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ABSTRACT

Tidying up a household environment using a mobile manipulator poses various challenges in
robotics, such as adaptation to large real-world environmental variations, and safe and robust
deployment in the presence of humans. The Partner Robot Challenge in World Robot Challenge
(WRC) 2020, a global competition held in September 2021, benchmarked tidying tasks in real home
environments, and, importantly, tested for full system performances. For this challenge, we devel-
oped an entire household service robot system, which leverages a data-driven approach to adapt to
numerous edge cases that occur during the execution, instead of classical manual pre-programmed
solutions. In this paper, we describe the core ingredients of the proposed robot system, including
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visual recognition, object manipulation, and motion planning. Our robot system won the second
prize, verifying the effectiveness and potential of data-driven robot systems for mobile manipulation

in home environments.

1. Introduction

The World Robot Challenge 2020 (WRC2020) is a global
robot competition that was held in Aichi, Japan, Septem-
ber 2021. Among the challenges in the competition, the
Partner Robot Challenge (Real Space) aimed to develop
a robot that can support daily human activities and
approximate tidying up in real-world household envi-
ronments. Tidying up a room may seem easy for most
humans (though boring for many people); however, for
robots, it is a complicated task filled with difficulties. For
example, the robot needs to generalize the rich diver-
sity of objects in real environments, adapting quickly
to different types, poses, and even unseen scenarios.
Moreover, the robot needs to avoid obstacles for safe
deployment while moving both quickly and smoothly
to not disrupt daily human life. Furthermore, unlike
in a simulator, the robot cannot get access to ground-
truth information about the environment and needs to
decide actions promptly between each real-time control
commands.

This paper describes an entire robot system that won
second prize in the WRC2020 competition. In particu-
lar, we describe how we leveraged a data-driven approach
to handle a variety of household environments. In real

environments, any two homes do not have the same
objects, furniture, or layouts. Therefore, it is almost
impossible for the developer to enumerate all possible
situations and manually implement each desired robot
behavior. In other words, the robot should be able to
generalize or adapt to the current environment rather
than strictly following the pre-defined program. Accord-
ingly, we utilized a data-driven approach to both per-
ception and control of the robot system so that the
robot could determine its behavior in new environments.
For instance, we utilize and evaluate the following data-
driven modules on the household environment:

e Object detection and recognition module based on
deep neural networks. They comprise several object
detection modules (Mask R-CNN [1] and UOIS [2])
and prompt-based classification using pre-trained
CLIP [3]. We also designed special prompts to
enhance the performance of pre-trained CLIP for
WRC2020 tidy-up task.

e An image segmentation module was trained in a sim-
to-real manner. We randomized several aspects of the
environment in the simulator, such as robot configu-
rations, drawer knob positions, and object sizes.
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e Human pose recognition module to fulfill the human-
in-the-loop task (‘pass an object to the person shaking
their hands’).

e Predicting grasp pose combining classic principal
components analysis (PCA) and reinforcement learn-
ing in the simulators.

e Grasp detection using a vision-based tactile sensor.

It is worth mentioning that various data-driven meth-
ods have been proposed in various robot learning tasks,
such as locomotion [4, 5], object grasping [6], and pick-
and-place [7]. While these components are also crucial
in the development of the tidying-up robot, the develop-
ment of each components alone is insufficient to develop
a complete system that can operate well in real world.
For example, the robot system should be able to handle
various inputs (such as robot internal states, odometry,
and camera inputs) that usually have drastically differ-
ent frequencies and be optimized with respect to the
computational workload to speed up the entire system.
The notable difference between WRC and many existing
robot learning tasks is that WRC needs to build the entire
system rather than solve a specific task.

In the context of general-purpose household robots,
tasks involved in household robot systems are stan-
dardized as benchmarks and some robot competitions
are held. For example, ERL Consumer Service Robots
Challenge [8] standardize functionalities and tasks on
environment recognition, human-robot interaction, and
object manipulation in house environments. Recently,
RoboCup@Home Domestic Standard Platform League
(DSPL) adopts a similar rule to the WRC2020 tidy-
up task [9-11]. However, many studies based on these
competitions on household service robot systems are
rather biased towards the system integration for certain
benchmarks than discussing the generalization and have
explored separately from the robot learning studies, while
some recent solutions of these competitions partly lever-
age learning modules (e.g. oft-the-shelf object recogni-
tion modules) [12-14]. In the WRC2020 competition,
we showcased a service robot system that extensively uti-
lized data-driven modules for generalization and adap-
tation in household environments durable for real-world
deployment.

To utilize data-driven approach in WRC2020 task, it
is important to consider how to design the entire system
and how to separate the complex system into trainable
modules as well as how to train each module. How-
ever, many data-driven approaches are only tested on
benchmarks that do not require an entire system design,
or a detailed design of the entire system are not com-
prehensively discussed [15-17]. This paper describes an
entire system for tidying up robot that works in real
space using a data-driven approach (e.g. data collection,
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model selection, learning, and communication among
modules), which might help practitioners to develop
other data-driven robots.

The remainder of this paper is organized as follows.
Section 2 describes the principle in system design of the
developed robot system and the overview of its software
and hardware. In Section 3, we present the modules used
in the system for object and environment recognition,
aiming to ensure robustness for deviation in the environ-
ment easy adaptation. Section 4 describes motion plan-
ning for navigation and manipulation reflecting the result
of aforementioned recognition modules. Subsequently in
Section 5, we present the result of integrated experiment
that took place in WRC2020 competition and discuss
the current limitation and the plan to extend our robot
system.

2. System overview

This section describes the entire system for tidying up the
room task in the WRC2020. Section 2.1 describes the tidy
up task in this competition in detail. A major difficulty for
service robots to work in the household environment is
the significant variety in the real environments; there are
numerous edge cases to consider because of the unknown
environment and the high degree of freedom in behavior.
In this case, we solely rely on data-driven approach, par-
ticularly deep learning, to handle the issue. Section 2.2
describes how we used the data-driven approach, espe-
cially deep learning, in our systems. Furthermore, we
discuss the importance of the adaptation strategy in the
data-driven approach. While the deep learning has exhib-
ited great performance in various applications, its uti-
lization is still limited in robot systems. Difficulty in the
application of deep learning in complex robot system
attributes the huge computation that the deep learning-
based modules typically require, and without proper
system design, the system throughput is significantly
impaired. In Section 2.3, we describe object-centric state-
full system (implemented with ‘object manager’) where
the system stores and updates the result of perception
about the world at the object level. The object manager
asynchronously distributes the most up-to-date infor-
mation to each module and prevents the deep learning
modules from bottlenecking the computation. Finally, we
describe the software and hardware architecture at the
end of this section.

2.1. Task description of WRC2020 partner robot
challenge

In taskl of the competition (15 min), the robot picks
up the object scattered on the floor and tables and place
them in the target area specified by their object category
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Figure 1. Floor map. In task 1, there are approximately 20 items
on the search area in Floor1. The robot attempts to pick up these
objects and place them into the designated deposit area. After fin-
ishing task 1, the HSR moves to Floor2 through object avoidance
area to goal area. Subsequently, the robot picks up the specified
food object from the shelf. Lastly, the robot is asked to deliver the
object a person waving a hand in the delivery area.

in Floorl. In the task 2 (5 min), the robot moves to the
neighboring room (Floor2) while avoiding small objects
scattered on the floor, where it is asked to pick up the
specified objects from the shelf and deliver it to a person
waving the hand to the robot in the delivery area. Figure 1
illustrates the layout used in WRC2020.

In the task 1, the robots are required to quickly store
objects scattered on the floor and the desk into the desig-
nated places. Regarding tidying up in Floor 1, each item
is categorized as shown in Figure 2, and each category
has a designated place to be stored. The scores are added
regardless of where the items are placed, but the score is
higher if the items are stored in the designated place. If
the robot bumps into an object on the floor while mov-
ing, the score of the object it tries to store away afterwards
will be minus. Some items, such as tableware and pens,
have a designated storage direction, and a ‘boss item’ has
higher points than other objects (in the WRC2020 tour-
nament, the boss item was a golden spear). Additionally,
if the robot opens the three shelves in the deposit area,
the bonus points are added to the total score.

Tool

Food Kitchen

In task 2, the robots are expected to be able to avoid
obstacles in tight spaces, plan grasps in tight spaces, and
interact with humans. In concrete, after finishing taskl,
the robot has to avoid hitting the small items and navi-
gate to the goal area in front of the shelfin Floor2 (task2a).
Subsequently, the robot delivers the target objects on the
shelf in food area to a person in the delivery area. There
are two judges in Floor2, one is waving the hand, and
the robot is asked to deliver the item to the waving per-
son (task2b). WRC2020 rule book [19] explains the rules
and scoring system in detail.

2.2. Deep neural networks based system

One of the difficulties in introducing service robots into
the home is that there are many possible edge cases
because of the unknown environment and the high
degree of freedom in behavior. Traditionally, the devel-
oper needs to create program one-by-one to handle each
edge case that they encounter. Recently, the advances of
deep learning in various application areas (such as com-
puter vision and natural language processing) has led to
the introduction of various deep learning models for var-
ious robotics tasks. Unlike in a manual programming
approach, a deep learning-based approach learns from
the data, and can adapt to new edge cases by adding
appropriate data.

The proposed robot system makes use of various deep
learning-based recognition modules, and by random-
izing the environment during training, we successfully
developed a robust system that can respond to changes
in the environment without any hard coding. Table 1 lists
the correspondence between the model and the input
data used in the system. However, such powerful recogni-
tion models require a long time for inference and can be a
bottleneck for real-time execution. To solve this problem,
we partitioned each deep learning module (e.g. object
detection, classification, grasp proposal, motion plan-
ning, etc.) into ROS nodes as shown in Figure 3. Each of
these nodes operates in parallel and communicates asyn-
chronously, which guarantees the speed and performance
of the system.

Task Unknown

Shape

Figure 2. Objects’ categories (examples) [18]. All objects are categorized under ‘Food’, ‘Kitchen’, ‘Shape’, ‘Tool’, ‘Task’, and ‘Unknown’,
except for a boss item. ‘Unknown’ is also categorized to other categories. ‘Unknown’ object is not revealed just before the trials.



Table 1. Type and purpose of the model used and corresponding
inputs.

Model Name Input Data Purpose

CLIP [3] RGB image from Classification
RealSense and Xtion

Keypoint R-CNN [1] RGB image from Xtion Human

Detection

Mask R-CNN [1] RGB image from Object Detection
RealSense and Xtion

UOIS [2] RGB-D image from Object Detection

RealSense and Xtion
Depth image from
Xtion
RGB-D image from
RealSense and Xtion

Segmentation

Model (Section 3.2)
Grasp

Model (Section 4.1.1)

Segmentation

Grasp Point
Calculation

One of the challenges in operating a human support
robot in a home is to adapt itself to different environ-
ments in each home. However, it is difficult to develop
a robot system that learns how to operate in all possi-
ble environments in advance. The proposed robot system
has a particular advantage in terms of adaptability to the
environment for future operation in real life. More specif-
ically, in the proposed system, data is collected each time
the robot is operated, and the data collected is used to
fine-tune each module, which creates a model that can
adapt to each house environment during deployment. For
example in the competition of WRC2020, because the

RGB-D camera
(Xtion)

RGB-D camera
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lighting conditions are much different from those of our
laboratory, the performance of recognition module was
slightly impaired. However, by simultaneously collecting
data during the four rounds of round-robin competition
and fine-tuning the classifier, we succeeded in surpassing
the performance of any round-robin competition in the
semifinals.

2.3. Object-centric state-full system

Creating stateless modules is a straightforward imple-
mentation to utilize DNN-based modules in robot sys-
tem. However, this design choice may significantly
decrease the throughput of the entire system in the pres-
ence of DNN-based modules (such as object detection,
key-point detection, and classification), because they
require far more computational time than other mod-
ules, such as motion planning even with appropriate GPU
accelerations and become the main bottleneck of the sys-
tem. This is a problematic especially when some module
depends on the output of the DNN-based module.

To avoid the reduction of entire throughput, we pro-
pose to use a stateful, object-centric design. The design
is based on the idea of using parallelization and dis-
tributed processing to enhance computational efficiency.
In summary, a module in the proposed system (called

GPU acceleration

CLIP

E Classification
' Results

(RealSense)

)
.| Grasp Point

Results

Human

> Detection
i \__Results

Figure 3. The proposed DNN-based module configuration. The module receives RGB-D image from Xtion and RealSense mounted on
HSR. The corresponding sensor data is transmitted to each DNN-based module, as shown in Table 1. The process of each module operates
at a sufficient frequency owing to parallelization and GPU acceleration.
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Figure 4. Brief overview of the proposed robot system. The left side of the figure is our initial stateless system design, and the right side
of the figure is the final system design, the stateful and object-centric one. Owing to asynchronous processing and the object manager
with the ability to store recognition results, the right system could reduce throughput degradation even when using computationally

demanding DNN modules.

‘Object manager’) caches the outputs of the recognition
module in the object-level, and each module commu-
nicates through the object manager. To be more spe-
cific, the object manager records information about each
object (e.g. the detected location of the object, classifi-
cation results) obtained from the deep learning mod-
els. By recording the information of each object, such
as location and classification results in the object man-
ager in advance and utilizing the stored results, we can
reduce computation and achieve efficient operations. For
instance, the robot can move directly to the next target
object after placing the object, without having to perform
object recognition again.

Figure 4 presents a brief overview of the designed
robot system. The left side of the figure shows the ini-
tial stateless system design, and the right side of the
figure shows the final system design, which is stateful
and object-centric. In the stateless system design on the
left, the task manager calls recognition module requir-
ing huge synchronous computations, resulting in a sig-
nificant drop in throughput. Meanwhile, in the stateful
design on the right, the recognition module operates
asynchronously with the task manager, and the recogni-
tion results are stored in the object manager accordingly,
so the task manager does not have to call the recogni-
tion module when using the recognition results. Further-
more, in the right system, if necessary, the task manager
can stop the recognition module through the recognition
flag. This enables efficient processing even when the GPU
resources are low.

2.4. Software

We adopted the method proposed by L. El Hafi et al. [20,
21] that configures a software development environment
in a Docker container. Using Docker has several advan-
tages, such as easy management of module versions and
the ability to rapidly develop the same environment on

different machines. In addition, unlike VirtualBox and
other virtual machines, Docker operates on the kernel
of the host machine, so it is as fast as running on it. It
is crucial when executing systems that require compu-
tation, such as deep learning inference. The proposed
software development environment is based on Robot
Operating System (ROS) [22] on Ubuntu. Owing to the
asynchronous communication feature provided by ROS,
multiple modules can be processed efficiently in parallel.
ROS also makes it easier to develop distributed systems,
thus enhancing the stability of the system.

2.5. Hardware

Toyota’s HSR (Human Support Robot) [23], a mobile
manipulator, was used for the robot, which has a motor,
encoder, a 6-axis force sensor in the wrist, a Lidar in the
foot, an Xtion depth camera! in the head, a stereo camera,
and a microphone as external sensors. As an additional
sensor, a monocular wide-range RGB camera at the tip
of the hand was replaced with a Realsense D435 depth
camera (Figure 5). In addition to the internal processor,
we used ROS [22] to communicate with a back-mounted
laptop. For the laptop, we used an msi GS66 STEALTH
with RTX3080 mobile 16GB.

For this competition, we created two modes of oper-
ation: wireless mode and standard mode. In the wireless
mode, the HSR is configured to operate in a high-speed
WiFi environment (~ 1 Gbps), and the GPU-intensive
calculations are executed on an external PC and the
results are transmitted to the HSR. In addition, the
most important communications were the depth camera
images of the hand and head. The standalone mode is
useful when WiFi connection is weak because all of the
computation is performed on the backpack PC only and
does not require wireless connection. In the standalone
mode, multiple machine learning models were computed
on a 16GB GPU (Figure 6).
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Head depth camera
Xtion

Laptop on back

Realsense D435,
finger camera,

5 DoF robotic arm Omnibase

Hokuyo Lidar

Figure 5. Customized HSR (Human Support Robot). HSR is a mobile manipulator designed to support human activities in daily life, such
as nursing care and housework. It can pick objects under 500g and is designed for safety in human interaction. In the competition, we
focused on clean up tasks with HSR. The team replaced a hand RGB camera for the Realsense D435 and one of the fingertips for the tactile

sensor module.

Wifi Router remmam W!leless
) ielessMode Wired b) Standalone Mode

.,
*, Server PC

Laptop for main computation,
Realsense and a finger camera

=
RTX3090 Laptop are directly connected to

N 5
Realsense D435,
HSR through LAN cable

NS -
Realsense D435,
finger camera

finger camera

Laptop for Realsense Main computation is here:

and a finger camera Recognition,
Planning,
Manipulation

Figure 6. Wireless and Standalone mode. The wireless mode can use external powerful computational resources via a wireless net-
work. The standalone mode computes all processes in the laptop installed on the back of HSR. This mode is much useful when the WiFi
connection is weak. Our team picked standalone mode in the competition because WiFi bandwidth was limited to about 30 Mbps.
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The mode selection is a trade-off between network
speed and computation speed. In the competition, the
participants were allowed to use WiFi connection pre-
pared by the organizer only, whose bandwidth was
30 Mbps at the maximum. We chose the standalone
mode because we found that the bandwidth was too
narrow for transmitting massive data (e.g. point cloud
from two RGB-D cameras and LiDAR sensor), which
caused a severe delay in sensor data and critical errors in
localization and navigation.

3. Recognition

We aggressively utilized multiple DNN models aiming
at generalization in recognition of objects (Section 3.1),
environment (Section 3.2), and human (Appendix 1) in
the competition arena.

3.1. Object recognition

In the WRC2020 task, the technology for fast and accu-
rate recognition of objects is the fundamental technique
for the overall task operation. For example, if an object
cannot be detected, or if detection is a slow process, it
might be dangerous for collision with the object during
navigation. Moreover, if the object’s exact shape cannot
be obtained, the robot fails to calculate the correct grasp-
ing pose, resulting in grasping failure. Furthermore, if the
category of the object cannot be classified correctly, the
robot cannot place the object in a defined location. Thus,
as object recognition is applied to various tasks such as
grasping and navigation, it is crucial to estimate the pose,
shape, and category of the object fast and accurately.
Object recognition system works in two situations,
such as searching the objects and confirming the object
to pick and place in tidying up in Room1 (task1). To nav-
igate the robot, it has to acquire the object’s information
about the pose and the category of the objects. In the pro-
posed system, before the robots start picking the objects,
it looks around the searching area using the head cam-
era and recognizes the objects for searching. The robot
stands outside of the search area near the drawer, and
divides the search area into three parts (floor, lower table,
and upper table), and images of each place are captured
by the head camera. After deciding the object to pick,
the robot moves in front of the object and investigates
it using hand camera from an angle above it for confir-
mation. At this instant, the robot recognizes the object
and plans how to grasp the object. In picking the target
object from the food area’s shelf in task 2b, the robot pho-
tographs each row of the shelf. The hand camera moves
in front of the center of each row of the shelf, and captures
an image of the left side and the right side of each row.

OUT

wall_socket

-

Figure 7. Object recognition flow. Color images are captured
with head-mounted or hand-mounted RGB-D camera and the
masked images for each object in the captured images are cre-
ated using object detection module. Subsequently, the masked
images are classified using the CLIP classifier. In the case of the
figure, the images of a mustard bottle and a screw driver on the
floor are captured with the cameras. The object detection mod-
ule segments object area (namely, the area of the mustard bottle
and screw driver) on the images and masks out other regions of
images than those of the objects (e.g. the floors, toy airplane in
the rightimage).

Recognition system is divided into the detection part
and classification part. Owing to the two stages of object
recognition module, during picking objects, the robot
does not need to wait for the output from the object
classification model, which usually involves extensive
computations.

3.1.1. Object detection

In the object detection module, we used two object detec-
tion models, Mask R-CNN [1] in Detectron2 [24] and
UOIS [2], as a combination. Mask R-CNN in Detec-
tron2 is a widely adopted object detection model and
UOIS is robust for detecting unseen objects. In the
WRC2020 tidy-up task, because a lot of objects are placed
in the nearest area, the system has to detect overlap-
ping objects. Even if assembling these two models, some
furniture or floors are erroneously detected as objects.
The detected results were filtered to avoid misidentifica-
tion using hand-designed rules: excluding objects with
too small or too big pixel areas, excluding objects whose
labels are not in the valid list, excluding overlapped
objects, excluding objects that are not in the taskl area,
and excluding objects at the edge of the image, as shown
in Figure 7. Although we can obtain the object label from



these two detection models, the accuracy of classification
is insufficient, which motivates combining another clas-
sification module as in Section 3.1.2. Figure 8 illustrates
the object recognition workflow. Mask R-CNN and UOIS
are primarily used for segmentation images.

3.1.2. Object classification

After applying the segmentation mask from the detection
module mentioned above to the original RGB images,
the image is classified by CLIP [3], which is a recently
proposed multi-modal deep learning model. CLIP com-
prises three parts, text encoder, image encoder, and
fully connected layers. CLIP inputs the prompt, the text
description of the object, and the picture, then outputs
the probability of identification between the name and
the picture. The advantage of CLIP over other classi-
fication models is that it is easy to tune the model to
the specific situation by only editing the prompt. This
technique to improve performance using text prompts
for clarifying the task has been proposed in a line of
studies on large language models (LLMs) and is called
‘prompt tuning’ [25-28]. For taskl and task2, we pre-
pared prompts for each object that does not directly use
the label name, but the handmade descriptions, such
as ‘red strawberry with green stem, a type of fruit’ as
shown in Table 2. To adapt to the task situation, we
used pretrained CLIP model (ViT-B/32)* and only the
fully connected layers after pretrained CLIP module were
fine-tuned with cropped YCB image datasets [18]. The
fully connected layers are trained separately for task1 (the
model is trained with objects of all categories) and task2b
(the model is trained with only “food” objects), while
the text prompts are shared between taskl and task2b.
Besides, considering the change in the light condition
of the floor pattern, we captured some images of objects
which were placed on the same as the competition dur-
ing preparation day. Those images were used to fine-tune
the fully connected layers, and the process is very com-
putationally light. Data augmentation is also performed
in each training to make the model robust to input noise.

3.1.3. Evaluation

In addition to the CLIP model, we prepared the pre-
trained ResNet18 model® [29] as a baseline model. For
the baseline ResNet model, the weight of ResNet mod-
ule was fixed, and we classified the object class of given
images according to k-nearest neighbors of L2 distance
of the output of ResNet modules. For the CLIP model,
we used inner product as a metric for object classifi-
cation. Compared to the baseline ResNet [29] model,
CLIP exhibits a more accurate classification ability as
shown in Figure 9. Before prompt tuning, CLIP classi-
fier made mistakes the same way as the pretrained ResNet
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Table 2. Known objects appeared in the competition and the
corresponding prompts, which we tuned.

Object Name Prompt Used in Task 2b

chips can a photo of a pringles can Vv

master chef can a photo of a blue coffee can v

cracker box a photo of a box of cheez-it Vv

sugar box a photo of a yellow box of Domino Vv
sugar

tomato soup can  a photo of a can of campbells v
tomato soup

mustard bottle a photo of a yellow mustard v

tuna fish can a photo of a StarKist can tuna v

pudding box a photo of a box of brown chocolate v
pudding jello

gelatin box a photo of a box of red jello v

potted meat can a photo of a can of spam Vv

banana a photo of a banana, a type of fruit v

strawberry a photo of a red strawberry with Vv
green stem, a type of fruit

apple a photo of a red apple, a type of Vv
fruit

lemon a photo of a lemon, a type of fruit v

peach a photo of a yellowish peach, a Vv
type of fruit

pear a photo of a green pear, a type of Vv
fruit

orange a photo of a orange, a type of fruit Vv

plum a photo of a purple plum, a type of v
fruit

pitcher base a photo of a blue pitcher

pitcher lid a photo of a pitcher lid

bleach cleanser a photo of a soft scrub bleach
bottle

windex bottle a photo of a windex spray bottle

wine glass a photo of a wine glass
bowl a photo of a red bowl
mug a photo of a red mug
sponge a photo of a sponge
plate a photo of a plate

fork a photo of a red fork
spoon a photo of a red spoon
spatula a photo of a spatula

key a photo of a key
large marker a photo of a expo marker

small marker a photo of a expo marker
plastic bolt a photo of a bolt

medium clamp a photo of a clamp

card a photo of a card

ball a photo of a sports ball
rope a photo of a rope

chain a photo of a chain

foam brick a photo of a brick

dice a photo of a die

marbles a photo of a marble

cups a photo of a toy cup

peg a photo of a wooden puzzle
toy airplane a photo of a toy airplane
magazine a photo of a time magazine
shirt a photo of a black t-shirt
lego duplo aphoto of alego

timer a photo of a timer

rubiks cube a photo of a rubiks cube

Note: For the task 2b, we trained object classifier with food objects only
(denoted by ,/in the table).

model; for instance, lemon was classified as strawberry.
However, the accuracy of classification increased after
prompt tuning, as shown in Figure 10. In detail, we made
prompts including color information, such as ‘blue cof-
fee can’. Besides, the phrase ‘the type of fruits’ improves
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Figure 8. Example of detected objects, each visualized with a colored outline based on results by hand-crafted filters. Green objects are
pickable candidates. The far red object is out-of-bounds, the red bottle overlaps with a near-duplicate detection, and the gray objects

are too close to the edge of the camera view.

the classification accuracy by recognizing strawberry as
a strawberry, not an apple. In addition to prompt tuning,
background subtraction improved classification accuracy
compared to only cropping. In each training, the five
types of data augmentations were applied to the train-
ing image, translating, scaling and rotating, dropping
out the rectangular regions, changing hue, saturation
and value, changing brightness, and contrast and blur-
ring [30]. Figure 11(a) illustrates successful classifica-
tion among similar colored objects with the proposed
recognition module. Despite these improvements, some
objects were still identified incorrectly; for example,
‘Lego’ as ‘nine peg hole test’, or ‘colored wood block’ as
‘foam brick’(Figure 11 (b)). The performance gain can
be attributed to the pretraining of CLIP, which is trained
with massive and unrestricted paired (image and text)
datasets collected from the internet. The dataset could
contain some hints on the textural information on objects
appearing in the competition.

3.2. Recognition of world

3.2.1. Sim-To-Real image segmentation

Since the layout of the room and positions of furniture are
known beforehand, one may think of using this informa-
tion as constants. For example, one may carefully mea-
sure and calculate the (3D) position of the drawer knobs
beforehand and use those positions to grasp at that loca-
tion in a completely open-loop fashion. However, this is
a brittle and risky approach, primarily because numerous
factors can cause a failure to pull the drawer, such as local-
ization error, positions of knobs being slightly shifted, or

drawers being too far in or out, causing missed grasps or
unwanted collisions.

Instead of adopting this simple but risky approach,
we implemented a perception module that can consis-
tently estimate the state of the environment within view.
A crucial component of this module is a single image
segmentation model trained to recognize various objects
and furniture in the room. Specifically, a Fully Convo-
lutional Network (FCN) [31] based on the DeepLab-v3
architecture [32] was used to predict the class of each
pixel of a given depth image.

The depth image, which was obtained from the head
camera of the robot, had a resolution of 640 x 480 pix-
els. Units are in meters and missing values were assigned
a value of zero. We deliberately decided to avoid using
color (RGB) for this model to circumvent the challenge of
generalization over different lighting, textures, and other
visual phenomena.

The following lists the classes that the model is trained
to predict.

Background
Wall

Pickable object
Shelf

Left bin

Right bin
Drawer frame
Bottom drawer
Bottom drawer knob
Left drawer

Left drawer knob
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Figure 9. Classification results images for comparison between ResNet and CLIP. The upper image shows the CLIP result, and the lower
image shows the ResNet result. The image surrounded by a red frame (a plum) is the recognized image and the images surrounded by a

blue frame are images classified to be similar.

Before prompt tuning

0. 1013 ’|

After prompt tuning

peach: 0.375

orange: 0.258

purple plum: 0,156

Figure 10. Comparison between with and without prompt tun-
ing. The upper image illustrates a result of recognition without
prompt tuning; the object to classify is a plum (surrounded with
red frame), but the model erroneously outputs the nearestimages
(surrounded with blue frame) of strawberry and recognizes the
target object as a strawberry. On the other hand, the lower image
illustrates the result with prompt tuning; the model correctly
recognizes the image of a peach.

Top drawer

Top drawer knob
Miscellaneous drawer
Tall table

Long table A

Long table B

Left tray

Right tray

o Left container
e Right container

Obtaining a sufficient amount of human-annotated
training data can become expensive in terms of effort,
time, and monetary cost. Instead, we adopted a sim-to-
real technique by generating synthetic image data and
annotations from a simulation. The developed simula-
tion uses PyBullet [33] for both physics and render-
ing but many of the assets, including the URDF of the
HSR and furniture models, were ported from an exist-
ing Gazebo [34] simulation. The resulting simulation
is depicted in Figure 12. To train a robust model, the
synthetic depth images were rendered and applied with
noise during training to mimic the noisiness of the real
depth camera. Scenes were also generated with random-
ization. The following lists what was randomized for data
generation.

Robot configuration

Wall height and thickness

Shifted positions and rotations of furniture

Drawer knob position, rotation, and shape

Drawer position, including open/close state

Shape and size of trays and containers

Presence of miscellaneous drawers

Number, poses, shapes, and sizes of pickable objects

Variations in shapes were made by sampling meshes
from ShapeNet [35].

3.2.2. Evaluation

Example predictions of the resulting model are presented
in Figure 13. The figure demonstrates its robustness, as it
can recognize objects even when the camera viewpoint or
shapes and drawer knobs change. These predictions are
used with depth information to obtain segmented point
clouds which can then be used to estimate information,
such as object positions, as shown for drawer knobs in
Figure 14.
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apple: 952 lego_duple: 977%

foam

pitc

(a) Successful case

lego_duplo: 9422

foam_

(b) Failure case

Figure 11. Examples of success and failure classification among
similar objects: apple, Lego and wood block.In (a) our classifier can
recognize similar color objects with subtle texture difference, but
in (b), the colored wood block is recognized as a form brick (while
Lego is classified correctly). (a) Successful case; (b) Failure case.

4. Object manipulation and motion planning
4.1. Object manipulation

4.1.1. Grasp pose prediction

Grasping becomes an important component of the
robotic system to reliably place the objects scattered
around the room at their assigned locations. At the same

Figure 12. Simulation environment used for image data gener-
ation. The room layout and most of the furniture reflect the real
competition environment.

Figure 13. Two samples of model predictions on real data.
The model can generalize to varying viewpoints, positions, and
shapes.

time, grasping is challenging because different objects in
different configurations can afford different stable grasp
poses. We attempted various grasp planning methods as
illustrated in Figure 15. In the main text, we describe
the methods that we mainly used in the competition. See
Appendix 2 for the rest.

PCA

The first and most simple method we attempted was
using principal components analysis (PCA). Given the
point cloud of a target object, the points were projected
to the XY plane and PCA with 2 components used to
fit this data. A grasp was calculated so that the grip-
per is positioned above the center of the object and the



Figure 14. The perception system processes the model predic-
tions with depth information to accurately estimate the state of
the environment, such as the positions of drawer knobs.

fingers are aligned along the 2nd component of PCA.
Intuitively, this results in grasps that are perpendicular
to the longer axis, which is useful for estimating stable
grasps of long objects, such as a banana. One assumption
that this approach makes is that objects can be grasped in
a top-down fashion, which is true in most cases in Task1.

(a) PC (b)
Grasp [36]

Multi-Object
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In fact, we found this method to be the most reliable over
the course of development.

Sim-to-Real Transfer We attempted a custom DNN-
based model which was trained in the simulator
described in Section 3.2. The model architecture and
training method is largely based on [39], a reinforcement
learning method. The model takes a heightmap as input
which can be generated by projecting a point cloud onto
the XY plane and outputs a map of Q-values, which corre-
sponds to the likelihood of success for a grasp at the pixel
location. Possibly owing to the resolution of the input
heightmap, we found this method to lead to grasps that
were occasionally off by a few centimeters.

Ultimately, we opted to use the last method for gener-
ating grasp candidates (Figure 16) and combined it with
the PCA method. The grasp pose was selected depending
on the Q-value of the model (Figure 17). If the Q-value
was above a set threshold, meaning that it was very con-
fident, the model was used; else, PCA was used. Since we
found PCA to be sufficient for most objects as they are
simple and convex, this threshold was set very high.

4.1.2. Grasp detection with hand-made tactile sensor
The judgment of the success or failure of the grasp is cru-
cial for the robot to perform the pick and place operation

| i _

(c) GraspNet [37]

Multi-

(d) GGCNN [38]

(e) Grasp FCN

Figure 15. Visualizations of the attempted grasp estimation methods. Both PCA and GraspNet take as input a point cloud of a single
object, but PCA calculates a 4 degrees of freedom (DoF) grasp while GraspNet can produce 6DoF grasps. Both the grasp detector and
GGCNN take as input a depth image but the detector outputs bounding boxes while GGCNN outputs a grasp quality heatmap. The Grasp
FCN also outputs a heatmap but takes as input a more view-invariant heightmap. See Appendix 2 for the method illustrated in (b)—(d).
(a) PCA; (b) Multi-Object Multi-Grasp [36]; (c) GraspNet [37]; (d) GGCNN [38]; (e) Grasp FCN.
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Raw Image

Grasp Candidates of Grasp FCN

Figure 16. Left: RGB image from a head camera. Grasp FCN generates grasp candidates with the quality score. Right: The red line
illustrates the pose with the highest score, and the green illustrates other candidates.

Figure 17. Grasp pose prediction flow.

correctly. In HSR, it is relatively easy to implement the
grasp detection according to the angle of the gripper and
the 6-axis force sensor on the wrist. However, it is diffi-
cult to detect a successful grasp of a light object, such as a
pen or a key that appeared in the WRC2020 competition.
We created a tactile sensor based on Ref. [40], which
is composed of black painted lead balls, transparent gels,
acrylic board, a fish-eye camera, and 3D printed parts.
When force is applied to the sensor, the gel deforms
and the lead balls move. The camera could capture the
markers’ movement and use it as the sensor value. The
advantages of the proposed tactile sensor is the ease of
fabrication and the affordability of the amount of mate-
rial. The fabrication method of the sensor and the 3D
printer parts are available as open-source, and the mate-
rials are relatively cheap (about 60 USD) and easy to
purchase. For simplification of the fabrication process, we
replaced a hand-made gel with a pair of non-slip sheets
of furniture and place markers between the two sheets.

Grasp point
Sim-to-Real Q value
model
RGB-D .
image Filter —> Grasp point
PCA Grasp point
Q value

By using this sensor, we detected the grasping state of
HSR. There are three states, ‘open’, ‘objects in hand’, and
‘nothing in hand’. These three states are categorized by
marker positions.

For the calibration of marker positions and grasping
state, we registered the initial markers positions in open
and closed state. The marker positions in the open and
closed states were registered using the Blob detector®
from a binalized camera image, as in Figure 18(c).

Figure 18 illustrates how the marker positions have
been registered and processed. In Figure 18(e-g), the
detected markers positions by the Blob detector are illus-
trated with white dots. For comparison, the marker posi-
tions of registered ‘nothing in hand’ is illustrated by red
points in image e-g. In Figure 18(f), white dots and red
points are almost in the same positions. In the case of
‘open’ state (Figure 18(e)), the number and arrangement
of white dots are different from the registered red dots,
which means the Blob detector cannot detect the lead
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f) Nothing inHand  g) Something in Hand

Figure 18. Grasp detection mechanism. (a) Raw image taken by the finger camera. (b) Gray image of the image (a).
(c) Binarized image by OTSU’s method. (d) Fingertip attached to HSR hand. The nails are made of rubber and lead
balls are embedded into the gel. (e-g) Examples of marker positions. ‘Open’ and ‘Nothing in Hand’ images are regis-
tered, and when the markers positions deviate from both registered positions, it is detected as ‘Something in Hand'.
(https://docs.opencv.org/4.x/d7/d4d/tutorial_py thresholding.html).

points correctly since the light comes into the finger cam-
era from the open gripper. In the case of ‘something in
hand’ state (Figure 18(g)), the white points are translated
from red dots, which means that some object in the hand
pushes the gel and the lead balls move accordingly.

Figure 19(a) is a successful example of grasp detection
with a spoon. On the right side of the image, the detected
marker dots and red points are deviated and grasping
can be detected. This object could not be detected by the
wrist sensor or the open-angle of the gripper. Figure 19(b)
represents a failure case. The key was caught in the rub-
ber fingernail (Figure 19(d)) and almost no displacement
occurred on the marker, as shown in Figure 19(b).

Figure 20 shows relationships between deviations of
marker positions and thickness of flat objects in hand.
Although the proposed tactile sensor is insensitive to
a flat and extremely thin object like paper (~0.1 mm)
because the marker does not move a lot, it can detect
the grasp of considerably thin and flat object like a card
(~1mm) or styrofoam board (~ 1 cm) since the mark-
ers deviate to some extent.

4.2. Navigation

Moving from the current location to the destination
while avoiding obstacles, a task termed navigation, is
a basic operation for operating service robots at home.
For the navigation of household service robots, it is par-
ticularly important to accurately recognize objects that
are difficult to recognize with sensors, such as small,
transparent, or flexible objects. Additionally, moving in
response to the domestic environment, which changes
constantly, is also important.

To navigate while avoiding collision with an object,
it is necessary to have a positional relationship with the
object. Therefore, scan data and point cloud data that can
directly acquire distance information are often used as
sensors for navigation. However, among various objects
in a home, there are many objects that are difficult to
recognize only from the shape information of the object
(key, pen, clothes, etc.).

To avoid these objects, we use the following four data
for obstacle information to be reflected in the costmap for
path planning.
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Figure 19. Successful and failure cases of grasping. (a) Successful case. Spoon can be detected using the tactile sensor. (b) Failure case.
The key hangs on between the edge parts of the tactile sensor module and the opposite gripper, which does not change the position of

the markers over a threshold.

(1) Map created in advance (information on furniture
and walls excluding objects).

(2) 2D-LiDAR scan.

(3) Point cloud filtered from the point cloud that can be
taken with the depth camera.

(4) Point cloud of the object recognized from an image
captured by the head RGB-D camera.

The information in (1), (2), and (3) enables navigation
by avoiding collisions with objects that can be recognized
as shapes obtained from scan data and point clouds.

In (3), the following filtering process is implemented.
The point cloud obtained from the depth camera is first
downsampled and outliers removed. Subsequently, the
maximum height and minimum height of each voxel in
the robot’s base link coordinate are calculated, and if the
value is below a threshold value, it is judged as the ground
and removed. And while the robot is carrying an object,
it often determines its arm as an obstacle, so it removes
the robot’s own point cloud from link information and
3D model of the robot.

It is possible to avoid objects that cannot be seen from
the 2D-LiDAR mounting position and objects that are
indistinguishable from the ground by the point cloud

height filtering process, by treating the object recognized
by the camera in (4) as an obstacle.

To reduce the impact of cumulative error in each
estimation module, we implement position-based nav-
igation relative to real-time recognized objects rather
than absolute position-based navigation on pre-made
maps.

Table 3 lists the source of information on the tar-
get position for navigation. Except for the start position
of each task, when moving to an object or furniture,
the goal is calculated from the real-time recognition
result. This enables robust navigation to the cumula-
tive error of self-position estimation by making heavy
use of relative position-based navigation with recogni-
tion results, instead of absolute position-based navigation
of pre-created maps.

However, it may occur several times while the robot
is running that the route to the target cannot be calcu-
lated due to an estimation error in the object recognition
position.

If the robot cannot calculate the route to the goal for
a certain period of time, the distance that the robot takes
as a margin from the object used for path calculation is
gradually narrowed from the point cloud of (4). At this
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Figure 20. Marker deviations when flat and objects are in hand; paper(~ 0.1 mm), a card(~ 1 mm), and a styrofoam board (~ 1cm).
While the paper is too thin to detect marker deviation with the proposed tactile sensor, it can detect the deviation of marker with

considerably thin objects.

Table 3. Recognition information used for the target position of
the navigation.

Target Position Recognition Information

Object Object Recognition (3.1)

Furniture Sim-To-Real Image Segmentation (3.2)
Person Human Recognition (??)

Task Start Point Map

time, instead of completely eliminating the cost of the
narrowed part, we leave some cost, allowing the robot
to move as far away from the object as possible after
recalculating the route.

In the case of Figure 21(a), small objects with a
height that cannot be detected from 2D-LiDAR, namely,
a pitcher lid, a small ball, and a T-shirt, are placed
on the floor. We detect these small objects from head-
mounted RGB-D camera using object recognition mod-
ules described in Section 3 and cut out the corresponding
point clouds of the objects as shown in Figure 21(b).
The costmap for navigation is updated using both LIDAR
point cloud and detected object point clouds from head
camera, and the path is planned as in Figure 21(c). Since
this procedure of object detection, merging point clouds,
and updating costmap and path plan is done in a closed-
loop manner, the robot can avoid collisions dynamically.

5. Integrated experiment
5.1. Preparation time at the site of the competition

At the WRC, each team brought their robot to the venue,
and after four days of preparation, the competition was
held over three days. Two competition venues and three
practice areas were set up, and the practice areas were
made similar to the competition venue.

At the first step of preparation, our team created a
map of the field using LiDAR mounted on HSR. Sub-
sequently, we captured pictures of objects at the venue
and incorporated the data into the training model to tune
the CLIP and other object recognition, primarily because
the lighting at the venue was different from the environ-
ment in the laboratory, which may impair the recognition
performance.

In particular, in the competition, we used the object
classifier fine-tuned with a dataset that we collected in the
laboratory (748 images) and the competition venue (556
images). We did not use the original YCB dataset because
the masking strategy is different from ours (explained
in Section 3.1.1), which may cause deterioration of the
recognition performance. At the venue, we captured the
images for the entire YCB objects by placing them on
the floor of the arena for several times, and created a
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(a) Third Person View

(b) Recognition Result

Recognized
Point Cloud

(¢) Costmap reflecting recogni-
tion result

Figure 21. An example of obstacle avoidance during navigation. In an environment like (a), the robot recognizes obstacles in two ways.
The first one is to use 2D-LiDAR scan information to recognize obstacles above of a LiDAR sensor height e.g. large objects, furniture,
and walls. The second is to use RGB-D camera images to recognize low-height objects, such as clothes and balls that 2D-LiDAR cannot
recognize. The object surrounded by blue in (b) is the object recognized from the camera image. Objects recognized in these two ways
are reflected in the cost map in (c) used for path planning. (a) Third Person View; (b) Recognition Result; (c) Costmap reflecting recognition

result.

dataset of masked images using the object detection mod-
ule (described in Section 3.1.1). The class of corrected
images was annotated manually, and the fully-connected
layers of classifier were fine-tuned with the combined
dataset.

5.2. Result

Five teams competed at the real venue. Two competition
rooms had the same setup were set up at the venue, and
the two teams started discussing at the same time, and the
scores were used to determine the winner. First, a round-
robin tournament was held as a preliminary round, and
then the top four teams competed in a tournament for-
mat. Our team played six trials in total. Table 4 lists the
summarized scores changes (see Appendix 3 for the full
score sheets).

Our team got the best score in the semifinals (the fifth
game). In this case, we cleaned up 11 items in taskl and
managed to complete task2 correctly.

For the task 1, the statistics for all six trials areas are
noted in Table 5. For object recognition (category clas-
sification), the overall success rate across categories was
92% and ‘Food’, ‘Shape’, and “Tool’ objects are perfectly
categorized, while ‘task’ category had a lower rate of 78%.
In the competition, the some ‘unknown’ objects outside

Table 4. Competition results (6 trials).

Table 5. Success ratio of object recognition and tidy up in the
competition.

Both
Recognition
Object Category Recognition Tidyup and Tidyup
Food(Listed in the rule 1.0 (11/11) 0.82 (9/11) 0.72 (8/11)
book)
Kitchen(Listed in the 0.88 (14/16) 0.69 (11/16) 0.5 (8/16)
rule book)
Shape(Listed in the rule 1.0 (11/11) 1.0 (11/11) 1.0 (11/11)
book)
Tool(Listed in the rule 1.0 (20/20) 0.45 (9/20) 0.45 (9/20)
book)
Task(Listed in the rule 0.78 (7/9) 0.56 (5/9) 0.33 (3/9)
book)
Unknown Objects (Not 0.5 (3/6) 0.5 (3/6) 0.33 (2/6)
Listed in the rule
book)
Boss Item (Shachihoko) N/A 0.5 (2/4) N/A
Total 0.92 (66/73) 0.65 (50/77) 0.56 (41/73)

Note: Since the boss item was placed at the same location in each trials, the
recognition was not required.

YCB dataset (not listed in the competition rule book)
appeared, which were required to be stored in the place
of either the corresponding category (announced in the
trial) or ‘unknown’ category. We treated these unknown
objects in the same way as the pre-announced objects in
the rulebook by assuming that the recognition module
generalized well even for the unknown objects, that is,
we did not explicitly classify the ‘known’ and ‘unknown’.

Trial st 2nd 3rd 4th 5th 6th
Task1 tidy up counts 5 8 9 7 11 10
Task1 score 145 185 240 145 320 250
Task2a success True False True False True True
Task2b target tomato soup can sugar box peer apple spam chips can
Task2 score 390 200 390 100 410 150
Restart Robot 1 0 1 1 0 2
Total Score 535 385 630 245 730 400




The success rate of recognition of unknown objects was
50% (2 out of 4).

The overall probability of successful grasping was 65%
in all six trials. While ‘Shape’ category had the highest
success rate of 100%, ‘tool’ category had the lowest suc-
cess rate of 45%. The main reason was the difference in
difficulty. ‘Shape’ objects are mostly sphere shaped and
easy to get a good grasping position. On the other hand,
‘tool’ objects are relatively small and difficult items. In
terms of task speed, the average time per object in taskl,
including failure and restart times, was 98.7 s. The aver-
age time per one successful object was 56.2 s. It is quite
slow compared to human cleanup speed but is deemed as
a good result in the WRC2020 competition.

6. Conclusion

In the paper, we present the entire robot system devel-
oped for tidying up tasks that achieved the second prize
in World Robot Challenge, a world-wide robot competi-
tion held in September 2021. Our solution leveraged the
data-driven approach for managing variations in home
environments rather than directly pre-programming for
edge cases. We demonstrate the generalization ability for
deviations in the environment and flexibility to update
modules using corrected data during trials. Moreover,
we also demonstrate the system design for ensuring high
throughput even if it contains modules deep neural net-
works, which requires high-computational loads.

While the tidy-up task in WRC and our correspond-
ing solution involves some essential aspects of service
robots in home environments, for example, precise object
recognition, object manipulation, and navigation, they
are still insufficient for realizing generalist household
robots. For instance, safe manipulation and navigation in
the environment with a dynamic environment (e.g. mov-
ing objects and people), and social interaction between
robots and human are the lacking aspects in the WRC
task. Further development and standardized benchmarks
will bring generalist home robots into reality.

As future work, we plan to extend our robot sys-
tem to accept massively corrected datasets by deploy-
ments [41] for adapting to more diversified environments
than those used in the WRC2020 competition and estab-
lish a methodology for developments and operations of
data-driven service robot systems.

Notes

. http://xtionprolive.com/asus-xtion-pro-live

. https://www.intelrealsense.com/depth-camera-d435/

. https://us.msi.com/Laptop/GS66-Stealth-10UX/Overview
. Obtained from https://github.com/openai/CLIP.

. Obtained from https://github.com/pytorch/vision
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6. https://docs.opencv.org/3.4/d0/d7a/classcv_1_1SimpleBlo
bDetector.html
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