraining it from
scratch? Most prior works focused on how to robustify the
models during training. For example, [Hendrycks et al.,
2019; Hendrycks et al., 2020] demonstrated that several data
augmentation improves robustness of convolutional neural
networks (CNN). Similarly, [Chen et al., 2022] shows that
a sharpness-aware optimizer improves the robustness of ViT.
Unfortunately, such approaches require retraining the models
from scratch, which entails a massive computational burden
and training time for large models (such as ViT). Moreover,
sometimes dataset for pre-training is not publicly available,
which makes it impossible to retrain the models.

This study investigates the effectiveness of test-time adap-
tation (TTA) to robustify ViT. TTA is a recently emerged ap-
proach for improving the robustness of models without re-
training them from scratch and accessing to training dataset
[Schneider et al., 2020; Nado et al., 2020; Wang et al., 2020].
Instead, it corrects the model’s prediction for test data by
modulating its parameters during test time. For example,
[Wang et al., 2020] proposed Tent, which modulates the pa-
rameters of batch normalization (BN) by minimizing predic-
tion entropy. It was shown that Tent can significantly improve
the robustness of ResNet. TTA has two major advantages
over usual training-time techniques. First, it does not alter
the training phase and thus does not need to repeat the com-
putationally heavy training phase. Second, it does not require
accessing to the source data during adaptation, which is im-
possible in the case of large pre-trained models.

Conceptually speaking, TTA can be applied to arbitrary
network architectures. However, naively modulating model
parameters during test-time may cause a catastrophic fail-
ure as discussed in [Wang et al., 2020]. To avoid the issue,
prior works often limited the modulation parameters, which
resulted in architecture constraints. For example, [Schneider
et al., 2020; Wang et al., 2020] modulated statistics and/or
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affine transformation in batch normalization (BN) layer, but
the BN-based method cannot be applied to some modern
models such as ViT since they do not have BN.

This study contributes to addressing this research ques-
tion by following two means. First, we benchmark various
test-time adaptation methods on ViT using several robustness
benchmark tasks (CIFAR10-C, CIFAR100-C, ImageNet-C,
and several domain adaptation tasks). We also design mod-
ulation parameters potentially suitable for ViT-based archi-
tectures. The tested methods include entropy minimization
[Wang et al., 2020], pseudo-classifier [Iwasawa and Matsuo,
2021], pseudo-label [Lee and others, 2013], diversity regu-
larization [Liang et al., 2020], and feature alignments [Liu et
al., 2021]. Regarding modulation parameters, we sweep over
the following four candidates: layer normalization [Ba et al.,
2016], CLS token, feature extractor [Liang et al., 2020], and
entire parameters of a model. The results indicate that the
prior convention in test-time adaptation (i.e., limiting mod-
ulation parameters) is not necessary when using proper loss
function, while it is necessary for pure entropy minimization
based approach. This observation is important for applying
TTA to arbitrary network architectures.

We then propose a new loss function: test-time class-
conditional feature alignment (CFA). Our approach can be
categorized into feature alignment approach as with [Liu et
al., 2021], which minimize the gap of the statistics between
training and test domain. It is worth noting that the feature
alignment approach for test-time adaptation (e.g., our ap-
proach and [Liu et al., 2021]) assumes that one can access
to the statistics on the source dataset during the test phase
but does not need to access to the source dataset itself and to
repeat the computationally heavy training 2. Therefore, this
approach can be used without source dataset during adapta-
tion. We show that such complementary information about
the source data distribution can stabilize the training without
selecting the modulation parameters. In addition, we extend
the feature alignment approach [Liu et al., 2021] by the fol-
lowing two means. First, CFA aligns class-conditional statis-
tics as well as the statistics of overall distribution. Second,
we calculate the statistics after properly normalizing the hid-
den representations. Despite the simplicity, these techniques
significantly boost the performance of test-time adaptation.

In summary, our main contributions are as follows.

• This is the first study that verifies the effectiveness of
test-time adaptation methods on ViT. By benchmarking
several test-time adaptation approaches under common
corruptions and domain adaptation tasks, we have vali-
dated that the robustness of ViT model is improved dur-
ing test time without retraining the model from scratch.

• We introduce a new test-time adaptation method (CFA).
Throughout the experiment, CFA achieves better results

2Test-time adaptation generally assumes that the model would be
distributed without source data due to bandwidth, privacy, or profit
reasons [Wang et al., 2020]. We argue that the statistics of source
data would be distributed even in such a situation since it could
drastically compress data size and eliminate sensitive information.
In fact, some layers often used in typical neural networks contain
statistics of source data (e.g., batch normalization)

than existing baselines on multiple datasets. In addition,
CFA is robust to hyperparameter tuning, which is impor-
tant in practically setting up test-time adaptation.

• We show that CFA consistently improves the robustness
on a wide variety of backbone networks during test time.
In particular, we achieve the state-of-the-art results of
test-time adaptation on ImageNet-C with a 19.8 % top-1
error rate when using BeiT-L16 as a backbone network.

2 Related Work
2.1 Vision Transformer (ViT)
Transformer [Vaswani et al., 2017], first proposed in natu-
ral language processing (NLP) field, also achieves great per-
formance in image processing as Vision Transformer (ViT)
[Dosovitskiy et al., 2020]. ViT divides input image data into
small patches and translates them to embedding vectors, oth-
erwise known as a ”token”. Extra learnable class embedding
(CLS token) is added to the sequence of the tokens before
feeding them into Transformer Encoder. Transformer En-
coder mainly consists of multilayered global self-attention
blocks and MLP blocks. The blocks include layer normal-
ization [Ba et al., 2016] as one function. An MLP head is
added to top layer of the CLS token as a classifier.

Since its invention, ViT has rapidly become popular in the
field of computer vision. Many applications and extensions
have been proposed thus far. For example, [Touvron et al.,
2021],[Bao et al., 2021], and [Steiner et al., 2021] showed
that the performance of ViT is respectively improved by disti-
lation (DeiT), self-supervised learning (BeiT), and data augu-
mentation (ViT-AugReg) during pre-training phase. More re-
cently, [Tolstikhin et al., 2021] proposed MLP-Mixer, which
was proven to be quite competitive with ViT by replacing
self-attention blocks with MLP layers.

This study is interested in how to robustify ViT to the com-
mon perturbations. Recent experimental research has verified
that ViT inherently has robustness without any adaptation or
any additional data augmentation. Several studies empirically
show that ViT is inherently more robust than CNNs [Paul
and Chen, 2021; Morrison et al., 2021; Naseer et al., 2021;
Yamada and Otani, 2022] by using some benchmark datasets.
Several studies have shown that the robustness of ViT can
be improved by changing the training strategy, such as using
a larger data set for the pre-training phase [Paul and Chen,
2021; Bhojanapalli et al., 2021] or a sharpness-aware opti-
mizer for the training phase [Chen et al., 2022]. However,
retraining such a massively pre-trained model from scratch
is not desirable considering the computational burden. The
larger the data and model, the higher it costs for retraining.
At the same time, however, the model size also matters for
robustness, i.e., larger models tend to be more robust by them-
selves (See Appendix E for the detail). This observation moti-
vated us to investigate a lightweight and model-agnostic way
to improve the robustness of the models.

2.2 Test-Time Adaptation (TTA)
This study investigates the effectiveness of the test-time adap-
tation approaches for Vision Transformer and its variants.
Unlike most existing works that focus on training phase to



improve the robustness, test-time adaptation focuses on test-
time. In other words, test-time adaptation does not alter the
training phase; therefore, we do not need to repetitively run
computationally heavy training to improve robustness.

The algorithm of existing test-time adaptation can be sum-
marized by following two aspects: (1) adaptation function
fadapt and (2) modulation parameters ψ. Literally, fadapt
is a function that determines how to modulate the model pa-
rameter during the test time. More formally, fadapt receives a
batch of unlabeled imagesXtest, which is available online at
test-time, and updates the target parameter ψ using the data.
A naive instance of fadapt might use stochastic gradient de-
cent (SGD) by designing a loss function that can effectively
incorporateXtest to correct its prediction. For example, Tent
[Wang et al., 2020], which is a pioneering method for test-
time adaptation, minimizes prediction entropy using SGD,
based on the assumption that a more confident prediction (i.e.
low prediction entropy) leads to a more accurate prediction.
One can also use different loss functions (such as pseudo-
label (PL) [Lee and others, 2013], diversity regularization
(SHOT-IM) [Liang et al., 2020], and feature alignments
(TFA) [Liu et al., 2021]), or design optimization-free proce-
dures to update the model (e.g., T-BN [Schneider et al., 2020;
Nado et al., 2020] and T3A [Iwasawa and Matsuo, 2021]).

The second aspect is the selection of modulation param-
eters ψ. As discussed in [Wang et al., 2020], updating the
entire model parameters θ is often ineffective in test-time op-
timization because θ is usually the only information of the
source data in the setup, and updating all parameters without
restriction results in catastrophic failure. (See Table 1 for the
experiment result). Consequently, prior works also proposed
to sensibly select modulation parameters along with the adap-
tation method fadapt. For example, [Schneider et al., 2020;
Nado et al., 2020] proposed to re-estimate the statistics of
batch normalization [Ioffe and Szegedy, 2015] during the test
time while fixing the other parameters. Similarly, Tent [Wang
et al., 2020] modulated only a set of affine transformation pa-
rameters of the BN layer. This causes two problems when ap-
plying test-time adaptation to ViT. First, ViT has significantly
larger parameters compared to ResNet which is the standard
test bed of prior studies. Consequently, the effectiveness of
TTA on such a huge model has not been fully investigated.
Second, ViT and its variants do not have BN, so they can-
not directly take advantage of the common good strategy. In
other words, there is a lack of knowledge regarding which
parameter should be updated to effectively robustify ViT.

In this study, we avoid the difficulty of sensibly select-
ing the modulation parameters by incorporating the feature-
alignment approach. More specifically, we explicitly mini-
mize the difference between some statistics of source distri-
bution and target (test) distribution, rather than simply modu-
lating model parameters only given data from target distribu-
tion. In other words, we leverage the source statistics as aux-
iliary information regarding the source distribution to prevent
adaptation from causing the aforementioned catastrophic fail-
ure. Note that our method does not rely on the co-existence
of source and target data and does not violate the setting of
test-time adaptation.

Similar to our work, [Liu et al., 2021] recently proposed

test-time feature alignment (TFA), which aligns the hidden
representation between source and target data by minimiz-
ing the distance of the mean and covariance matrix. Our
method is different from TFA in the following two aspects.
First, we propose to align class-conditional statistics as well
as the statistics of overall distribution. Second, we propose to
calculate the statistics after properly normalizing the hidden
representations. In §4.4, our experiment results demonstrate
that these techniques stably improve the performance of var-
ious tasks based on various backbone networks.

3 Methods
3.1 Modulation Parameters
As discussed in §2.2, the choice of modulation parameters is
regarded as important in test-time adaptation but prior BN-
based modulation is not applicable to Vision Transformer. To
find good candidates for ψ in ViT, we sweep over the fol-
lowing four candidates: layer normalization [Ba et al., 2016],
CLS token, feature extractor parameters, and all parameters.

A Layer normalization (LN) re-estimates the mean and
standard deviation of input across the dimensions of the input,
followed by the affine transformation for each dimension. We
update the affine transformation parameters in LN for adap-
tation. A CLS token is a parameterized vector and proven to
be efficient for fine-tuning large models for downstream tasks
in NLP [Lester et al., 2021]. A feature extractor is defined as
any module in a model except for its classifier. This term is
borrowed from [Liang et al., 2020]. In the case of ViT, its
feature extractor consists of Transformer Encoder, patch em-
beddings, and positional embeddings. Updating feature ex-
tractor parameters is a basic unsupervised domain adaptation
setting, while [Wang et al., 2020] claimed that it was ineffec-
tive in test-time adaptation setup (see §2.2).

It is worth noting that these choices of modulation parame-
ters are applicable to many modern architectures, including
ViT, DeiT, MLP-Mixer, and BeiT. This property is impor-
tant in practice because a better backbone network usually
provides significant performance gains. We also empirically
show the effectiveness of TTA on such various architectures.

3.2 Class-Conditional Feature Alignment
Regarding the adaptation function, this study proposes a
new loss function, called class-conditional feature alignment
(CFA). Similar to the most prior works, our method uses
stochastic gradient decent to adapt the model during test-time.
Unlike the prior methods such as Tent, PL, and T3A that mod-
ulate the parameters using the data available at test-time only,
our method aligns the statistics of features between source
and target. In other words, we leverage the source statistics
as an auxiliary information regarding the source distribution
to prevent the model from suffering a catastrophic failure.

Assume that a model consists of two components; a linear
classifier gω as last layer, and a feature extractor fφ before
the classifier. A set of source training samples is denoted as
Xs = {xsi}Ns

i=1. While prior works often calculate the statis-
tics of feature output by fφ, the feature is not always normal-
ized. For example, ViT uses GELU as an activation function



Algorithm 1 Online Adaptation using CFA
Input: Fine-tuned DNN model with parameters θ, Partial pa-
rameters to be updated during adaptation ψ ⊂ θ, Target test
dataset Xt, m-th ordered batch data Xt,m ⊂ Xt, Statistics
of Eq.(2) (3) (4) calculated from source training dataset.
Output:

1: for m = 1 to M do
2: Predict labels Ŷ t,m for Xt,m

3: Calculate statistics Eq.(6) (7) (8) for Xt,m

4: Update ψ using Eq.(11)
5: end for
6: return (Ŷ t,1, .., Ŷ t,M )

and LN with elementwise affine transformation before classi-
fier, which is not bounded. We found that this causes unstable
behavior especially when matching higher order moments of
distributions. Thus, before calculating the statistics, we nor-
malize (bound the minimum and maximum value of) the hid-
den representation for each sample fφ(xsi ) as follows.

h(xsi ) =Tanh
(
LN† (fφ(xsi ))

)
, (1)

where LN† is defined as layer normalization without affine
transformation. Despite the simplicity, we empirically find
that not only matching higher order moment of overall dis-
tribution is stabilized, but also the performance of class-
conditional feature alignment is boosted (See Table 5 for the
detail). The feature normalization might have a positive effect
on class-conditional distribution matching by highlighting the
distribution property of each class.

After the normalization, the mean and higher order central
moments of overall distribution on source data are calculated
and stored in memory as fixed values.

µs =
1

|Xs|
∑
xs
i∈Xs

h(xsi ), (2)

Ms
k =

1

|Xs|
∑
xs
i∈Xs

(h(xsi )− µs)k, (k = 2, ...,K) (3)

where K denotes the maximum number of moments. Class-
conditional mean of the normalized hidden representations is
also calculated and stored in memory as fixed value as follows

µsc =
1

|Xs
c |

∑
xs
i∈Xs

c

h(xsi ), (c = 1, ..., C) (4)

where C denotes the number of classes. Xs
c ⊂ Xs contains

all the source samples whose ground-truth labels are c. Note
that these statistics are calculated before adaptation, i.e., we
do not need to access to source data itself in test phase.

CFA uses these statistics to adapt the model during test
phase. Assume that a sequence of test data drawn from tar-
get distribution arrives at our model one after another. Test
dataset is denoted as Xt = {xti}Nt

i=1, and a set of test data in
m-th batch is denoted as Xt,m ⊂ Xt, (m = 1, ...,M). For
each batch, hidden representations of test data are normalized
and their statistics are calculated in the same way as source.

h(xti) = Tanh
(
LN†

(
fφ(xti)

))
, (5)

ViT-B16 Tent PL SHOT-IM CFA

LN 50.6±0.5 55.7±1.4 45.7±0.0 43.9±0.0
CLS 59.4±0.0 60.6±0.0 59.9±0.0 58.2±0.0
Feature 56.2±2.2 60.8±2.1 43.9±0.0 41.8±0.0
ALL 59.1±1.0 61.4±2.2 44.0±0.0 41.8±0.0
ViT-L16 Tent PL SHOT-IM CFA

LN 42.3±0.0 44.3±0.0 42.0±0.0 40.2±0.0
CLS 50.3±0.0 51.3±0.0 50.7±0.1 49.2±0.0
Feature 43.8±0.6 46.5±0.8 38.4±0.0 36.6±0.0
ALL 44.2±1.1 46.9±0.7 38.4±0.0 36.6±0.0

Table 1: Modulation parameter choice study. The evaluation metric
is top-1 error on ImageNet-C averaged over 15 corruption types with
severity level of 5. ViT-B16 and ViT-L16 are used as the models.
CLS: CLS token, LN: layernorm params, Feature: parameters of
feature extractor, ALL: all the parameters of ViT.

µt,m =
1

|Xt,m|
∑

xt
i∈Xt,m

h(xti), (6)

Mt,m
k =

1

|Xt,m|
∑

xt
i∈Xt,m

(h(xti)− µt,m)k, (k = 2...K) (7)

µt,mc =
1

|Xt,m
c |

∑
xt
i∈X

t,m
c

h(xti), (c = 1, ..., C) (8)

where Xt,m
c , which is a subset of Xt,m, includes all samples

in the current batch annotated as class c by pseudo-labeling
argmaxc gω(fφ(xti)). In this study, the overall distribution
distance is defined by the central moment distance (CMD)
[Zellinger et al., 2017] (see Appendix G for details):

LF =
1

2
||µs − µt,m||2 +

1

2k

K∑
k=2

||Ms
k −Mt,m

k ||2. (9)

As for class-conditional distribution matching, following
prior studies in UDA setting ([Xie et al., 2018; Deng et al.,
2019]), we use class-conditional centroid alignment.

LC =
1

2|C ′|
∑
c∈C′

||µsc − µt,mc ||2, (10)

where C ′ denotes a set of the pseudo labelled classes belong-
ing to the current target minibatch samples. The first-order
moment (centroid) is sufficient for class-conditional feature
alignment when class size is larger than batch size. Parame-
ters ψ of the model are updated by the gradient of the follow-
ing loss function based on the target batch data at hand.

L =LF + λLC , (11)

where λ is a balancing hyperparameter. Following [Wang et
al., 2020], for efficient computation, we use the scheme that
the parameter update follows the prediction for the current
batch. Therefore, the update only affects the next batch. The
adaptation procedure is summarized in Algorithm 1.



Class C10→ C100→ ImageNet→ SVHN→ SVHN→ ImageNet→
Method Type Cond. C10-C C100-C ImageNet-C MNIST MNIST-M ImageNet-S

Source - 14.6±0.0 35.1±0.0 61.9±0.0 23.2±0.0 46.2±0.0 64.1±0.0
T3A gf 13.7±0.0 34.0±0.0 61.2±0.0 17.4±0.3 40.9±0.2 61.7±0.0

Tent fm 10.9±0.2 27.4±0.5 50.6±0.5 15.3±0.2 53.0±1.7 68.3±4.3
PL fm 11.9±0.0 30.1±0.5 55.7±1.4 15.8±0.7 49.7±1.9 62.2±1.2
SHOT-IM fm 8.9±0.0 25.6±0.0 45.7±0.0 13.7±0.1 36.6±0.4 56.1±0.1
TFA(-) fa 8.8±0.0 32.2±0.2 57.8±0.1 16.5±0.1 39.3±0.4 65.7±0.2
CFA-F (Ours) fa 8.7±0.0 25.2±0.0 46.7±0.0 16.3±0.0 39.9±0.1 57.2±0.1

CFA-C (Ours) fa X 8.5±0.0 25.3±0.1 45.3±0.0 14.2±0.0 35.8±0.2 57.6±0.1
CFA (Ours) fa X 8.4±0.0 24.6±0.1 43.9±0.0 14.2±0.1 36.3±0.2 56.1±0.0

Table 2: Method comparison on each adaptation tasks. The evaluation metric is top-1 error rate. The results of CIFAR-10-C, CIFAR-100-C
and ImageNet-C are ones averaged over the 15 corruption types with highest severity level (=5). CFA-F : Overall distribution matching only.
CFA-C : Class-conditional distribution matching only. gf : Gradient free method. fm : Method that controls the output feature representation
(without depending on feature alignment) by modulation. fa : Method that utilizes feature alignment between source and target by modulation.
Our proposal (CFA-C and CFA) is the only method utilizing the class-conditional feature alignment during test-time adaptation.

4 Experiment
4.1 Datasets and Task Design
Common Corruptions. We validate the robustness against
common corruptions on CIFAR-10-C, CIFAR-100-C and
ImageNet-C [Hendrycks and Dietterich, 2019] as target
datasets. These datasets contain data with 15 types corrup-
tions with five levels of severity, that is, each dataset has 75
distinct corruptions. Most of our experiments use the high-
est severity(=5) datasets as they can make the difference in
performance most noticeable. As source datasets, CIFAR-10,
CIFAR-100 [Krizhevsky and Hinton, 2009] and ImageNet(-
2012) [Russakovsky et al., 2015] are used, respectively.

Domain Adaptation. We validate the robustness against
style shift on small-sized datasets and large-sized datasets.
For small-sized datasets, we evaluate the adaptation from
SVHN to MNIST / MNIST-M [Netzer et al., 2011; Le-
Cun et al., 1998; Ganin and Lempitsky, 2015]. For large-
sized datasets, we evaluate the adaptation from ImageNet to
ImageNet-Sketch [Wang et al., 2019]. See Appendix A for a
detail description of each dataset.

4.2 Implementation Details
Vistion Transformer (ViT-B16) is used as a default model
throughout the experiment unless an explicit explanation is
provided. Images of all the datasets are resized to 224×224
(see Appendix B for details). Before adaptation, the model
is fine-tuned on each source dataset (see Appendix C for de-
tails). In addition, the central moments statistics of hidden
representation based on source data need to be calculated to
store them in memory. For this purpose, we use all the train-
ing data in the source dataset and set the dropout [Srivastava
et al., 2014] off in the model during the calculation.

As for default hyperparameters for adaptation on target
data, batch size is set as 64, optimizer is set as SGD with a
constant learning rate of 0.001, and momentum of 0.9 with
gradient clipping [Zhang et al., 2020] at global norm 1.0
across all the experiments (Gradient clipping has the effect

of preventing adaptation by Tent from catastrophic failure in
the severe corruption setting. See “Ablation Study” in §4.4).
As for CFA, the balancing parameter λ is set as 1.0, and max-
imum central moments order K is set as 3. During prediction
and parameter update, dropout is set off in models.

As an evaluation metric, top-1 error of classification is used
across all the experiments. We run all the experiments three
times with different seeds for different data ordering by shuf-
fling. A mean and unbiased standard deviation of the metric
are reported. Our implementation is in PyTorch [Paszke et
al., 2019]. We use various backbone networks from timm
library [Wightman, 2019] and torchvision library (Appendix
D). Every experiment is run on cloud A100 x 1GPU instance.

4.3 Baseline Methods
We compare CFA with some existing baseline test-time adap-
tation methods that do not need to alter training phase as de-
scribed in §2.2: Tent, PL, TFA(-)3 , T3A and SHOT-IM.
In addition, we report the performance of the model on tar-
get datasets without any adaptation as Source. T-BN is ex-
cluded from the baseline because some models (ViT variants
and MLP-Mixer) do not have a batch normalization layer. For
a fair comparison, we use the same hyperparameters across
all the methods as described in §4.2.

4.4 Experiment Result
Modulation Study. Table 1 answers the question about
which set of modulation parameters is the most suitable for
improving the performance of test-time adaptations on ViTs.
There are two findings. First, updating layer nomalization pa-
rameters can achieve balanced and high performance across
all the main methods. Second, SHOT-IM and CFA achieve

3Original TFA needs to alter training phase (add contrastive
learning), while this study focuses on robustifying large-scale mod-
els without retraining them from scratch. Therefore, we have
changed some of the settings from the original TFA so that the model
does not need to alter training phase. The modified version of TFA
is denoted as TFA(-) in our experiments. See Appendix F for details.



ImageNet-C ImageNet-S

ResNet50 82.0±0.0 75.4±0.0

+ CFA / SHOT-IM 58.8±0.0/58.8±0.0 70.0±0.2/69.2±0.1
ResNet101 77.4±0.0 72.3±0.0

+ CFA / SHOT-IM 55.3±0.1/55.7±0.0 66.8±0.0/66.2±0.1

ViT-B16 61.9±0.0 64.1±0.0

+ CFA / SHOT-IM 43.9±0.0/45.7±0.0 56.0±0.1/56.1±0.1

ViT-L16 53.4±0.0 59.1±0.0

+ CFA / SHOT-IM 40.2±0.0/42.0±0.0 52.6±0.0/53.6±0.1

DeiT-S16 59.9±0.0 66.6±0.0

+ CFA / SHOT-IM 46.0±0.0/46.1±0.0 60.3±0.1/59.4±0.0
DeiT-B16 52.9±0.0 62.5±0.0

+ CFA / SHOT-IM 39.9±0.0/39.9±0.0 55.9±0.0/55.4±0.0

MLP-Mixer-B16 73.3±0.0 74.3±0.0

+ CFA / SHOT-IM 52.4±0.1/55.1±0.1 64.2±0.1/65.9±0.2

MLP-Mixer-L16 77.1±0.0 79.8±0.0

+ CFA / SHOT-IM 56.3±0.0/62.4±0.1 70.8±0.3/72.9±0.3

ViT-B16-AugReg 49.0±0.0 57.0±0.0

+ CFA / SHOT-IM 37.6±0.0/38.4±0.0 51.5±0.1/51.0±0.2
ViT-L16-AugReg 39.1±0.0 48.2±0.0

+ CFA / SHOT-IM 32.1±0.0/33.3±0.0 45.2±0.0/45.6±0.1

BeiT-B16 48.3±0.0 52.6±0.0

+ CFA / SHOT-IM 35.4±0.0/37.6±0.0 47.5±0.0/49.1±0.0

BeiT-L16 35.9±0.0 44.2±0.0

+ CFA / SHOT-IM 26.0±0.0/28.2±0.0 39.9±0.1/41.5±0.0

Table 3: Adaptation results based on several backbone networks.
The evaluation metric of ImageNet-C is the averaged top-1 error
over 15 corruption types with a severity level of 5. We use publicly
available models that were already fine-tuned on ImageNet.

higher performance by updating all or feature extractor pa-
rameters, while Tent and PL deteriorates the performance
because of catastrophic failure (See Appendix I for details).
This indicates that a method with more sophisticated strategy
within the adaptation function can work properly without sen-
sibly selecting modulation parameters. In all the subsequent
experiments, we choose layer normalization as modulation
parameters across all the methods for the fair comparison.

CFA Outperforms Existing Methods on Several Datasets.
Table 2 summarizes the adaptation result across datasets for
each test time adaptation methods. As for CIFAR-10-C,
CIFAR-100-C, and ImageNet-C, we measure the averaged
top-1 error across 15 corruption types for the highest severity
level (=5). CFA (our method) aligns both the overall distri-
bution and class-conditional distribution between source and
target datasets. In addition to CFA, we have experimented
class-conditional distribution matching only method (CFA-
C) and overall distribution matching only method (CFA-F)
to measure the contribution of each distribution matching to
performance. Specifically, the objective function of CFA-C
and CFA-F is respectively defined as Eq.(10) and Eq.(9). The
experiment results demonstrate that CFA can achieve the best
or comparable performance against baseline methods across
all datasets. It is also verified that CFA-F and CFA-C can

Severity Source Tent SHOT-IM CFA

1 16.8±0.0 15.4±0.0 15.8±0.0 15.3±0.0
2 20.3±0.0 17.9±0.0 18.4±0.0 17.5±0.0
3 22.5±0.0 19.6±0.4 19.9±0.0 18.7±0.0
4 27.2±0.0 24.0±1.2 23.2±0.0 21.5±0.0
5 35.9±0.0 33.6±0.1 28.2±0.0 26.0±0.0
Average 24.5±0.0 22.1±0.3 21.1±0.0 19.8±0.0

Table 4: Top-1 error rate on ImageNet-C averaged across all the
severity level and 15 corruption types. BeiT-L16 is used as a model.

Method W/. Eq(1)(5) W/O. Eq(1)(5)

Source 61.95±0.00 61.95±0.00

CFA-F (K=1) 46.69±0.02 46.69±0.01
CFA-F (K=3) 46.66±0.02 47.28±0.03
CFA-F (K=5) 46.64±0.02 54.51±0.14

CFA-C 45.31±0.03 47.13±0.06

CFA (K=1) 43.98±0.04 45.28±0.02
CFA (K=3) 43.90±0.04 44.56±0.03
CFA (K=5) 43.90±0.04 52.25±0.11

Table 5: Ablation study of CFA. Top-1 error on ImageNet-C aver-
aged over 15 corruption types with severity level of 5. ViT-B16 is
used. CFA-F : Overall distribution matching only. CFA-C : Class-
conditional distribution matching only. K : Maximum # of central
moments. K=1 denotes first-order moment (mean) matching only.

solely achieve better performance compared to the case with-
out adaptation (“Source”) as in Table 2. Finally, CFA further
boosts the performance on most datasets by combining them.
CFA Is Model Agnostic. Table 3 shows the adaptation
results on ImageNet-C and ImageNet-Sketch by CFA (and
SHOT-IM for comparison) based on various category’s back-
bone networks. Specifically, we used publicly available mod-
els that are already fine-tuned on ImageNet-2012 at a reso-
lution of 224 × 224, including ResNet, ViT, ViT-AugReg,
DeiT, BeiT, and MLP-Mixer. See Appendix D for details.
The modulation parameters are BN for ResNet, and LN for
the others. The results indicate that our method (CFA) consis-
tently improves the performance regardless of the backbone
networks. It is also found that the better performance on the
source dataset (ImageNet), the stronger robustness on the tar-
get dataset (ImageNet-C) the model can gain by adaptation.
See Appendix E for visualization of the relationship.
CFA Achieves SOTA Performance. Among these back-
bone networks, we select BeiT-L16, which achieved strong
performance on ImageNet, and calculate the top-1 error rate
on ImageNet-C averaged over 15 types of corruptions and
all the severity levels (1-5) for each TTA methods. The re-
sults described in Table 4 demonstrate that 19.8% using CFA
on BeiT-L16 gives superior performance to the other baseline
methods. It also outperforms the existing test-time adaptation
result 44.0% using Tent on ResNet50 [Wang et al., 2020].
Therefore, CFA achieves the state-of-the-art (SOTA) perfor-
mance among TTA methods that do not need to alter training
phase (See Appendix I for the full results).



Figure 1: The effect of changing hyperparameters on Tent and CFA
performance. The evaluation metric is the top-1 error on ImageNet-
C averaged over 15 corruption types with a severity level of 5. ViT-
B16 is used as a model. Either one of the hyperparameter values is
changed from the default described in §4.2.

Ablation Study. Table 5 summarizes the ablation study re-
sults to analyze the detailed contributions of each components
in our method on the robustness. Specifically, we analyze the
effect of the normalization of hidden representation before
calculating the distribution statistics by comparing the sce-
narios of with/without Eq.(1) and (5). In the case of CFA-F,
it is verified that the performance deteriorates significantly
without Eq.(1) and (5) especially when the maximum num-
ber of moments K gets larger. This indicates that feature
normalization, especially bounding minimum and maximum
value of hidden representation, stabilizes the performance of
matching higher order moments. In the case of CFA-C, it
is verified that the performance deteriorates without Eq.(1)
and (5). It is speculated that feature normalization, especially
layer normalization without affine transformation, might have
a positive effect on class-conditional (centroid) distribution
matching by highlighting the distribution property for each
class. In addition, it is also verified that using both overall fea-
ture alignment and class-conditional feature alignment (CFA)
boosts the performance compared to either alone (CFA-F or
CFA-C) regardless of the value of K.

Hyperparameter Sensitivity. For online adapatation, hy-
perparameter selection is a challenging issue. Figure 1 shows
the experiment results about each hyperparameter sensitivity
on ImageNet-C with the highest severity level (=5) averaged
over 15 corruption types. We checked 4 hyperparameters by
changing either one of the values from the default described
in §4.2. (a) learning rate, (b) batch size, (c) balancing hyper-
parameter λ, and (d) whether to enable gradient clipping for
SGD optimization. The finding is that Tent is more sensitive
to some hyperparameters than CFA. In particular, enabling
gradient clipping is essential when applying Tent to ViT to
avoid catastrophic failure, while it is not essential for CFA.
Furthermore, large learning rate also causes Tent catastrophic
failure. In contrast, CFA is robust to all the above hyperpa-
rameters. This indicates that we can safely use CFA in un-
known environments with rough hyperparameter selection.

5 Conclusion
This is the first study that verifies the effectiveness of test-
time adaptation methods on ViT to boost their robustness.
Experiment results demonstrate that the existing methods can
be applied to ViT and the prior-convention (sensibly selecting
modulation parameters) is not necessary when a proper loss
function is used. This study also proposed a novel method,
CFA, which is hyperparameter friendly, model agnostic, and
surpasses existing baselines. We hope this study becomes a
milestone of TTA for current large models and will serve as a
stepping stone to TTA for larger models in the future.
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A Datasets Description
A.1 CIFAR-10/100 and ImageNet
CIFAR-10 / CIFAR-100 and ImageNet are used as source
datasets for our experiments. CIFAR-10 / CIFAR-100 are re-
spectively 10-class / 100-class color image datasets including
50,000 training data and 10,000 test data with a resolution of
32×32. ImageNet is a 1000-class image dataset with more
than 1.2 million training data and 50,000 validation data with
various resolutions.

A.2 Corruption Datasets
CIFAR-10-C / CIFAR-100-C and ImageNet-C [Hendrycks
and Dietterich, 2019] are used as target datasets for our ex-
periment. These datasets contain data with 15 types of cor-
ruptions with five levels of severity. Therefore, each dataset
has 75 varieties of corruptions in total. Each corrupted data
is composed of data from original CIFAR-10 and CIFAR-
100 test images, and ImageNet validation images. Ther-
fore, the CIFAR-10-C/CIFAR-100-C consists of 10,000 im-
ages for each corruption/type and ImageNet-C dataset con-
sists of 50,000 images for each corruption/type. Fig.2 il-
lustrates examples of 15 corruption types from ImageNet-C.
These examples are cited from [Hendrycks and Dietterich,
2019]. CIFAR-10-C and CIFAR-100-C have the same cor-
ruption types. Figure.3 illustrates examples for each corrup-
tion severity levels from 1 to 8 of Gaussian Noise. ImageNet-
C dataset contains only images of severity level from 1 to
5. We have augmented the severity levels of Gaussian Noise
datasets from 6 to 8 following the same setting as [Rusak et
al., 2020] to use them for the corruption severity experiment
on Table.7.

A.3 Digits Datasets
SVHN, MNIST and MNIST-M are 10-class classification
datasets for digit recognition ranging from 0 to 9. SVHN[Net-
zer et al., 2011] is used as source dataset. The total number
of training data is 73,257. Test data of MNIST[LeCun et al.,
1998] and MNIST-M[Ganin and Lempitsky, 2015] are used
as target. The total numbers of test dataset used for adapta-
tion are 10,000 and 10,000, respectively. MNIST data is a
gray scale image, so we convert the image into an RGB scale
as a data preprocessing. Figure.4 illustrates some image ex-
amples from SVHN, MNIST and MNIST-M.

A.4 ImageNet-Sketch
ImageNet-Sketch [Wang et al., 2019] is used as target
datasets for our experiments. ImageNet-Sketch contains
50,000 sketch images, 50 images for each of the 1,000 Im-
ageNet classes. Figure.5 illustrates image examples from
ImageNet-Sketch. Most images are mono-color, but RGB
resolution.

B Dataset Pre-processing
For this experiment, images of all datasets are resized to
224×224. For ImageNet, some images are rectanglar, so
all the images are resized with fixed aspect ratio so that

the shorter side of the rectangle is 256, followed by center-
cropping with a size of 224×224. ImageNet-C data have al-
ready been pre-processed in the same way and are publicly
available. ImageNet-Sketch samples are resized to 224 in the
same way and center-cropped with a size of 224×224. When
using ViT-B16, which is a baseline model for our experiment,
pixels of images are rescaled from [0, 255] to [−1, 1] by tak-
ing the mean and std as [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] across
all the datasets. See Table.9 for the other models.

C Fine-Tuning Details
Vistion Transformer(ViT) is used as a basic model for this ex-
periment. Before adaptation, the model needs to be fine-tuned
for each dataset. For CIFAR-10, CIFAR-100 and SVHN,
we use ViT-B16 parameters that is already pre-trained on
ImageNet-21K[Deng et al., 2009], which is a large dataset
with 21k classes and 14M images . For fine-tuning hyperpa-
rameters, following [Dosovitskiy et al., 2020], We use batch
size of 512, set optimizer as SGD with momentum 0.9 and
gradient clipping at global norm 1.0. We choose a learning
rate of 0.03. We apply a cosine schedule of 500 warmup
steps and the total number of iterations as 2000 for CIFAR-
100 and SVHN. We apply cosine schedule of 200 warmup
steps and the total number of iteration as 1000 for CIFAR-
10. The fine-tuning result is 1.1% Top-1 error for CIFAR-10,
6.8% for CIFAR-100, and 3.0% for SVHN. For ImageNet,
we use publicly available ViT-B16 parameters that are already
pre-trained for ImageNet-21K and fine-tuned for ImageNet(-
2012). Therefore, fine-tuning on ImageNet is not required.
The Top-1 error for ImageNet is 18.6% in our setting.

D Detailed information about the backbone
networks used in Table 3

Table.8 summarizes the detailed information about the back-
bone networks. Note that all the models used are already pre-
trained on ImageNet-2012 at resolution 224 × 224 and pub-
licly available.For model agnostic study, pixels are rescaled
by taking the mean and std as described at Table 9.

E Visualization of Model Agnosticity Study
Figure 6 visualizes the relationship between the Top-1 error
rate on ImageNet (Source dataset) and the Top-1 error rate on
ImageNet-C (Target dataset) before / after the CFA adaptation
for each backbone network.

F Detail Settings of Baseline Methods
F.1 TFA(-)
Test-time feature alignment (TFA) [Liu et al., 2021] aligns
the hidden representation on target data by minimizing the
distance of the mean vector µs, µt ∈ RD and covariance ma-
trix Σs,Σt ∈ RD×D between source and target. D is the
dimension size of the hidden representation. We focus only
on the ”Online Feature Alignment” part in TTT++ [Liu et al.,
2021]. Original TFA [Liu et al., 2021] aligns the distributions
at both the hidden representation and the output of the self-
supervised head. However, in our experiment, TFA(-) does



not employ self-supervised learning, so we only focus on dis-
tribution matching of the hidden representation. Specifically,
in this experiment, the hidden representation to align is de-
fined as the one before the classifier head h(x) = f(x;φ).
The loss function is L = β1||µs − µt||22 + β2||Σs − Σt||2F
where || · ||2 is the Euclidean norm and || · ||F is the Frobe-
nius norm. β1 and β2 are balancing hyperparameters. Like
CFA, TFA(-) calulates the statistics on source dataset and
store them in memory before adaptation. Note that ”Online
Dynamic Queue” [Liu et al., 2021] is not used in TFA(-) in
our experiment. Table 6 describes the small experiment re-
sults of TFA(-) on ImageNet-C datasets with severity=5 by
changing the balancing hyperparameters β1, β2. Following
[Liu et al., 2021], we use β1 = 1, β2 = 1 for the main exper-
iment in Table 2.

Method ImageNet-C

TFA(-) (β1 = 1, β2 = 1) 57.7±0.1
TFA(-) (β1 = 1, β2 = 1/D) 48.8±0.0
TFA(-) (β1 = 1, β2 = 0) 46.7±0.0
TFA(-) (β1 = 0, β2 = 1/D) 65.5±0.4

TFA(-) (β1 = 1/D, β2 = 1/D) 61.0±0.1
TFA(-) (β1 = 1/D, β2 = 1/D2) 51.8±0.0
TFA(-) (β1 = 1/D, β2 = 0) 51.8±0.0
TFA(-) (β1 = 0, β2 = 1/D2) 62.0±0.0

Table 6: Experiment results of TFA(-) on ImageNet-C by changing
the balancing hyperparameters β1, β2. Evaluation metric is Top-1
error on ImageNet-C averaged over 15 corruption types with severity
level=5. ViT-B16 is used as a model.

F.2 T3A
T3A [Iwasawa and Matsuo, 2021] updates the centroid of
each class averaging over the pseudo labeled samples’ feature
vectors in an online manner. This is a gradient-free approach
and there is no loss function. The hyperparameter filter size
K is set to 100 in our experiment.

G Central Moment Distance (CMD)
Our proposal utilizes central moment distance (CMD)
[Zellinger et al., 2017] as to minimize the overall distribution
differences between the source and target data. CMD is an
existing approach for UDA settings. Formally, let X and Y
be bounded random samples with respective probability dis-
tributions p and q on the interval [a; b]N . CMD is defined by

CMDk =
1

|b− a| ||E(X)− E(Y )||2

+
1

|b− a|k
K∑
k=2

||Mk(X)−Mk(Y )||2,
(12)

where E(X) = 1
|X|
∑
x is the empirical expectation vector

computed for the sample X , and Mk(X) = E((x−E(X))k)
is the vector of all kth order central moments of the coor-
dinates of X . Y follows the same idea. Previous studies

Severity Source Tent Tent CFA
(std) w/o GC w/ GC w/ GC

1 (0.08) 23.3±0.0 22.0±0.1 22.0±0.0 22.1±0.1
2 (0.12) 26.9±0.0 24.8±0.0 24.9±0.1 25.0±0.0
3 (0.18) 35.6±0.0 30.5±0.1 31.1±0.1 30.6±0.1
4 (0.26) 52.0±0.0 59.8±23.0 41.6±0.1 40.0±0.0
5 (0.38) 77.7±0.0 97.3±0.3 66.3±8.8 56.5±0.1
6 (0.50) 92.7±0.0 99.8±0.1 99.1±0.3 72.0±0.1
7 (0.60) 97.4±0.0 99.9±0.0 99.8±0.0 82.4±0.1
8 (0.70) 99.0±0.0 99.9±0.0 99.9±0.0 89.8±0.2

Table 7: Top-1 error based on Gaussian Noise Dataset for each
severity. ViT-B16 is used as a model. GC : Gradient Clipping. σ :
Standard deviation of Gaussian noise. We additionally create sever-
ity level 6-8 by adding the noise to the ImageNet validation data.

have focused on using CMD in the field of UDA to reduce
the distributional gaps between source and target representa-
tions. However, CMD can also be potentially used for test-
time adaptation because it does not need to store the source
dataset itself; instead, we store central moment statistics of
the source data in memory, and use it during online adapta-
tion for moment matching between source and target.

H Further Study on Severer Corruption
We further analyse the robustness of Tent and CFA from
the severity viewpoint. The detail experiment setting is the
same as described at §4.2. Table 7 summarizes the results
on Gaussian Noise for each severity level from 1 to 8. Orig-
inal ImageNet-C contains only severity level of until 5, so
we create the severer corrupted images (severity 6, 7 and 8)
specific to Gaussian Noise by increasing the standard devia-
tion. We found that gradient clipping[Zhang et al., 2020] is
essential to use Tent in ViT, which are not used in the original
study. Specifically, we clip the global norm of gradients to
1.0. Without gradient clipping, Tent often gave catastrophic
failure. However, even with gradient clipping, when the noise
is severer, Tent causes catastrophic failure while CFA avoids
it during adaptation.

I Detail Experiment Results
I.1 Detail Results for Table.1
See Table.10 and 11.

I.2 Detail Results for Table.2
See Table.12.

I.3 Detail Results for Table.3
See Table.13, 14 and 15.

I.4 Detail Results for Table.4
See Table.16.

I.5 Detail Results for Table.5
See Table.18.

I.6 Detail Results for Figure.1
See Table.17.
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Figure 1: Our IMAGENET-C dataset consists of 15 types of algorithmically generated corruptions
from noise, blur, weather, and digital categories. Each type of corruption has five levels of severity,
resulting in 75 distinct corruptions. See different severity levels in Appendix B.

face of minor input changes. Now in order to approximate C, E and these robustness measures, we
designed a set of corruptions and perturbations which are frequently encountered in natural images.
We will refer to these as “common” corruptions and perturbations. These common corruptions and
perturbations are available in the form of IMAGENET-C and IMAGENET-P.

4 THE IMAGENET-C AND IMAGENET-P ROBUSTNESS BENCHMARKS

4.1 THE DATA OF IMAGENET-C AND IMAGENET-P

IMAGENET-C Design. The IMAGENET-C benchmark consists of 15 diverse corruption types
applied to validation images of ImageNet. The corruptions are drawn from four main categories—
noise, blur, weather, and digital—as shown in Figure 1. Research that improves performance on this
benchmark should indicate general robustness gains, as the corruptions are diverse and numerous.
Each corruption type has five levels of severity since corruptions can manifest themselves at varying
intensities. Appendix A gives an example of the five different severity levels for impulse noise.
Real-world corruptions also have variation even at a fixed intensity. To simulate these, we introduce
variation for each corruption when possible. For example, each fog cloud is unique to each image.
These algorithmically generated corruptions are applied to the ImageNet (Deng et al., 2009) validation
images to produce our corruption robustness dataset IMAGENET-C. The dataset can be downloaded
or re-created by visiting https://github.com/hendrycks/robustness. IMAGENET-C
images are saved as lightly compressed JPEGs; this implies an image corrupted by Gaussian noise is
also slightly corrupted by JPEG compression. Our benchmark tests networks with IMAGENET-C
images, but networks should not be trained on these images. Networks should be trained on datasets
such as ImageNet and not be trained on IMAGENET-C corruptions. To enable further experimentation,
we designed an extra corruption type for each corruption category (Appendix B), and we provide
CIFAR-10-C, TINY IMAGENET-C, IMAGENET 64× 64-C, and Inception-sized editions. Overall,
the IMAGENET-C dataset consists of 75 corruptions, all applied to ImageNet validation images for
testing a pre-existing network.

3

Figure 2: Examples of 15 crruption types from ImageNet-C. These images are borrowed from [Hendrycks and
Dietterich, 2019]. CIFAR-10-C and CIFAR-100-C have the same corruption types.

S=1 (σ=0.08) S=2 (σ=0.12) S=3 (σ=0.18) S=4 (σ=0.26)

S=5 (σ=0.38) S=6 (σ=0.50) S=7 (σ=0.60) S=8 (σ=0.70)

Figure 3: Example images of different severity levels. S : Severity Level. σ : standard deviation of Gaussian
Noise. Images with severity level 1-5 are from ImageNet-C. Images with severity level 6-8 are created by adding
Gaussian noise to the original ImageNet validation dataset.



Figure 4: Examples from Digit recognition Datasets.

Figure 5: Examples from ImageNet-Sketch Dataset.

Backbone Networks Pytorch Model Name ImageNet Top-1
Library(Ver.) in Library Error Rate

ResNet50 torchvision(0.10.0) resnet50 24.8
ResNet101 torchvision(0.10.0) resnet101 23.4
ViT-B16 timm(0.4.9) vit base patch16 224 18.6
ViT-L16 timm(0.4.9) vit large patch16 224 17.1
DeiT-S16 timm(0.5.0) deit small distilled patch16 224 19.0
DeiT-B16 timm(0.5.0) deit base distilled patch16 224 16.8
MLP-Mixer-B16 timm(0.5.0) mixer b16 224 23.5
MLP-Mixer-L16 timm(0.5.0) mixer l16 224 28.2
ViT-B16 (AugReg) timm(0.5.0) vit base patch16 224 15.6
ViT-L16 (AugReg) timm(0.5.0) vit base patch16 224 14.3
BeiT-B16 timm(0.5.0) beit base patch16 224 15.0
BeiT-L16 timm(0.5.0) beit large patch16 224 12.7

Table 8: Backbone networks information used in Table 3



Backbone Network MEAN STD

ResNet50 [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]
ResNet101 [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]
ViT-B16 [0.5, 0.5, 0.5] [0.5, 0.5, 0.5]
ViT-L16 [0.5, 0.5, 0.5] [0.5, 0.5, 0.5]
DeiT-S16 [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]
DeiT-B16 [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]
MLP-Mixer-B16 [0.5, 0.5, 0.5] [0.5, 0.5, 0.5]
MLP-Mixer-L16 [0.5, 0.5, 0.5] [0.5, 0.5, 0.5]
ViT-B16 (AugReg) [0.5, 0.5, 0.5] [0.5, 0.5, 0.5]
ViT-L16 (AugReg) [0.5, 0.5, 0.5] [0.5, 0.5, 0.5]
BeiT-B16 [0.5, 0.5, 0.5] [0.5, 0.5, 0.5]
BeiT-L16 [0.5, 0.5, 0.5] [0.5, 0.5, 0.5]

Table 9: MEAN and STD used for data pre-processing on ImageNet, ImageNet-C
and ImageNet-Sketch for each backbone network.
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Figure 6: Visualization of model agnosticity study result. Each plot indicates the relationship
between the Top-1 error rate on ImageNet (Source dataset) and the Top-1 error rate on ImageNet-C
(Target dataset) before / after the CFA adaptation for each backbone network.



Method(Params) Gaussian Shot Impulse Defocus Glass Motion Zoom Snow

Source 77.7±0.0 75.1±0.0 77.0±0.0 66.9±0.0 69.1±0.0 58.5±0.0 62.8±0.0 60.9±0.0
Tent(LN) 66.3±8.8 77.8±1.6 59.3±0.2 50.9±0.2 49.8±0.2 46.7±0.0 50.9±0.2 75.7±2.0
Tent(CLS) 74.9±0.1 72.6±0.1 74.4±0.0 63.7±0.2 66.8±0.3 55.8±0.0 61.0±0.0 60.5±0.0
Tent(Feature) 77.0±5.6 87.5±6.0 78.8±3.7 48.8±0.1 47.6±0.1 44.5±0.1 67.5±4.3 84.6±4.4
Tent(ALL) 78.2±7.2 87.8±5.4 79.7±4.6 49.0±0.1 47.7±0.2 44.6±0.1 70.9±4.0 86.7±4.1
PL(LN) 75.5±8.3 71.7±3.7 73.7±8.9 53.2±0.1 52.4±0.1 48.6±0.3 52.4±0.4 75.3±1.8
PL(CLS) 76.3±0.0 74.0±0.1 75.6±0.0 66.4±0.0 68.7±0.0 57.0±0.1 61.8±0.2 60.7±0.0
PL(Feature) 85.5±7.3 85.6±8.7 80.4±9.9 51.6±0.2 50.9±0.1 46.9±0.0 61.3±2.1 88.7±2.5
PL(ALL) 83.6±11.9 90.7±2.8 79.1±13.5 51.7±0.4 51.1±0.4 46.8±0.3 61.1±2.5 88.8±2.3
SHOT-IM(LN) 58.6±0.1 56.4±0.1 57.6±0.1 49.7±0.1 48.7±0.2 46.0±0.1 46.4±0.1 47.0±0.1
SHOT-IM(CLS) 75.5±0.0 73.1±0.0 74.9±0.0 64.5±0.2 68.4±0.0 56.5±0.1 61.4±0.1 60.6±0.0
SHOT-IM(Feature) 57.8±0.2 55.3±0.1 57.1±0.1 47.8±0.1 46.7±0.1 43.7±0.1 44.1±0.2 44.4±0.2
SHOT-IM(ALL) 57.8±0.1 55.3±0.1 57.1±0.2 48.0±0.0 46.8±0.1 43.8±0.1 44.2±0.1 44.4±0.1
CFA(LN) 56.5±0.1 54.2±0.1 55.4±0.1 48.3±0.0 47.1±0.0 44.3±0.0 44.4±0.2 44.9±0.1
CFA(CLS) 74.0±0.1 71.3±0.1 73.5±0.0 60.9±0.2 63.5±0.1 54.9±0.1 60.2±0.0 60.0±0.0
CFA(Feature) 55.1±0.2 52.7±0.1 54.2±0.1 46.7±0.1 44.9±0.1 41.7±0.1 41.5±0.1 42.0±0.1
CFA(ALL) 55.1±0.2 52.7±0.1 54.2±0.1 46.7±0.1 44.9±0.1 41.7±0.1 41.5±0.1 42.0±0.1

Method(Params) Frost Fog Brightness Contrast Elastic Pixelate Jpeg Average

Source 57.6±0.0 62.9±0.0 31.6±0.0 88.9±0.0 51.9±0.0 45.3±0.0 42.9±0.0 61.9±0.0
Tent(LN) 48.2±0.4 44.3±0.3 26.1±0.1 58.5±0.3 37.6±0.3 32.7±0.1 34.7±0.1 50.6±0.5
Tent(CLS) 57.2±0.0 56.9±0.2 31.5±0.0 79.4±0.2 51.8±0.0 43.2±0.0 42.1±0.1 59.4±0.0
Tent(Feature) 71.8±6.2 53.2±19.7 25.4±0.1 54.9±0.3 36.6±0.3 30.8±0.0 33.4±0.1 56.2±2.2
Tent(ALL) 71.9±3.8 88.8±1.0 25.4±0.0 54.9±0.3 37.0±0.4 30.8±0.0 33.5±0.1 59.1±1.0
PL(LN) 51.4±0.4 79.5±3.3 26.8±0.1 62.8±0.2 41.1±0.2 35.1±0.2 36.2±0.1 55.7±1.4
PL(CLS) 57.4±0.0 59.0±0.1 31.5±0.0 81.9±0.2 51.9±0.0 44.5±0.1 42.7±0.0 60.6±0.0
PL(Feature) 62.4±10.8 91.6±0.5 26.2±0.1 71.0±10.4 41.0±0.3 33.2±0.2 35.0±0.2 60.8±2.1
PL(ALL) 65.1±11.5 93.8±0.1 26.3±0.1 72.4±11.6 41.6±0.3 33.3±0.1 35.0±0.2 61.4±2.2
SHOT-IM(LN) 45.9±0.1 43.2±0.2 26.1±0.0 56.9±0.2 35.9±0.2 32.4±0.1 34.3±0.1 45.7±0.0
SHOT-IM(CLS) 57.3±0.0 57.3±0.2 31.5±0.0 79.4±0.1 51.8±0.0 44.3±0.0 42.6±0.0 59.9±0.0
SHOT-IM(Feature) 44.3±0.1 40.3±0.1 25.4±0.1 53.2±0.1 34.7±0.1 30.7±0.1 33.2±0.0 43.9±0.0
SHOT-IM(ALL) 44.3±0.1 40.3±0.1 25.4±0.0 53.4±0.2 34.8±0.1 30.7±0.1 33.3±0.1 44.0±0.0
CFA(LN) 44.8±0.1 41.2±0.1 25.6±0.1 54.4±0.2 33.2±0.1 30.5±0.0 33.5±0.1 43.9±0.0
CFA(CLS) 56.6±0.0 56.4±0.1 31.3±0.0 78.0±0.1 50.6±0.1 41.2±0.1 40.1±0.1 58.2±0.0
CFA(Feature) 42.5±0.1 38.1±0.0 24.8±0.1 50.1±0.1 31.8±0.0 28.7±0.0 32.2±0.0 41.8±0.0
CFA(ALL) 42.5±0.1 38.1±0.0 24.8±0.1 50.1±0.1 31.8±0.0 28.7±0.0 32.2±0.0 41.8±0.0

Table 10: Detailed experiment results of Table 1 (Top-1 error rate) based on ViT-B16.



Method(Params) Gaussian Shot Impulse Defocus Glass Motion Zoom Snow

Source 60.5±0.0 59.2±0.0 59.1±0.0 61.3±0.0 62.6±0.0 51.0±0.0 54.2±0.0 53.4±0.0
Tent(LN) 48.9±0.1 47.6±0.0 48.0±0.1 46.4±0.1 48.2±0.1 42.0±0.1 44.6±0.1 45.3±0.2
Tent(CLS) 57.9±0.0 56.5±0.0 56.7±0.0 55.3±0.3 58.9±0.3 46.5±0.1 52.1±0.1 51.5±0.1
Tent(Feature) 47.7±0.1 45.7±0.2 46.8±0.2 42.2±0.2 43.2±0.3 38.9±0.1 40.3±0.3 65.8±9.9
Tent(ALL) 47.6±0.1 45.8±0.2 46.8±0.2 42.3±0.2 43.3±0.3 39.0±0.1 40.6±0.3 70.9±5.3
PL(LN) 50.4±0.0 49.0±0.2 49.2±0.2 49.4±0.1 51.6±0.3 43.1±0.1 46.1±0.1 47.7±0.3
PL(CLS) 58.9±0.1 57.5±0.0 57.7±0.1 56.6±0.2 61.3±0.1 47.2±0.3 52.4±0.1 52.3±0.0
PL(Feature) 48.6±0.2 47.2±0.1 48.0±0.1 44.3±0.3 46.0±0.4 40.3±0.2 43.0±1.1 74.2±6.2
PL(ALL) 48.5±0.3 47.3±0.1 47.9±0.1 44.4±0.3 46.2±0.1 40.5±0.2 43.7±1.5 74.5±4.2
SHOT-IM(LN) 48.8±0.0 47.5±0.1 47.9±0.1 45.9±0.0 47.6±0.1 41.7±0.1 43.7±0.1 44.5±0.1
SHOT-IM(CLS) 58.5±0.0 57.2±0.0 57.3±0.0 55.6±0.5 60.4±0.2 46.8±0.1 52.0±0.0 52.0±0.1
SHOT-IM(Feature) 47.3±0.1 45.2±0.0 46.3±0.1 41.9±0.1 42.5±0.2 38.9±0.1 39.3±0.1 40.0±0.1
SHOT-IM(ALL) 47.4±0.1 45.3±0.1 46.3±0.2 41.9±0.1 42.5±0.2 38.9±0.1 39.2±0.1 40.0±0.1
CFA(LN) 47.3±0.0 45.9±0.1 46.4±0.1 44.6±0.1 45.8±0.0 40.3±0.1 41.9±0.1 42.2±0.1
CFA(CLS) 56.7±0.1 55.1±0.1 55.5±0.0 55.4±0.0 56.3±0.3 46.0±0.1 51.1±0.0 50.8±0.1
CFA(Feature) 45.4±0.2 43.5±0.1 44.5±0.2 40.7±0.2 40.8±0.1 37.1±0.2 37.2±0.0 37.6±0.1
CFA(ALL) 45.4±0.2 43.5±0.1 44.5±0.2 40.7±0.2 40.8±0.1 37.1±0.2 37.2±0.0 37.6±0.1

Method(Params) Frost Fog Brightness Contrast Elastic Pixelate Jpeg Average

Source 52.6±0.0 57.6±0.0 28.3±0.0 83.8±0.0 45.3±0.0 34.1±0.0 37.5±0.0 53.4±0.0
Tent(LN) 46.3±0.2 41.4±0.1 24.5±0.2 54.2±0.1 37.8±0.2 28.9±0.0 30.9±0.1 42.3±0.0
Tent(CLS) 51.4±0.1 50.5±0.1 28.1±0.0 75.1±0.1 44.6±0.0 33.5±0.0 36.0±0.1 50.3±0.0
Tent(Feature) 80.1±2.7 48.0±18.3 23.2±0.0 46.8±0.1 32.5±0.3 26.4±0.1 29.0±0.2 43.8±0.6
Tent(ALL) 79.6±4.2 49.4±20.6 23.3±0.0 46.7±0.1 32.7±0.3 26.4±0.1 29.0±0.1 44.2±1.1
PL(LN) 48.3±0.2 43.8±0.1 25.2±0.1 57.3±0.2 40.6±0.3 30.2±0.2 32.5±0.0 44.3±0.0
PL(CLS) 52.0±0.0 52.6±0.5 28.2±0.0 76.6±0.1 45.1±0.0 33.8±0.0 36.9±0.2 51.3±0.0
PL(Feature) 69.7±7.7 67.3±14.3 24.0±0.0 50.1±0.2 36.2±0.3 27.8±0.2 30.3±0.3 46.5±0.8
PL(ALL) 72.8±4.8 68.4±15.1 24.0±0.2 50.5±0.3 36.5±0.4 27.8±0.2 30.3±0.2 46.9±0.7
SHOT-IM(LN) 44.5±0.1 40.9±0.1 25.2±0.1 53.4±0.1 36.7±0.2 29.5±0.1 31.5±0.1 42.0±0.0
SHOT-IM(CLS) 51.6±0.1 50.2±0.0 28.2±0.0 74.6±0.0 44.9±0.0 33.8±0.0 36.7±0.0 50.7±0.1
SHOT-IM(Feature) 40.7±0.1 37.1±0.4 23.4±0.1 46.1±0.3 31.2±0.3 26.5±0.2 29.1±0.0 38.4±0.0
SHOT-IM(ALL) 40.7±0.1 37.2±0.4 23.4±0.1 46.0±0.1 31.3±0.2 26.5±0.2 29.1±0.1 38.4±0.0
CFA(LN) 42.4±0.0 38.9±0.1 23.9±0.1 51.8±0.1 33.7±0.1 27.7±0.0 30.1±0.1 40.2±0.0
CFA(CLS) 49.9±0.0 50.1±0.1 27.7±0.0 73.7±0.1 43.0±0.1 32.3±0.1 34.9±0.2 49.2±0.0
CFA(Feature) 38.9±0.0 34.7±0.1 22.6±0.1 43.2±0.1 29.2±0.0 25.5±0.0 28.4±0.0 36.6±0.0
CFA(ALL) 38.9±0.0 34.7±0.1 22.6±0.1 43.2±0.1 29.2±0.0 25.5±0.0 28.4±0.0 36.6±0.0

Table 11: Detailed experiment results of Table 1 (Top-1 error rate) based on ViT-L16.



Method Gaussian Shot Impulse Defocus Glass Motion Zoom Snow

C10-C(Source) 23.6±0.0 21.9±0.0 28.7±0.0 5.2±0.0 27.9±0.0 9.1±0.0 4.4±0.0 5.5±0.0
C10-C(Tent) 19.0±0.5 16.8±0.1 36.4±1.7 4.2±0.0 16.8±0.2 6.8±0.1 3.5±0.1 5.1±0.1
C10-C(PL) 20.8±0.1 18.6±0.2 34.4±2.8 4.5±0.1 19.5±0.5 7.6±0.2 3.9±0.1 5.3±0.1
C10-C(TFA) 16.0±0.1 14.4±0.2 14.7±0.2 4.2±0.1 15.5±0.3 6.6±0.1 3.5±0.1 5.0±0.0
C10-C(T3A) 22.2±0.2 20.5±0.1 26.0±0.1 5.3±0.0 25.4±0.1 8.8±0.0 4.4±0.0 5.6±0.0
C10-C(SHOT-IM) 16.8±0.2 15.0±0.2 14.9±0.2 4.2±0.0 15.4±0.2 6.7±0.1 3.5±0.1 4.9±0.0
C10-C(CFA-F) 15.6±0.1 13.9±0.1 14.2±0.2 4.4±0.0 15.1±0.1 6.7±0.1 3.5±0.0 4.9±0.1
C10-C(CFA-C) 15.7±0.1 14.0±0.2 14.5±0.3 4.2±0.1 14.5±0.2 6.2±0.1 3.4±0.1 4.8±0.0
C10-C(CFA) 15.5±0.0 13.8±0.2 14.1±0.3 4.2±0.1 14.5±0.2 6.3±0.2 3.4±0.1 4.7±0.0
C100-C(Source) 55.0±0.0 52.9±0.0 57.8±0.0 18.0±0.0 60.5±0.0 23.6±0.0 16.0±0.0 22.3±0.0
C100-C(Tent) 42.7±0.3 40.0±0.9 47.8±8.5 15.7±0.1 44.9±0.9 19.7±0.1 14.3±0.1 20.4±0.1
C100-C(PL) 45.9±0.4 43.4±1.2 57.8±4.0 16.3±0.3 50.8±0.9 20.8±0.4 14.9±0.2 21.2±0.1
C100-C(TFA) 51.3±0.3 49.4±0.5 49.5±0.8 18.1±0.2 51.8±0.5 23.0±0.5 16.3±0.2 22.9±0.2
C100-C(T3A) 53.6±0.2 51.6±0.1 56.4±0.2 17.8±0.0 56.8±0.1 23.4±0.1 15.9±0.0 21.7±0.1
C100-C(SHOT-IM) 39.4±0.3 37.1±0.2 38.8±0.1 15.7±0.2 38.4±0.1 19.5±0.1 14.4±0.1 20.1±0.0
C100-C(CFA-F) 38.7±0.2 36.2±0.3 37.3±0.3 15.9±0.1 37.4±0.2 19.5±0.1 14.1±0.0 19.9±0.0
C100-C(CFA-C) 39.3±0.4 37.0±0.2 38.3±0.3 15.6±0.1 38.6±0.1 19.5±0.1 14.2±0.1 20.0±0.0
C100-C(CFA) 38.0±0.3 35.9±0.2 36.8±0.3 15.5±0.1 36.9±0.2 19.0±0.2 14.0±0.1 19.6±0.1
IN-C(Source) 77.7±0.0 75.1±0.0 77.0±0.0 66.9±0.0 69.1±0.0 58.5±0.0 62.8±0.0 60.9±0.0
IN-C(Tent) 66.3±8.8 77.8±1.6 59.3±0.2 50.9±0.2 49.8±0.2 46.7±0.0 50.9±0.2 75.7±2.0
IN-C(PL) 75.5±8.3 71.7±3.7 73.7±8.9 53.2±0.1 52.4±0.1 48.6±0.3 52.4±0.4 75.3±1.8
IN-C(TFA) 69.7±0.1 68.0±0.2 69.8±0.2 63.2±0.2 62.6±0.1 57.7±0.1 59.2±0.2 57.0±0.2
IN-C(T3A) 77.8±0.1 74.9±0.1 76.8±0.1 65.5±0.1 68.3±0.0 57.7±0.0 61.7±0.0 60.1±0.0
IN-C(SHOT-IM) 58.6±0.1 56.4±0.1 57.6±0.1 49.7±0.1 48.7±0.2 46.0±0.1 46.4±0.1 47.0±0.1
IN-C(CFA-F) 58.8±0.2 56.7±0.1 57.7±0.1 51.6±0.1 51.5±0.1 47.9±0.1 47.1±0.1 47.0±0.1
IN-C(CFA-C) 58.7±0.1 56.1±0.1 57.5±0.1 50.1±0.1 49.0±0.2 45.6±0.1 46.3±0.2 46.2±0.1
IN-C(CFA) 56.5±0.1 54.2±0.1 55.4±0.1 48.3±0.0 47.1±0.0 44.3±0.0 44.4±0.2 44.9±0.1

Method Frost Fog Brightness Contrast Elastic Pixelate Jpeg Average

C10-C(Source) 8.4±0.0 14.2±0.0 2.4±0.0 15.2±0.0 13.9±0.0 25.5±0.0 13.3±0.0 14.6±0.0
C10-C(Tent) 6.0±0.1 8.8±0.2 2.3±0.0 6.5±0.2 10.3±0.2 9.1±0.4 12.2±0.1 10.9±0.2
C10-C(PL) 6.9±0.2 10.5±0.4 2.4±0.0 7.9±0.4 11.6±0.4 11.9±1.2 12.4±0.3 11.9±0.0
C10-C(TFA) 5.7±0.0 8.0±0.0 2.2±0.0 6.1±0.1 10.1±0.1 7.7±0.1 12.2±0.1 8.8±0.0
C10-C(T3A) 8.0±0.0 13.5±0.0 2.5±0.0 14.1±0.0 13.4±0.0 22.9±0.2 13.5±0.0 13.7±0.0
C10-C(SHOT-IM) 5.8±0.1 8.0±0.2 2.3±0.0 6.1±0.1 10.0±0.1 8.1±0.0 11.8±0.1 8.9±0.0
C10-C(CFA-F) 5.6±0.1 8.1±0.1 2.2±0.0 6.3±0.1 9.6±0.0 7.7±0.1 12.6±0.1 8.7±0.0
C10-C(CFA-C) 5.5±0.0 7.6±0.1 2.2±0.1 5.7±0.1 9.3±0.0 7.4±0.1 12.1±0.2 8.5±0.0
C10-C(CFA) 5.5±0.1 7.6±0.0 2.1±0.0 5.8±0.1 9.2±0.1 7.4±0.2 12.1±0.1 8.4±0.0
C100-C(Source) 27.5±0.0 34.2±0.0 11.9±0.0 35.3±0.0 34.8±0.0 43.3±0.0 33.7±0.0 35.1±0.0
C100-C(Tent) 21.5±0.4 28.0±0.2 11.2±0.1 22.1±0.4 27.9±0.2 22.9±0.6 31.5±0.3 27.4±0.5
C100-C(PL) 23.6±0.4 29.8±0.0 11.6±0.1 25.6±0.6 30.6±0.3 26.8±1.3 32.3±0.4 30.1±0.5
C100-C(TFA) 24.1±0.2 34.0±0.2 12.9±0.2 27.5±1.0 34.3±0.8 31.7±0.9 35.7±0.1 32.2±0.2
C100-C(T3A) 26.3±0.1 33.0±0.1 11.9±0.0 33.7±0.1 33.4±0.1 41.2±0.2 33.3±0.1 34.0±0.0
C100-C(SHOT-IM) 20.8±0.2 26.8±0.2 11.2±0.1 21.5±0.3 27.2±0.1 22.3±0.2 30.5±0.2 25.6±0.0
C100-C(CFA-F) 20.2±0.1 25.9±0.1 11.2±0.1 21.9±0.1 26.1±0.2 21.5±0.2 32.1±0.0 25.2±0.0
C100-C(CFA-C) 20.2±0.2 26.2±0.2 11.1±0.1 20.6±0.4 26.9±0.1 21.6±0.1 31.0±0.2 25.3±0.1
C100-C(CFA) 19.7±0.1 25.3±0.2 10.8±0.1 20.4±0.3 25.8±0.2 20.9±0.2 31.2±0.3 24.6±0.1
IN-C(Source) 57.6±0.0 62.9±0.0 31.6±0.0 88.9±0.0 51.9±0.0 45.3±0.0 42.9±0.0 61.9±0.0
IN-C(Tent) 48.2±0.4 44.3±0.3 26.1±0.1 58.5±0.3 37.6±0.3 32.7±0.1 34.7±0.1 50.6±0.5
IN-C(PL) 51.4±0.4 79.5±3.3 26.8±0.1 62.8±0.2 41.1±0.2 35.1±0.2 36.2±0.1 55.7±1.4
IN-C(TFA) 55.1±0.1 58.3±0.1 34.7±0.1 74.8±0.2 45.9±0.0 45.5±0.1 45.1±0.0 57.8±0.1
IN-C(T3A) 56.8±0.0 62.0±0.0 30.7±0.1 89.4±0.1 49.9±0.0 44.7±0.0 41.7±0.0 61.2±0.0
IN-C(SHOT-IM) 45.9±0.1 43.2±0.2 26.1±0.0 56.9±0.2 35.9±0.2 32.4±0.1 34.3±0.1 45.7±0.0
IN-C(CFA-F) 47.0±0.1 44.4±0.1 27.0±0.0 58.9±0.1 35.4±0.0 33.4±0.0 35.5±0.0 46.7±0.0
IN-C(CFA-C) 45.6±0.1 41.9±0.2 26.1±0.1 56.3±0.2 34.7±0.0 31.5±0.1 34.2±0.0 45.3±0.0
IN-C(CFA) 44.8±0.1 41.2±0.1 25.6±0.1 54.4±0.2 33.2±0.1 30.5±0.0 33.5±0.1 43.9±0.0

Table 12: Detailed experiment results of Table 2 (Top-1 error rate) for each methods on CIFAR-10-C, CIFAR-100-C and
ImageNet-C with severity level=5 by ViT-B16 model.



Method Gaussian Shot Impulse Defocus Glass Motion Zoom Snow

ResNet50 97.8±0.0 97.1±0.0 98.1±0.0 82.1±0.0 90.2±0.0 85.2±0.0 77.5±0.0 83.1±0.0
ResNet101 96.5±0.0 95.7±0.0 96.5±0.0 78.1±0.0 86.8±0.0 80.8±0.0 73.5±0.0 79.0±0.0
ViT-B16 77.7±0.0 75.1±0.0 77.0±0.0 66.9±0.0 69.1±0.0 58.5±0.0 62.8±0.0 60.9±0.0
ViT-L16 60.5±0.0 59.2±0.0 59.1±0.0 61.3±0.0 62.6±0.0 51.0±0.0 54.2±0.0 53.4±0.0
DeiT-S16 69.6±0.0 67.6±0.0 68.1±0.0 72.4±0.0 81.8±0.0 65.2±0.0 70.9±0.0 51.4±0.0
DeiT-B16 58.0±0.0 57.6±0.0 57.0±0.0 66.7±0.0 76.8±0.0 60.8±0.0 65.2±0.0 45.0±0.0
MLP-Mixer-B16 85.0±0.0 84.6±0.0 87.1±0.0 82.3±0.0 88.3±0.0 72.7±0.0 77.0±0.0 67.6±0.0
MLP-Mixer-L16 82.8±0.0 84.9±0.0 85.8±0.0 86.0±0.0 90.2±0.0 80.3±0.0 80.2±0.0 79.0±0.0
ViT-B16 (AugReg) 53.1±0.0 52.4±0.0 53.1±0.0 57.3±0.0 65.8±0.0 49.6±0.0 55.3±0.0 43.1±0.0
ViT-L16 (AugReg) 37.9±0.0 38.6±0.0 37.7±0.0 47.3±0.0 54.9±0.0 39.4±0.0 44.9±0.0 33.8±0.0
BeiT-B16 52.8±0.0 49.9±0.0 50.5±0.0 57.7±0.0 65.9±0.0 50.4±0.0 57.0±0.0 41.8±0.0
BeiT-L16 36.5±0.0 35.1±0.0 35.0±0.0 42.5±0.0 53.0±0.0 36.7±0.0 43.1±0.0 29.8±0.0

Method Frost Fog Brightness Contrast Elastic Pixelate Jpeg Average

ResNet50 76.7±0.0 75.6±0.0 41.1±0.0 94.6±0.0 83.1±0.0 79.4±0.0 68.3±0.0 82.0±0.0
ResNet101 73.3±0.0 71.9±0.0 38.6±0.0 92.8±0.0 75.7±0.0 65.0±0.0 57.6±0.0 77.4±0.0
ViT-B16 57.6±0.0 62.9±0.0 31.6±0.0 88.9±0.0 51.9±0.0 45.3±0.0 42.9±0.0 61.9±0.0
ViT-L16 52.6±0.0 57.6±0.0 28.3±0.0 83.8±0.0 45.3±0.0 34.1±0.0 37.5±0.0 53.4±0.0
DeiT-S16 49.1±0.0 41.6±0.0 27.4±0.0 52.5±0.0 66.9±0.0 65.2±0.0 48.6±0.0 59.9±0.0
DeiT-B16 42.6±0.0 37.1±0.0 24.0±0.0 45.2±0.0 64.1±0.0 51.1±0.0 41.5±0.0 52.9±0.0
MLP-Mixer-B16 59.1±0.0 62.0±0.0 35.8±0.0 88.3±0.0 75.4±0.0 71.6±0.0 62.4±0.0 73.3±0.0
MLP-Mixer-L16 65.0±0.0 63.0±0.0 43.8±0.0 87.6±0.0 75.3±0.0 82.7±0.0 69.1±0.0 77.1±0.0
ViT-B16 (AugReg) 47.4±0.0 43.5±0.0 23.9±0.0 68.2±0.0 53.3±0.0 34.5±0.0 34.0±0.0 49.0±0.0
ViT-L16 (AugReg) 37.6±0.0 37.5±0.0 19.8±0.0 60.1±0.0 43.8±0.0 25.7±0.0 27.3±0.0 39.1±0.0
BeiT-B16 48.5±0.0 52.5±0.0 23.3±0.0 47.8±0.0 57.7±0.0 36.1±0.0 33.1±0.0 48.3±0.0
BeiT-L16 37.0±0.0 37.6±0.0 18.5±0.0 33.5±0.0 46.8±0.0 27.0±0.0 26.4±0.0 35.9±0.0

Table 13: Detailed experiment results of Table 3 (Top-1 error rate) by Source.



Method Gaussian Shot Impulse Defocus Glass Motion Zoom Snow

ResNet50 74.2±0.1 72.2±0.1 73.4±0.1 74.4±0.1 74.7±0.3 61.5±0.1 52.0±0.1 54.7±0.1
ResNet101 71.2±0.1 68.7±0.1 70.8±0.0 70.8±0.2 70.5±0.2 57.9±0.1 48.8±0.0 51.7±0.1
ViT-B16 58.6±0.1 56.4±0.1 57.7±0.1 49.8±0.2 48.7±0.2 45.9±0.1 46.4±0.1 47.0±0.1
ViT-L16 48.8±0.0 47.5±0.1 47.9±0.1 45.9±0.0 47.6±0.1 41.7±0.1 43.8±0.1 44.5±0.1
DeiT-S16 54.4±0.2 52.4±0.1 53.3±0.1 57.3±0.1 56.1±0.1 48.9±0.1 51.4±0.0 42.6±0.0
DeiT-B16 43.7±0.1 42.6±0.1 42.5±0.1 52.0±0.1 49.9±0.0 43.6±0.2 45.8±0.2 36.1±0.0
MLP-Mixer-B16 66.2±0.1 65.4±0.2 65.7±0.3 65.4±0.1 65.4±0.5 55.8±0.2 55.7±0.1 51.0±0.3
MLP-Mixer-L16 65.8±0.2 65.6±0.1 66.6±0.2 72.7±0.4 73.8±0.4 62.7±0.0 66.0±0.2 60.9±0.0
ViT-B16 (AugReg) 43.4±0.0 42.3±0.0 42.4±0.1 44.1±0.1 48.5±0.0 40.9±0.1 43.9±0.1 35.3±0.2
ViT-L16 (AugReg) 34.0±0.0 32.9±0.1 33.4±0.1 38.2±0.1 43.3±0.2 34.3±0.1 38.2±0.0 30.6±0.0
BeiT-B16 43.3±0.1 40.9±0.0 41.9±0.1 44.9±0.1 46.2±0.1 40.0±0.1 43.8±0.1 35.1±0.0
BeiT-L16 30.6±0.0 29.4±0.0 29.7±0.0 34.1±0.1 36.9±0.2 30.3±0.1 34.0±0.1 25.3±0.1

Method Frost Fog Brightness Contrast Elastic Pixelate Jpeg Average

ResNet50 59.7±0.1 43.6±0.1 32.8±0.1 70.5±0.2 46.2±0.1 42.4±0.1 49.1±0.0 58.8±0.0
ResNet101 56.6±0.1 42.0±0.1 31.2±0.0 67.2±0.1 42.5±0.1 39.8±0.1 45.9±0.1 55.7±0.0
ViT-B16 45.9±0.1 43.2±0.2 26.1±0.0 56.9±0.2 35.9±0.2 32.4±0.1 34.4±0.1 45.7±0.0
ViT-L16 44.5±0.1 40.9±0.1 25.2±0.1 53.4±0.1 36.7±0.1 29.5±0.1 31.5±0.1 42.0±0.0
DeiT-S16 43.4±0.1 35.3±0.1 26.1±0.0 41.3±0.1 47.1±0.1 42.6±0.1 39.7±0.1 46.1±0.0
DeiT-B16 39.4±0.1 31.1±0.0 23.1±0.0 35.5±0.1 43.0±0.2 35.6±0.1 34.8±0.1 39.9±0.0
MLP-Mixer-B16 51.4±0.3 47.5±0.6 31.2±0.1 60.7±0.3 49.9±0.1 46.6±0.2 48.3±0.2 55.1±0.1
MLP-Mixer-L16 63.0±0.7 57.7±0.1 39.9±0.2 70.5±0.2 59.3±0.6 55.1±0.5 56.6±0.2 62.4±0.1
ViT-B16 (AugReg) 37.4±0.1 33.8±0.1 22.4±0.0 42.0±0.2 39.2±0.0 29.8±0.1 31.5±0.1 38.4±0.0
ViT-L16 (AugReg) 33.3±0.1 32.5±0.1 19.3±0.0 41.5±0.0 37.0±0.1 23.9±0.0 26.2±0.2 33.3±0.0
BeiT-B16 39.0±0.1 35.4±0.1 21.8±0.1 33.0±0.2 39.0±0.1 30.2±0.1 29.4±0.0 37.6±0.0
BeiT-L16 30.3±0.0 26.7±0.1 16.7±0.0 23.6±0.1 30.8±0.1 21.5±0.1 22.9±0.0 28.2±0.0

Table 14: Detailed experiment results of Table 3 (Top-1 error rate) by SHOT-IM.



Method Gaussian Shot Impulse Defocus Glass Motion Zoom Snow

ResNet50 74.6±0.0 73.7±0.1 73.7±0.2 74.6±0.1 75.0±0.1 61.4±0.1 52.1±0.0 54.3±0.1
ResNet101 70.8±0.1 68.5±0.1 70.5±0.1 70.6±0.2 70.2±0.1 57.5±0.2 48.7±0.0 51.1±0.0
ViT-B16 56.5±0.1 54.1±0.1 55.4±0.1 48.4±0.0 47.1±0.0 44.3±0.0 44.4±0.2 44.9±0.1
ViT-L16 47.3±0.0 45.9±0.1 46.4±0.1 44.6±0.1 45.8±0.0 40.3±0.1 41.9±0.0 42.2±0.1
DeiT-S16 54.5±0.1 52.4±0.1 53.5±0.1 58.0±0.1 56.8±0.2 49.5±0.1 51.4±0.1 41.9±0.1
DeiT-B16 44.5±0.1 42.9±0.1 43.3±0.0 54.2±0.1 53.3±0.1 44.3±0.1 45.4±0.2 34.1±0.1
MLP-Mixer-B16 63.9±0.1 62.5±0.1 63.3±0.0 64.5±0.1 66.4±0.2 54.3±0.2 54.1±0.2 46.3±0.1
MLP-Mixer-L16 61.1±0.1 60.1±0.3 61.8±0.1 70.6±0.1 69.7±0.1 57.9±0.2 58.7±0.2 52.0±0.2
ViT-B16 (AugReg) 43.1±0.0 42.0±0.1 41.9±0.1 45.6±0.0 51.1±0.2 40.1±0.0 43.3±0.1 33.6±0.2
ViT-L16 (AugReg) 33.6±0.1 32.8±0.1 33.3±0.1 38.1±0.1 42.5±0.2 34.2±0.2 36.5±0.1 28.6±0.0
BeiT-B16 41.9±0.1 39.5±0.1 40.5±0.1 43.2±0.0 44.2±0.1 37.7±0.1 41.2±0.1 32.7±0.0
BeiT-L16 29.5±0.1 28.0±0.1 28.5±0.0 32.0±0.0 33.7±0.1 27.7±0.1 30.2±0.0 23.9±0.0

Method Frost Fog Brightness Contrast Elastic Pixelate Jpeg Average

ResNet50 59.5±0.1 43.8±0.0 33.2±0.1 68.6±0.2 46.2±0.1 42.4±0.2 49.2±0.1 58.8±0.0
ResNet101 56.0±0.1 41.9±0.1 31.4±0.1 64.4±0.2 42.2±0.2 39.7±0.1 45.7±0.1 55.3±0.1
ViT-B16 44.8±0.1 41.1±0.1 25.6±0.1 54.4±0.3 33.3±0.1 30.6±0.0 33.5±0.1 43.9±0.0
ViT-L16 42.4±0.0 38.9±0.1 23.9±0.1 51.8±0.1 33.7±0.1 27.7±0.0 30.1±0.1 40.2±0.0
DeiT-S16 42.9±0.1 38.5±0.2 25.0±0.0 41.3±0.1 46.0±0.1 40.8±0.1 38.2±0.0 46.0±0.0
DeiT-B16 37.4±0.0 35.2±0.2 21.7±0.0 34.2±0.0 41.0±0.1 34.1±0.0 32.8±0.1 39.9±0.0
MLP-Mixer-B16 46.8±0.1 42.5±0.3 29.3±0.1 53.3±0.1 48.7±0.5 44.8±0.3 45.7±0.1 52.4±0.1
MLP-Mixer-L16 55.2±0.3 48.6±0.0 33.9±0.1 60.6±0.6 52.3±0.3 49.2±0.1 52.5±0.1 56.3±0.0
ViT-B16 (AugReg) 35.9±0.2 32.3±0.0 21.0±0.0 41.2±0.1 35.7±0.1 28.3±0.0 29.8±0.1 37.6±0.0
ViT-L16 (AugReg) 31.0±0.1 30.7±0.0 18.1±0.0 41.4±0.3 32.8±0.1 22.2±0.1 25.4±0.1 32.1±0.0
BeiT-B16 37.1±0.1 33.4±0.1 19.7±0.1 31.0±0.1 35.1±0.1 27.3±0.1 26.9±0.0 35.4±0.0
BeiT-L16 28.8±0.1 24.4±0.1 15.7±0.0 22.1±0.0 26.4±0.1 19.4±0.0 20.7±0.0 26.0±0.0

Table 15: Detailed experiment results of Table 3 (Top-1 error rate) by CFA.



Method Gaussian Shot Impulse Defocus Glass Motion Zoom Snow

Source (s=1) 16.8±0.0 16.7±0.0 16.8±0.0 17.4±0.0 17.5±0.0 15.3±0.0 19.9±0.0 17.9±0.0
Source (s=2) 17.9±0.0 18.2±0.0 18.4±0.0 19.9±0.0 20.7±0.0 17.1±0.0 24.3±0.0 23.5±0.0
Source (s=3) 20.3±0.0 20.5±0.0 19.9±0.0 26.1±0.0 35.3±0.0 21.6±0.0 29.6±0.0 23.0±0.0
Source (s=4) 25.5±0.0 27.0±0.0 25.5±0.0 33.6±0.0 40.9±0.0 29.5±0.0 34.7±0.0 27.1±0.0
Source (s=5) 36.5±0.0 35.1±0.0 35.0±0.0 42.5±0.0 53.0±0.0 36.7±0.0 43.1±0.0 29.8±0.0
Tent (s=1) 15.3±0.1 15.4±0.0 15.7±0.0 15.4±0.0 15.7±0.0 14.5±0.1 18.1±0.0 16.4±0.0
Tent (s=2) 16.4±0.0 16.6±0.0 17.1±0.0 17.0±0.0 17.8±0.1 16.1±0.0 21.1±0.1 20.6±0.0
Tent (s=3) 18.6±0.0 18.7±0.0 18.6±0.0 21.2±0.0 25.4±0.1 19.5±0.1 24.9±0.0 20.4±0.0
Tent (s=4) 22.5±0.1 23.5±0.0 22.7±0.0 26.6±0.0 28.8±0.1 24.9±0.1 28.0±0.0 23.4±0.1
Tent (s=5) 29.9±0.0 28.6±0.1 29.2±0.1 33.7±0.1 36.5±0.2 29.6±0.1 33.8±0.1 24.8±0.1
SHOT-IM (s=1) 15.8±0.0 15.9±0.0 16.1±0.0 15.7±0.0 16.2±0.0 14.7±0.0 18.6±0.0 16.7±0.0
SHOT-IM (s=2) 16.6±0.0 17.0±0.0 17.4±0.0 17.5±0.0 18.6±0.0 16.3±0.0 21.9±0.1 21.1±0.0
SHOT-IM (s=3) 18.9±0.0 19.1±0.0 18.9±0.0 21.7±0.0 26.8±0.1 20.0±0.0 25.7±0.0 21.0±0.1
SHOT-IM (s=4) 23.2±0.1 24.2±0.1 23.3±0.0 27.2±0.1 30.1±0.1 25.6±0.1 28.8±0.0 24.0±0.0
SHOT-IM (s=5) 30.6±0.0 29.4±0.0 29.7±0.0 34.1±0.1 36.9±0.2 30.3±0.1 34.0±0.1 25.3±0.1
CFA (s=1) 15.2±0.1 15.2±0.0 15.7±0.0 15.3±0.0 15.4±0.0 14.6±0.1 17.6±0.1 16.2±0.0
CFA (s=2) 16.3±0.1 16.5±0.0 17.0±0.1 16.8±0.1 17.2±0.1 15.9±0.1 20.1±0.0 20.0±0.1
CFA (s=3) 18.4±0.0 18.6±0.1 18.4±0.1 20.5±0.0 23.6±0.0 19.0±0.0 23.1±0.1 19.7±0.0
CFA (s=4) 22.3±0.1 23.1±0.1 22.4±0.1 25.6±0.1 26.7±0.1 23.5±0.1 25.8±0.1 22.7±0.1
CFA (s=5) 29.5±0.1 28.0±0.1 28.5±0.0 32.0±0.0 33.7±0.1 27.7±0.1 30.2±0.0 23.9±0.0

Method Frost Fog Brightness Contrast Elastic Pixelate Jpeg Average

Source (s=1) 18.1±0.0 17.8±0.0 14.4±0.0 14.7±0.0 17.5±0.0 15.7±0.0 16.2±0.0 16.8±0.0
Source (s=2) 24.5±0.0 19.5±0.0 15.0±0.0 15.1±0.0 36.1±0.0 16.9±0.0 17.5±0.0 20.3±0.0
Source (s=3) 30.6±0.0 22.8±0.0 15.8±0.0 16.3±0.0 18.9±0.0 17.7±0.0 18.5±0.0 22.5±0.0
Source (s=4) 32.1±0.0 26.9±0.0 16.7±0.0 20.9±0.0 24.6±0.0 20.5±0.0 21.7±0.0 27.2±0.0
Source (s=5) 37.0±0.0 37.6±0.0 18.5±0.0 33.5±0.0 46.8±0.0 27.0±0.0 26.4±0.0 35.9±0.0
Tent (s=1) 16.3±0.1 15.9±0.0 13.4±0.0 14.0±0.1 15.8±0.0 14.2±0.0 15.0±0.0 15.4±0.0
Tent (s=2) 21.2±0.0 16.8±0.0 13.8±0.0 14.3±0.0 29.6±0.0 14.7±0.0 15.8±0.1 17.9±0.0
Tent (s=3) 30.9±6.4 18.6±0.1 14.4±0.0 15.1±0.0 16.6±0.0 15.7±0.0 16.3±0.1 19.6±0.4
Tent (s=4) 50.2±17.7 20.9±0.1 15.0±0.1 17.4±0.0 19.5±0.0 17.8±0.1 18.5±0.0 24.0±1.2
Tent (s=5) 75.5±3.4 26.1±0.0 16.0±0.1 23.0±0.0 75.4±4.0 20.3±0.1 21.5±0.0 33.6±0.1
SHOT-IM (s=1) 16.6±0.0 16.4±0.1 13.6±0.1 14.2±0.0 16.2±0.0 14.4±0.0 15.5±0.0 15.8±0.0
SHOT-IM (s=2) 21.6±0.0 17.4±0.0 14.0±0.1 14.6±0.0 30.1±0.1 15.1±0.1 16.4±0.1 18.4±0.0
SHOT-IM (s=3) 25.9±0.1 19.4±0.0 14.6±0.0 15.4±0.0 17.3±0.0 16.1±0.0 17.0±0.0 19.9±0.0
SHOT-IM (s=4) 27.0±0.1 21.6±0.0 15.4±0.1 18.1±0.1 20.8±0.0 18.6±0.1 19.5±0.1 23.2±0.0
SHOT-IM (s=5) 30.3±0.0 26.7±0.1 16.7±0.0 23.6±0.1 30.8±0.1 21.5±0.1 22.9±0.0 28.2±0.0
CFA (s=1) 16.1±0.1 15.6±0.0 13.5±0.1 14.0±0.0 15.6±0.0 14.2±0.0 14.8±0.0 15.3±0.0
CFA (s=2) 20.4±0.0 16.3±0.0 13.8±0.1 14.4±0.0 27.7±0.0 14.4±0.0 15.5±0.1 17.5±0.0
CFA (s=3) 24.4±0.1 17.8±0.0 14.2±0.0 14.9±0.0 16.1±0.0 15.4±0.0 16.0±0.0 18.7±0.0
CFA (s=4) 25.5±0.1 19.7±0.1 14.9±0.0 16.8±0.0 18.1±0.0 17.3±0.1 17.7±0.1 21.5±0.0
CFA (s=5) 28.8±0.1 24.4±0.1 15.7±0.0 22.1±0.0 26.4±0.1 19.4±0.0 20.7±0.0 26.0±0.0

Table 16: Detailed experiment results of Table 4 (Top-1 error rate).



Method Gaussian Shot Impulse Defocus Glass Motion Zoom Snow

Tent (LR=0.01) 96.1±1.8 95.6±1.2 93.4±5.9 66.6±5.7 70.6±11.5 67.8±13.0 87.6±3.0 96.5±1.0
Tent (LR=0.0001) 69.1±0.3 66.8±0.0 68.2±0.1 62.1±0.1 63.0±0.1 53.8±0.1 57.6±0.1 56.2±0.1
Tent (BS=32) 71.7±5.5 81.9±0.6 63.3±8.0 49.8±0.4 48.3±0.1 45.7±0.1 56.2±4.1 83.2±3.0
Tent (BS=128) 62.5±1.1 67.4±4.6 61.2±0.7 52.5±0.1 51.6±0.3 47.7±0.0 51.2±0.1 62.9±5.1
Tent (GC=OFF) 97.3±0.3 92.0±2.6 94.9±3.9 53.9±3.5 59.6±16.1 50.9±1.3 85.9±0.8 93.2±5.2
CFA (LR=0.01) 54.0±0.3 51.4±0.3 52.9±0.1 47.3±0.2 44.6±0.3 40.8±0.0 40.3±0.1 41.1±0.3
CFA (LR=0.0001) 66.3±0.2 63.7±0.1 65.2±0.1 57.7±0.0 59.4±0.0 51.6±0.0 54.0±0.1 53.4±0.1
CFA (BS=32) 55.6±0.1 53.2±0.1 54.6±0.1 47.5±0.2 46.2±0.1 43.4±0.1 43.4±0.2 44.1±0.1
CFA (BS=128) 58.2±0.1 55.8±0.1 57.2±0.1 50.0±0.1 49.0±0.0 45.8±0.0 46.1±0.1 46.4±0.1
CFA (GC=OFF) 53.9±0.2 51.5±0.2 52.8±0.1 46.6±0.1 44.6±0.2 41.2±0.1 40.9±0.0 41.6±0.1
CFA (λ=0.5) 56.5±0.1 54.2±0.1 55.5±0.1 48.7±0.0 47.4±0.1 44.6±0.1 44.6±0.2 44.9±0.1
CFA (λ=2.0) 56.8±0.2 54.5±0.0 55.9±0.1 48.6±0.1 47.5±0.1 44.5±0.1 44.7±0.2 45.1±0.1

Method Frost Fog Brightness Contrast Elastic Pixelate Jpeg Average

Tent (LR=0.01) 89.9±2.6 91.1±2.5 26.1±0.2 84.0±3.4 35.5±3.6 30.2±0.2 33.8±0.4 71.0±1.5
Tent (LR=0.0001) 54.7±0.1 55.1±0.0 29.3±0.1 76.8±0.2 48.4±0.1 41.2±0.0 40.0±0.1 56.2±0.0
Tent (BS=32) 47.6±0.9 42.9±0.2 25.7±0.1 56.5±0.5 35.9±0.4 31.5±0.1 34.0±0.2 51.6±0.8
Tent (BS=128) 49.3±0.1 46.1±0.2 26.5±0.1 62.1±0.1 39.6±0.3 34.3±0.0 35.5±0.1 50.0±0.6
Tent (GC=OFF) 83.5±2.5 84.9±7.4 25.5±0.0 85.2±8.6 33.4±0.5 29.8±0.0 33.1±0.1 66.9±1.5
CFA (LR=0.01) 42.9±0.2 36.6±0.0 25.4±0.1 46.6±0.3 30.7±0.1 28.5±0.0 32.4±0.1 41.0±0.1
CFA (LR=0.0001) 51.8±0.0 52.4±0.1 28.3±0.0 73.1±0.1 44.4±0.0 39.0±0.1 38.2±0.1 53.2±0.0
CFA (BS=32) 44.1±0.1 39.8±0.0 25.5±0.1 52.0±0.0 32.4±0.0 29.8±0.1 33.0±0.1 43.0±0.0
CFA (BS=128) 45.9±0.1 43.4±0.1 26.0±0.0 57.8±0.1 35.1±0.1 32.0±0.1 34.3±0.1 45.5±0.0
CFA (GC=OFF) 42.5±0.2 36.9±0.1 25.3±0.1 46.9±0.1 30.8±0.1 28.6±0.1 32.1±0.1 41.1±0.0
CFA (λ=0.5) 45.0±0.0 41.4±0.0 25.6±0.1 54.6±0.2 33.3±0.1 30.8±0.0 33.7±0.1 44.1±0.0
CFA (λ=2.0) 44.8±0.0 41.2±0.1 25.7±0.1 54.5±0.2 33.5±0.1 30.7±0.0 33.6±0.1 44.1±0.0

Table 17: Detailed experiment results of Figure 1 (Top-1 error rate).



Method Gaussian Shot Impulse Defocus Glass Motion Zoom Snow

CFA-F (K=1) (h) 58.9±0.1 56.7±0.1 57.7±0.1 51.6±0.0 51.6±0.0 48.0±0.1 47.1±0.1 47.0±0.1
CFA-F (K=1) (f ) 58.6±0.1 56.5±0.0 57.5±0.1 51.5±0.1 51.8±0.2 47.7±0.0 46.8±0.1 46.7±0.1
CFA-F (K=3) (h) 58.8±0.2 56.7±0.1 57.7±0.1 51.6±0.1 51.5±0.1 47.9±0.1 47.1±0.1 47.0±0.1
CFA-F (K=3) (f ) 59.4±0.3 57.1±0.2 58.4±0.3 51.5±0.1 52.5±0.3 48.4±0.0 47.8±0.2 47.9±0.1
CFA-F (K=5) (h) 58.8±0.2 56.7±0.1 57.6±0.1 51.6±0.1 51.5±0.0 47.8±0.0 47.0±0.1 47.1±0.1
CFA-F (K=5) (f ) 66.1±0.3 64.0±0.2 65.5±0.2 59.1±0.2 62.1±1.4 53.5±0.2 55.9±0.5 56.4±0.5
CFA-C (h) 58.7±0.1 56.1±0.1 57.5±0.1 50.1±0.1 49.0±0.2 45.6±0.1 46.3±0.2 46.2±0.1
CFA-C (f ) 60.7±1.1 58.8±0.2 59.1±1.0 52.0±0.2 50.9±0.0 46.8±0.1 47.0±0.3 47.0±0.0
CFA (K=1) (h) 56.6±0.1 54.3±0.2 55.6±0.1 48.5±0.0 47.2±0.1 44.4±0.0 44.5±0.2 45.0±0.1
CFA (K=1) (f ) 57.3±0.0 54.9±0.0 56.2±0.1 50.4±0.1 49.7±0.0 45.8±0.0 45.5±0.1 45.7±0.1
CFA (K=3) (h) 56.5±0.1 54.2±0.1 55.4±0.1 48.3±0.0 47.1±0.0 44.3±0.0 44.4±0.2 44.9±0.1
CFA (K=3) (f ) 57.2±0.1 54.9±0.0 56.1±0.1 48.5±0.1 48.1±0.1 44.9±0.1 45.2±0.1 45.6±0.0
CFA (K=5) (h) 56.4±0.1 54.2±0.1 55.5±0.1 48.4±0.1 47.2±0.1 44.4±0.0 44.4±0.2 44.9±0.1
CFA (K=5) (f ) 64.6±0.3 62.0±0.1 63.5±0.1 55.7±0.3 58.7±0.8 51.3±0.2 53.4±0.2 54.0±0.3

Method Frost Fog Brightness Contrast Elastic Pixelate Jpeg Average

CFA-F (K=1) (h) 47.0±0.1 44.4±0.1 27.0±0.0 58.9±0.1 35.4±0.0 33.4±0.0 35.6±0.0 46.7±0.0
CFA-F (K=1) (f ) 46.8±0.0 44.2±0.1 26.8±0.0 61.7±0.4 35.2±0.0 33.2±0.1 35.3±0.0 46.7±0.0
CFA-F (K=3) (h) 47.0±0.1 44.4±0.1 27.0±0.0 58.9±0.1 35.4±0.0 33.4±0.0 35.5±0.0 46.7±0.0
CFA-F (K=3) (f ) 47.4±0.1 45.6±0.1 27.1±0.1 59.9±0.3 36.6±0.1 34.0±0.3 35.6±0.1 47.3±0.0
CFA-F (K=5) (h) 47.0±0.1 44.4±0.0 27.0±0.0 58.8±0.2 35.4±0.0 33.4±0.0 35.5±0.0 46.6±0.0
CFA-F (K=5) (f ) 53.4±0.5 53.5±0.3 29.4±0.4 72.6±0.3 45.8±0.1 40.7±0.4 39.7±0.3 54.5±0.1
CFA-C (h) 45.6±0.1 41.9±0.2 26.1±0.1 56.3±0.2 34.7±0.0 31.5±0.1 34.2±0.0 45.3±0.0
CFA-C (f ) 46.7±0.1 43.0±0.2 26.5±0.1 65.9±0.1 35.4±0.0 32.0±0.1 35.0±0.0 47.1±0.1
CFA (K=1) (h) 44.9±0.0 41.2±0.1 25.6±0.1 54.4±0.1 33.3±0.1 30.6±0.0 33.6±0.1 44.0±0.0
CFA (K=1) (f ) 45.3±0.1 41.7±0.2 26.3±0.0 60.6±0.2 34.2±0.1 31.2±0.0 34.5±0.1 45.3±0.0
CFA (K=3) (h) 44.8±0.1 41.2±0.1 25.6±0.1 54.4±0.2 33.2±0.1 30.5±0.0 33.5±0.1 43.9±0.0
CFA (K=3) (f ) 45.2±0.1 42.2±0.1 25.7±0.1 55.6±0.1 34.1±0.1 31.2±0.1 33.9±0.0 44.6±0.0
CFA (K=5) (h) 44.8±0.0 41.1±0.0 25.6±0.1 54.3±0.2 33.2±0.1 30.6±0.0 33.6±0.1 43.9±0.0
CFA (K=5) (f ) 51.4±0.4 50.6±0.7 28.3±0.3 69.2±1.3 43.9±0.2 38.9±0.2 38.4±0.2 52.3±0.1

Table 18: Detailed experiment results of Table 5 (Top-1 error rate). (h): Hidden representation is normalized before calculating statistics. (f):
Hidden representationis not normalized.
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