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ABSTRACT Intelligent agents (IAs) that use machine learning for decision-making often lack the explain-
ability about what they are going to do, which makes human-IA collaboration challenging. However,
previous methods of explaining IA behavior require IA developers to predefine vocabulary that expresses
motion, which is problematic as IA decision-making becomes complex. This paper proposes Manifestor, a
method for explaining an IA’s future motion with autonomous vocabulary learning. With Manifestor, an IA
can learn vocabulary from a person’s instructions about how the IA should act. A notable contribution of
this paper is that we formalized the communication gap between a person and IA in the vocabulary-learning
phase, that is, the IA’s goal may be different from what the person wants the IA to achieve, and the IA needs
to infer the latter to judge whether a motion matches that person’s instruction. We evaluated Manifestor
by investigating whether people can accurately predict an IA’s future motion with explanations generated
with Manifestor. We compared Manifestor’s vocabulary with that from optimal acquired in a situation in
which the communication-gap problem did not exist and that from ablation, which was learned with a false
assumption that an IA and person shared a goal. The experimental results revealed that vocabulary learned
with Manifestor improved people’s prediction accuracy as much as with optimal, while ablation failed,
suggesting that Manifestor can enable an IA to properly learn vocabulary from people’s instructions even if
a communication gap exists.

INDEX TERMS Explainable AI, human–agent interaction, intelligent agent, deep reinforcement learning.

I. INTRODUCTION
The development of machine-learning methods has allowed
intelligent agents (IAs) to learn complex decision-making.
Deep reinforcement learning (DRL) has broadened the appli-
cability of IAs. However, while a growing number of studies
are beginning to tackle problems when IAs mix with human
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society, there is still much room for improving the quality of
interaction between humans and IAs.

This paper focuses on explaining what an IA is going to do.
It is difficult for non-experts to understand an IA’s complex
decision-making process in a machine-learning module [1];
as a result, people become unable to predict the IA’s behavior.
Unpredictable behavior can cause unintended results or acci-
dents.Moreover, for IAs to effectively work with people, both
a person and IA should be able to understand each other’s
future behavior to decide roles to take in each situation [2].
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FIGURE 1. Manifestor enables IA to learn vocabulary used in person’s instructions and apply it to explain IA’s future motion.

Methods were proposed for generating explanation of
motions that an IA will show. Hayes et al. proposed a
natural-language question-answering system that provides an
explanation of what an IA does in a particular situation [1].
Waa et al. proposed a method for explaining not a one-shot
action but a sequence of actions [3].

A problem with previous methods is that they require
IA designers to predefine vocabulary that expresses
an IA’s behavior. Predefining vocabulary by hand is
relatively easy in a simple environment such as grid
world [4]. However, when an IA deals with robot motor
control, for example, decision-making can be highly-
frequent, high-dimensional, or sustaining time delay.We can-
not simply correspond an IA action with a specific
expression, which makes defining vocabulary much more
complex.

We propose Manifestor, a method for explaining what an
IA is going to do by autonomously enabling the IA to learn
vocabulary that expresses its motions (Fig. 1). Manifestor
enables an IA to learn vocabulary from instructions that peo-
ple give to the IA. This setting is analogous to the instruction-
following framework [5]–[7], in which an IA aims to learn a
policy, or how to act, to follow a given instruction. Instruction
following is typically formalized as an RL problem; that is,
an IA earns more reward when its action fits more to the
instruction.

As well as the difference in not at generating motions but
explaining an IA’s motions, a significant point of Manifestor

lies in what we call the communication gap. In this paper,
a communication gap refers to a problem in which the goal
that a person wants an IA to achieve can be different from
that of the IA, and the IA does not know which the person
has. More specifically, an IA does not know which reward
function is behind a person’s instructions. Unlike instruc-
tion following in which an IA obtains reward feedback on
whether its motion follows an instruction, an IA requires
a meta-inference of the person’s goal to learn the corre-
spondences between its motion and vocabulary used in an
instruction. Human-human interaction typically contains a
communication gap because each person has her/his goals or
intentions, and such mental states are more or less uncertain.
A communication gap can also arise between an IA and
person particularly if the person is not familiar with the design
of the IA’s decision-making.

Figure 1 illustrates our main idea. Manifestor solves the
problem of vocabulary learning with communication gap as
two inferences: (i) inference of a human goal allows an IA to
learn vocabulary in a manner similar to instruction following.
(ii) By comparing a human instruction with a classification
result of an IA motion by the learned vocabulary, an IA
can estimate which goal the human has, that is, when an
IA recognizes that its motion matches a human instruction,
a human goal is likely the one with which the motion earns
more rewards. Manifestor enables an IA to learn vocabulary
using two loss functions that represent each of the statements
above.
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This paper reports the results of experiments conducted to
evaluateManifestor. A numerical experiment focused on con-
firming the basis of Manifestor, and a user study experiment
aimed at investigating whether explanation generated with
Manifestor can improve the predictability of an IA’s future
motion. We compared Manifestor with two alternatives: opti-
mal is trained in situations in which a person always gives
instructions on the basis of an IA’s true goal, so the IA does
not need to consider the communication gap, corresponding
to the instruction-following setting. ablation is trained with a
false assumption that a communication gap did not exist. As a
result, Manifestor showed similar performance as optimal,
while ablation failed, suggesting that even if a communica-
tion gap exists, Manifestor enables an IA to correctly learn
vocabulary and effectively explain its future behavior.

This paper is structured as follows. Section II describes the
background of Manifestor from the perspective of both the
explainable artificial intelligence (XAI) problem and vocab-
ulary learning. We also formalize the communication-gap
problem. Section III explains the design of Manifestor for
learning vocabulary in situations with a communication gap.
Section IV describes the details of our implementation for
evaluating Manifestor. Section V reports the results of the
numerical and user study experiments. Section VI discusses
the limitations and future directions of Manifestor. Finally,
Section VII concludes this paper.

II. BACKGROUND
A. GOAL-ORIENTED XAI
An XAI refers to an intelligent system that can explain
its decision-making to people [8]. Some machine-learning
models, particularly deep learning models, are composed of
variables that people cannot easily interpret, which increases
the need for XAI. Adadi and Berrada pointed out that XAI
stems from at least four motivations: to justify AI decision-
making, make AIs controllable, improve AIs, and enable
people to discover insights from machine learning results [9].

The XAI problem is also critical for IAs that autonomously
learn their policy with machine-learning methods. XAI for
IAs is specifically called goal-oriented XAI [10] or explain-
able agency [11]. Goal-oriented XAI is necessary for people
to control or improve an IA and avoid unintended behav-
ior. It is also concerned with whether people can trust
an IA [12], [13].

Puiutta & Veith applied the taxonomy of XAI [9] to
goal-oriented XAI [14]. One factor is whether a method
is intrinsic or post-hoc. Intrinsic methods are used for
building a machine-learning model that is constitutionally
interpretable. By using a decision-tree model or attention
mechanism [15], it is easier for people to interpret an IA’s
decision-making process. Certain methods add constraints
to a deep-learning-model structure so that decision-making
models explicitly have human interpretable variables such as
goals [16], [17]. Post-hoc methods, however, focus on gener-
ating explanations of incomprehensible models after training.

Although post-hoc methods are not guaranteed to explain
the literal decision-making process of an original machine-
learning model, they do not affect model performance.

Another factor is whether an explanation is global or local.
Global explanation provides a summary of an IA’s general
behavior [1], [18] whereas local explanation targets behavior
in a specific situation. A major approach for local explana-
tion is using a target model’s saliency map, a visualization
of input factors that strongly affected the model’s decision-
making [19]–[21]. Saliency maps provide the reason an IA
took a specific action and can be a clue for people to predict
IA behavior [20].

Manifestor provides post-hoc and local explanations.
It focuses on generating explanation of an IA whose model
has little interpretability for people. We consider a specific
motion that an IA is going to show so that people can correctly
predict the future.

B. EXPLAINING IA FUTURE ACTION
Most XAI studies focus on explainingwhy a decision is made,
and little consideration has been taken for explaining what
the decision will be. However, because an IA’s action can
cause unrecoverable effects, including physical changes in
the environment, it is important to be able to explain its action
before taking it. Explaining what an IA is going to do is
also essential for cooperation with humans, because effective
cooperation is based on mutual understanding of what others
will do [2].

Hayes et al. proposed a question-answering system for
explaining an IA’s behavior [1]. It can answer a question
of what an IA will do under specific circumstances. Strictly
speaking, this is a global explanation based on a Markov
decision-process model. Waa et al. proposed a method for
explaining not a one-shot action but a sequence of actions [3].

However, they focused on an IA in a grid world, and
challenges remain for applying it to another domain. A major
challenge is that an IA’s action is assumed to be easily
associated with a symbolic expression for explaining to peo-
ple. It becomes difficult to define vocabulary since an IA’s
decision-making is complex, making autonomous learning of
vocabulary more promising.

C. ENABLING IA TO LEARN VOCABULARY
A simple machine-learning approach for grounding vocab-
ulary with motion is supervised learning using a dataset of
motion-caption pairs. Methods have been proposed to clas-
sify human activity using RGB (red, green, blue) cameras
or depth sensors into caption labels [22]–[24], and a study
focused on robot-motion captioning [25].

Typical trials for an IA to interactively learn vocabu-
lary from people are in the instruction-following frame-
work [5]–[7], [26], in which an IA seeks a policy for
instructions given by people. Particularly in a reward-based
approach [27], [28], an IA learns policy πinstruction that max-
imizes expected reward given the environment state st and
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instruction ut with RL methods:

a ∼ πinstruction(at |st , ut ) ∝ Eπinstruction[
∑
0≤τ

γ τ rt+τ ],

where rt is a reward given at time t , and γ is a discount rate for
future rewards. On the boundary betweenXAI and instruction
following, Shu et al. proposed a hierarchical RL model that
improves interpretability of the learned behavior by associat-
ing sub-policies with vocabulary used in an instruction [17].

Instructions from people can be also used to boost an IA’s
action learning in which an IA can solely achieve its goal
without instructions. Interactive RL (IRL) aims at enabling
an IA to quickly learn its policy from people’s symbolic
feedback [29]. Therefore, we consider a situation in which
a person mentions how an IA should act.

In reward-based instruction following, it is assumed that
an IA and person giving instructions share goal g ∈ G. That
is, an IA’s goal gagent is the same as a person’s goal ghuman.
Here, gagent is a variable that specifies the reward r for an IA’s
action in a specific environment status:

r = R(s, a, gagent ). (1)

We call R a reward function and ghuman a variable that is
behind a person’s instruction:

u = H (s, ghuman). (2)

In instruction following, larger rewards are given to an IA
when its action more matches a person’s instructions. How-
ever, when a non-expert person attempts to communicate with
an autonomous IA, s/he can mention something other than
gagent , or gagent 6= ghuman, because s/he may not know exactly
which goal the IA has or want the IA to work on another task.
This paper focuses on such a communication gap to correctly
interpret instructions given by people.

Manifestor is an extension of our previously proposed pro-
totypemethod called Instruction-based Behavior Explanation
(IBE) [30], [31]. IBE also uses vocabulary used in instruc-
tions from a person for explaining an IA’s future motion
and empirically demonstrated that its explanation improves
the predictability of IA behavior. The largest significance
of Manifestor over IBE is that it handles the communica-
tion gap between a person and IA, whereas IBE does not.
Moreover, Manifestor quantitatively formalizes vocabulary
learning with two loss functions while IBE relies on manual
design of thresholds for determining whether an IA behavior
matches a given instruction.

This paper tackles an extreme case in which a person only
provides instructions and does not provide any other feedback
such as whether the motion matches an instruction. This is
not realistic for actual application because feedback boosts
the learning process, but we chose this case to explore the
possibility of vocabulary acquisition with as little additional
information from a person as possible.

D. LunarLander-v2 AND INSTRUCTIONS
We used LunarLander-v2 provided in Open AI Gym [32]
as a task for which an IA acts and in which a person gives
instructions. An IA aims to land a rocket on an objective
landing spot by manipulating main and side thrusters located
on the rocket’s bottom and left and right sides, respectively.
A possible action a ∈ A is choosing which thruster to ignite
to accelerate or decelerate the rocket. An IA can choose no
thruster as well, with which the rocket moves in accordance
with gravity and inertia. The environment state s ∈ S
represents the rocket’s location, velocity, degree of tilt, with
which an IA choose its action. Rewards are calculated on
the basis of the distance to a landing spot, deceleration,
and decrease in tilt for each time step. One-shot posi-
tive/negative reward is givenwhen the rocket succeeds/fails in
landing.

In this paper, goals correspond to the location of a landing
spot. We modified LunarLander-v2 so that we could change
the landing-spot location for each trial, whereas the original
has a fixed landing point at the center of the ground.1

Compared with a grid world, an action of LunarLander-v2
is not intuitive for people [33], so it is difficult to correspond
an IA action with human vocabulary. One reason is that an
action causes different results depending on the s. For exam-
ple, the effect of rocket ignition on its velocity depends on
the rocket’s angle. In addition, a rocket behavior that people
can recognize is not based on a single action but a sequence
of actions because an action is chosen at high frequency
(20 ms), which sustains time delay.

Following previous studies [30], [31], we defined a simple
rule of generating an instruction for an IA:

H (s, g) =


Go left. (if s.x > g.xright )
Go right. (if s.x < g.xleft )
Fall straight down. (else),

(3)

where s.x is the location of the rocket on the horizontal axis,
and g.xleft and g.xright represent the left and right end of the
landing spot g, respectively. An instruction is based only on
the locations of the rocket and human goal, and inertia of
the rocket is not taken into account. A person is assumed to
consistently give instructions with ghuman, which is fixed in
an episode. In LunarLander-v2, an episode is from a rocket
beginning to land to completing the landing.

III. MANIFESTOR
A. OVERVIEW
Manifestor is a method for explaining an IA’s future
motion by learning vocabulary from people. It generates
future-motion explanation by predicting the transition of
environment states caused by an IA and translating it to
human vocabulary. Manifestor interprets a person’s instruc-
tion about how s/he wants an IA to act while inferring her/his

1The implementation is available online (https://github.com/
fuku5/multi_lunar_lander)
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FIGURE 2. Components of Manifestor.

goal and grounds vocabulary used in instructions. Therefore,
it becomes unnecessary for IA designers to manually define
vocabulary for explanation.

B. MODULES
Manifestor is composed of five modules: policy πg, predic-
tor TN , translator fN , instructor model M , and evaluator E
(Fig. 2). πg determines an action a on the basis of s under g
in the samemanner with typical RLmethods. The TN predicts
a sequence of actions (at,N = (at , at+1, . . . , at+N )) and
transitions in environment state (st,N = (st , st+1, . . . , st+N ))
in N steps on the basis of πg.

TN (πg, st ) = (st,N , at,N ).

The fN outputs a probability distribution that represents the
correspondence between transition st,N and vocabulary u:

u ∼ fN (u|st,N )

TheM infers a person’s goal ghuman from her/his instructions:

ghuman ∼ M (ghuman|s0,τ ,u0,τ ),

where τ is the length of an episode, and u0,τ =

(u0, u1, . . . , uτ ) is a sequence of instructions in an episode.
This formalization is based on the assumption that ghuman is
fixed in an episode. Finally, the E represents to what extent
a transition and sequence of actions caused by the IA policy
(st,N , at,N ) fits a g:

g ∼ E(g|st,N , at,N )

We focus on the training of the fN and M but do not
discuss the problems with TN or E such as how to train it
and prediction accuracy.

C. LOSS FUNCTIONS
We define loss functions for training the fN andM . These loss
functions represent the two ideas shown in Fig. 1. That is,
we can correspond instruction vocabulary and a motion in a
similar manner if the goal behind the instruction is given, and
the goal behind an instruction can be inferred on the basis of
howmuch a self-classification result of an IAmotionmatches

the instruction. These ideas are used for training fN and M ,
respectively.

1) TRANSLATOR fN
Let us first consider a situation in which a person and
IA share the goal, that is, gagent = ghuman. A person provides
instruction ut on the basis of st and ghuman (cf. Eq. 2). An IA
chooses actions afterwards for N steps, and we obtain a
sequence of actions at,N and an environment transition st,N .
We define a loss function for the fN , i.e., LfN :

LfN = −E(ghuman|st,N , at,N ) · log fN (ut |st,N ). (4)

The fN is trained to minimize LfN . With this loss function,
st,N more strongly corresponds to ut the more (st,N , at,N )
accords with ghuman. The E is based on rewards R(s, a, g) that
will be given when assuming each possible goal.

E(g|s, a) = softmax
g∈G

(
∑
s,a∈s,a

R(s, a, g)).

Next, let us suppose a situation with a communication gap,
or gagent 6= ghuman. We extended the former loss function as
follows:

L+fN = −
∑
g∈G

(M (g|s0,τ ,u0,τ ) · E(g|st,N , at,N ))

· log fN (ut |st,N ), (5)

where L+fN depends on a person’s goal inferred by M . The∑
(M · E) in Equation 5 corresponds to E(ghuman|st,N , at,N )

in Equation 4. It takes into account all g ∈ G as a possible
human-goal candidate because ghuman is hidden from the IA.
The sum ofM ·E is the expected value of E(ghuman|st,N , at,N )
when we consider ghuman as a random variable.

2) INSTRUCTOR MODEL M
Equation 6 shows the loss function for training the M ,
i.e., LM :

LM = −
1
β
fN (ut |st,N )

·

∑
g∈G

(E(g|st,N , at,N ) · logM (g|s0,τ ,u0,τ )), (6)

which expresses our idea that (a) when self-recognition of
an agent’s motion matches an instruction, (b) a human goal
should be the one with which the motion earns large rewards.
The terms fN and

∑
(E · logM ) represent (a) and (b), respec-

tively. We focused on the co-occurrence of (a) and (b). That
is,

∑
(E · logM ) should be maximized (or −

∑
(E · logM )

should be minimized) when fN is large.
Equation 6 expresses the co-occurrence but has a loophole.

It can also be minimized by decreasing the two terms individ-
ually. Therefore, we added β for a penalty factor to avoid this
loophole and focus on the co-occurrence:

β = Et [fN (ut |st,N )]

·Et [
∑
g∈G

(E(g|st,N , at,N ) · logM (g|s0,τ ,u0,τ ))].
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We do not consider β = 0 because it cannot not theoretically
occur when we use the softmax function for the outputs of
fN ,E, or M .

IV. IMPLEMENTATION
A. TRAINING PROCEDURE
The fN and M require each other’s inference for training
(Eqs. 5 and 6). Namely, their training is interdependent, and
we could not stabilize the learning results when simultane-
ously training the two in our trials. To focus on validating
our formalization of L+fN and LM , we simplified the learning
process by introducing assumptions and splitting the training
process into three phases.

In the first phase, instructions are divided into n groups
with an unsupervised learning method regardless of LM .
Specifically, we used the encoder-decoder model:

ĝ ∼ Encoder(ĝ|s0,τ ,u0,τ ), (7)

ut ∼ Decoder(ut |st ,Encoder(s0,τ ,u0,τ )), (8)

where ĝ ∈ Ĝ is the result of the unsupervised learning
method.

The second phase is training the fN on the basis of ĝ. The
unsupervised learning method does not provide the relation-
ship between ĝ ∈ Ĝ and g ∈ G, so there can be multiple
combinations. Let us consider a mapping m : Ĝ → G.
Therefore, we can build theM .

Mm(g|s0,τ ,u0,τ ) =
∑
ĝ∈Ĝ

δ(g,m(ĝ)) · Encoder(ĝ|s0,τ ,u0,τ ),

(9)

where δ(a, b) is 1 if a = b and 0 otherwise. When we assume
|G| = |Ĝ| = 3 and that there is a one-to-one correspondence
between ĝ and g, we can consider 3! = 6 mappings. In this
phase, we trained the fN using Eq. 5 for all possible Ms with
each mapping.

In the third phase, we evaluate all the Ms with Eq. 6.
The final training result is from the fN trained with the
best mapping, which minimizes Eq. 6. The training of
the M is simplified as a problem of choosing the best
mapping m.

B. MODELS
In this paper, the fN is a Transformer-Encoder model [34]
to handle time series data. The model can be trained with a
gradient method on the basis of Eq. 5. We inserted a [CLS]
token [35] at the beginning of the input and transformed
the output as a probability distribution of u with multi-layer
perceptron and the softmax function.

The Encoder of theM (Eq. 7) is implemented with a model
similar to the fN , but it receives a sequence of both s and u. The
output of the Encoder expresses a probability distribution of
ĝ behind instructions. The decoder (Eqn. 8) is a multilayer
perceptron.

V. EVALUATION
A. OVERVIEW
Two experiments were conducted to evaluate Manifestor, i.e.,
a numerical experiment for confirming the basis of Man-
ifestor, and a user study experiment investigating whether
explanation generated with Manifestor can contribute to
improving the predictability of an IA’s future motion for
people.

We compared Manifestor with optimal and ablation to
investigate its performance against a communication gap.
optimal is trained with instructions on the basis of the gagent
and LfN . It does not need to take into account a communica-
tion gap, thus should provide optimal results. Manifestor is
trained with instructions on the basis of the ghuman, the same
as with ablation, which falsely ignores a communication gap
using LfN . optimal and ablation simulate the results made by
the contemporary instruction-following methods [27], [28].
They demonstrate what occurs when we introduce current
methods in situations with or without a communication gap.

B. NUMERICAL EXPERIMENT
1) AIMS
The numerical experiment was conducted to validate Mani-
festor by investigating the following two questions:

i) Can we choose the best mapping m∗ for theM with LM?
ii) Do the training results acquired on the basis of L+fN in a

situation with a communication gap match the optimal
vocabulary acquired with LfN in a situation without a
communication gap?

These questions are for validating our idea expressed with LM
and LfN , respectively.

2) PROCEDURE
An IA policywas trainedwithAdvantageActor-Critic (A2C),
one of the most representative algorithms for DRL. From
this policy, we created datasets for training and evaluating
Manifestor. The datasets were composed of tuples of an s,
an instruction based on a ghuman, and an instruction based
on a gagent . A ghuman is randomly chosen for each episode.
We prepared two datasets, unskilled and skilled datasets,
on the basis of a policy trained for 500,000 and 150 million
time steps, respectively, to supplementally investigate the
effects of IA-policy performance on vocabulary learning.

We set N = 100 (five seconds), which we determined for
the following user study experiment considering the balance
between the difficulty of predicting where a rocket lands and
the time left for letting people understand the context for
prediction on the basis of our pilot experiment. A dataset has
3,200 episodes, and we used half for training and the other
half for evaluation.

For question i), we executed the procedure shown in Sub-
section IV-A with 100 different random seeds. Training with
each random seed produces six Ms and fN s, and there is the
mappingm∗ withwhich the correspondingM most accurately
predicts the ground truth of ghuman. We calculated the ratio of
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FIGURE 3. Histograms of ratio distributions. Blue lines show density of
ratio greater than 1, and red lines elsewise.

LMm (m 6= m∗) to LMm∗ as a measure of the loss function.
A ratio of more than 1 means that the loss function can select
the best mapping.

For question ii), we calculated the accuracy of Manifestor,
where accuracy means how much the outputs of Manifestor’s
fN match those of optimal. We used the fN with the ground
truth mapping to focus on L+fN and remove the effects of LM .
For comparison, we calculated the accuracy of ablation.

3) RESULTS
Figure 3 shows the results for question i). Similar results,
except for the breadth of the distributions, were obtained
with both unskilled and skilled datasets. From 500 sam-
ples, we could successfully distinguish the best mapping in
485 and 487 samples (97.0 and 97.4 %). The mean ratios
were 1.22 (95%CI2 1.01, 1.42) and 1.14 (95%CI 0.99, 1.29),
respectively.

Figure 4 illustrates the accuracy of Manifestor and abla-
tion. With both datasets, Manifestor was significantly more
accurate than ablation (Mann-Whitney’s U test). The median
accuracy values of Manifestor were .700 and .870, whereas
those of ablation were .303 and .522 with the unskilled and

2Confidence interval.

FIGURE 4. Accuracy of Manifestor and ablation. (∗ ∗ ∗ : p < .001). See
Appendix B for statistical details.

FIGURE 5. Interface for user study experiment.

skilled datasets, respectively. A possible reason is that the
unskilled dataset has very few successful and many relatively
better examples for human instructions, so it was difficult to
clearly ground vocabulary to motions.

The numerical experiment results supported both
questions, so we conclude that the two loss functions for
Manifestor can effectively handle the communication-gap
problem.

C. USER STUDY EXPERIMENT
1) AIMS
The user study experiment was conducted to evaluate Mani-
festor in more practical situations. We investigated whether
future-motion explanation generated with Manifestor can
improve the predictability of IA behavior for people.

2) PROCEDURE
Participants were asked to predict where a rocket would land.
Figure 5 illustrates the interface shown to the participants.
It showed the rocket’s movement until five seconds (100
frames) before it landed along with explanation of its future
motion generatedwithManifestor or the othermethodswhich
we used in subsection V-B (optimal and ablation). We also
prepared a baseline condition in which only the rocket
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FIGURE 6. Absolute errors of participants’ predictions. See Appendix B
for statistical details.

movement and no explanation was provided. The explanation
was shown as a bar graph.

We recruited 100 participants (26 female and 74 male;
aged 21-67, M = 41.3, SD = 8.6) with compensation
of 120 JPY from Lancers,3 a crowdsourcing platform in
Japan. The experiment was conducted on a web site. The
participants were first provided pertinent information, and
all the participants consented to the participation. Before the
main task, we asked four simple questions to test the partic-
ipants’ comprehension about the task and removed 14 par-
ticipants for evaluation. The experiment was conducted in a
between-participant design, and 18, 20, 22, 26 participants
were assigned to Manifestor, optimal, ablation, and baseline
condition, respectively. In the main task, the participants were
requested to answer where the rocket landed by indicating the
index written on the moon ground (Fig. 5). Twenty episodes
were shown in random order.

3) HYPOTHESES
We made two hypotheses to validate whether Manifestor can
effectively explain an IA’s future motion by managing the
communication-gap problem:

(H1) Manifestor improves predictability as much as
optimal.

(H2) Ablation does not improve predictability.

4) RESULTS
Figure 6 illustrates the absolute errors of the participants’
predictions with statistical results. One tick error in Fig. 5
equals 0.2. The Kruskal-Wallis test revealed significant

3https://www.lancers.jp/

differences among the three methods and the baseline con-
dition (p < .001). For a post-hoc analysis, we applied the
Mann-Whitney’s U test with Bonferroni correction to the
results. We found significant differences among all combi-
nations except for that between Manifestor and optimal.
Both Manifestor and optimal reduced the error compared

with the baseline condition. The mean absolute errors were
0.172, 0.176, and 0.260 for Manifestor, optimal, and baseline
condition, respectively. The effect size r was .25 between
Manifestor and baseline condition and .22 between optimal
and baseline condition. We found no significant difference
between Manifestor and optimal. The r between the two
was .06. These results support H1, meaning that even though
a communication gap exists, Manifestor can enable an IA
to learn vocabulary and generate future-motion explanations
that improve the predictability of an IA motion as much as
vocabulary learned in ideal situations in which a communi-
cation gap does not exist.
ablation failed to improve predictability of an IA

motion and rather misled participants. The mean abso-
lute error of ablation was 0.346. The r was .16 between
baseline condition and ablation, and .37 between Mani-
festor and ablation. These results support H2, which con-
firms that the communication-gap problem needs to be
solved in our settings to properly learn vocabulary from
people.

VI. LIMITATIONS AND FUTURE WORK
We empirically demonstrated that Manifestor can enable an
IA to properly learn vocabulary in situations with communi-
cation gaps and contribute to improving the predictability of
IA motion with the learned vocabulary. However, the imple-
mentation of Manifestor and experimental settings mainly
focused on validating our idea formalized as loss functions
(Eq. 4-6), and further consideration is required to apply them
to actual human-IA interaction.

We defined a rule for generating human instructions
(Eq. 3), but a previous study on IRL revealed that human feed-
back signals are infrequent, inconsistent, or suboptimal [36].
It would be promising to improve Manifestor on the basis
of IRL models that can handle such characteristics of human
instructors.

As we mentioned in Subsection II-C, we assumed that a
person only gives instructions and never provides feedbacks
such as whether an IA’s motion followed what s/he said.
However, using feedback from people and Manifestor are
complementary; feedback gives a boost to acquiring an M
of Manifestor while an M reduces the need of feedback. For
future work, we are planning to integrate other information
provided by an instructor to both accelerate the training pro-
cess of Manifestor and generate IA motions.

Contextual information is also helpful for developing an
M . A ghuman is randomly chosen for each episode in this
paper, but the ghuman can depend on context, and if so, context
can be a hint to infer it. In particular, the behavior of a
person who gives instructions provides plenty of information
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about her/his goal. An IA motion can also affect the ghuman
because a person sometimes tries to infer an artificial agent’s
mental states on the basis of mere observations of IA behav-
ior [37], [38]. When a person tries to infer a gagent to provide
instructions, an IA may need to infer how its own motion is
considered by people.

Another direction for improving Manifestor is to refer
to semantics to interpret human instructions. Manifestor
learns vocabulary without prior knowledge about what it
means. However, an IA can more efficiently and prop-
erly interpret vocabulary by using a lexicon or language
model trained with corpus data [39], [40]. Combining
such information with Manifestor is promising for reducing
the human cost of interacting with an IA for vocabulary
learning.

Our implementation of Manifestor has an assumption of
ghuman ∈ G, that is, the ghuman is derived from a set of
an IA’s possible goals; thus, the IA’s evaluator can evaluate
whether a motion matches the ghuman. However, a non-expert
may ask an IA to work on a task that is overlooked in
design or beyond the capabilities of the IA. Applying inverse
RL methods [41] to a person may be a promising means
to specify the ghuman 6= G and build an evaluator that
evaluate an IA motion on the basis of the inferred reward
function.

Manifestor relies on the predictor, but predicting the tran-
sition of the environment is still an important domain of
research. It is challenging particularly for the real world
because it tends to be nondeterministic and highly complex.
An actively researched domain is video prediction [42]–[44].
However, an IA needs to handle action-conditional prediction
because its actions affect the environment [45]. Model-based
RL that attempts to integrate a world dynamics model into
an IA’s decision-making can provide a direction for imple-
menting an action-conditional prediction model for a more
complex environment [46]. Prediction accuracy depends
on N , or the length of prediction. We need to further inves-
tigate how long Manifestor structurally affords to generate
future-motion explanation.

VII. CONCLUSION
We proposed Manifestor, a method for explaining an IA’s
future motion on the basis of vocabulary learning. Mani-
festor enables IAs to learn vocabulary that expresses their
motions from a person’s instructions of how they should act.
By inferring their goals behind instructions, Manifestor can
manage the communication-gap problem in which a person
and an IA do not share their goals. The numerical and user
study experiments demonstrated thatManifestor can generate
future-motion explanation of an IA with learned vocabulary
and improve the predictability of IA behavior even if com-
munication gaps exist.

CODE AVAILABILITY
Our implementation is available online (https://github.
com/fuku5/Manifestor).

APPENDIX A
EXPERIMENTAL SETUP DETAILS
A. SOFTWARES
Table 1 lists the softwares used in the experiments.

TABLE 1. Software and version.

B. FLOW OF NUMERICAL EXPERIMENT
Algorithm 1 shows the flow of the numerical experiment.

Algorithm 1 Training and Evaluating Manifestor
1: π ← a policy of an A2C agent
2: // Preparation
3: Build a dataset of tuples (s, a, gagent , ghuman)
4: dataset_training, dataset_evaluation← dataset.split()
5: Es, Ea, Egagent , Eghuman← dataset_training
6: Eu← H (Es, Eghuman)
7: Eu′← H (Es, Egagent )
8:

9: for i = 1, 2, . . . , to NUM_SEED do
10: // For drawing histogram
11: Train Encoder with (Es, Eu)
12: m∗← argmaxm Accuracy(Mm; Eghuman)
13: for possible m do
14: BuildMm with Encoder and m (See Eq. 9.)
15: fN ,Manifestor,m← Train fN with (L+fN ,Mm, Es, Ea, Eu)
16: Calculate LMm with dataset_evaluation
17: end for
18: Calculate LMm/LMm∗ for each m(6= m∗)
19:

20: // For comparing accuracy
21: fN ,optimal,m∗ ← Train fN with (LfN ,Mm∗ , Es, Ea, Eu′)
22: fN ,ablation,m∗ ← Train fN with (LfN ,Mm∗ , Es, Ea, Eu)
23: Calculate how much the outputs of fN ,Manifestor,m∗

match those of fN ,optimal,m∗

24: Calculate howmuch the outputs of fN ,ablation,m∗ match
those of fN ,optimal,m∗

25: end for

C. TRAINING A2C
An A2C agent was trained for the modified LunarLander-v2
(Subsection II-D) using pfrl, a DRL library [47]. Table 2 lists
the hyperparameters for the training.

D. TRAINING MANIFESTOR
The Encoder (Eq. 7) is based on the Transformer-Encoder
implementation from the PyTorch library. Both st and ut
are embedded into 64-dimensional vectors and concatenated
before entering the Encoder . A sequence of (s, u) with a
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TABLE 2. Hyperparamters of A2C agent.

TABLE 3. Hyperparamters of Encoder .

TABLE 4. Hyperparamters of fN .

TABLE 5. Numerical experiment - Mann-Whitney’s U test (unskilled
dataset).

TABLE 6. Numerical experiment - Mann-Whitney’s U test (skilled dataset).

[CLS] token at the beginning is input to the Transformer-
Encoder model, which outputs vectors for each sequence
element. The output vector for [CLS] is transformed to
three-dimensional vector with a perceptron and the softmax
function. This is the output of Encoder and expresses the
probability of ĝ ∈ Ĝ. Table 3 lists the hyperparameters for
the Encoder and Decoder .

The fN is implemented with a similar model to the
Encoder . The differences are that the input is only st,N and
that the output vector is considered the probability that st,N is
expressed with vocabulary u ∈ U . Table 4 lists the hyperpa-
rameters for the fN .

TABLE 7. User study experiment - Kruskal-Wallis test.

TABLE 8. User study experiment - Mann-Whitney’s U test with Bonferroni
correction.

APPENDIX B
STATISTICS DETAILS
See Tables 5–8.

REFERENCES
[1] B. Hayes and J. A. Shah, ‘‘Improving robot controller transparency through

autonomous policy explanation,’’ in Proc. ACM/IEEE Int. Conf. Hum.-
Robot Interact. (HRI), Mar. 2017, pp. 303–312.

[2] B. Hayes and B. Scassellati, ‘‘Challenges in shared-environment human–
robot collaboration,’’ in Proc. Collaborative Manipulation Workshop
ACM/IEEE Int. Conf. Hum.-Robot Interact. (HRI), vol. 8, Jan. 2013,
pp. 1–9.

[3] J. Waa, J. V. Diggelen, K. Bosch, and M. Neerincx, ‘‘Contrastive expla-
nations for reinforcement learning in terms of expected consequences,’’ in
Proc. Workshop Explainable AI IJCAI Conf., Stockholm, Sweden, vol. 37,
2018, pp. 1–6.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[5] D. S. Chaplot, K. M. Sathyendra, R. K. Pasumarthi, D. Rajagopal,
and R. Salakhutdinov, ‘‘Gated-attention architectures for task-oriented
language grounding,’’ in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp. 1–8.

[6] D. Misra, J. Langford, and Y. Artzi, ‘‘Mapping instructions and visual
observations to actions with reinforcement learning,’’ in Proc. Conf.
Empirical Methods Natural Lang. Process., 2017, pp. 1–16.

[7] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sunderhauf,
I. Reid, S. Gould, and A. van den Hengel, ‘‘Vision-and-language naviga-
tion: Interpreting visually-grounded navigation instructions in real envi-
ronments,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 3674–3683.

[8] W. Samek, T. Wiegand, and K.-R. Müller, ‘‘Explainable artificial intelli-
gence: Understanding, visualizing and interpreting deep learning models,’’
ITU J., ICT Discoveries, vol. 1, no. 1, pp. 1–10, 2017.

[9] A. Adadi and M. Berrada, ‘‘Peeking inside the black-box: A sur-
vey on explainable artificial intelligence (XAI),’’ IEEE Access, vol. 6,
pp. 52138–52160, 2018.

[10] S. Anjomshoae, A. Najjar, D. Calvaresi, and K. Främling, ‘‘Explainable
agents and robots: Results from a systematic literature review,’’ in
Proc. 18th Int. Conf. Auton. Agents Multiagent Syst. Richland,
WA, USA: Int. Found. Auton. Agents Multiagent Syst., 2019,
pp. 1078–1088.

[11] P. Langley, B. Meadows, M. Sridharan, and D. Choi, ‘‘Explainable agency
for intelligent autonomous systems,’’ in Proc. 31st AAAI Conf. Artif. Intell.
Palo Alto, CA, USA: AAAI Press, 2017, pp. 4762–4763.

[12] M. Edmonds, F. Gao, H. Liu, X. Xie, S. Qi, B. Rothrock, Y. Zhu, Y. N. Wu,
H. Lu, and S.-C. Zhu, ‘‘A tale of two explanations: Enhancing human
trust by explaining robot behavior,’’ Sci. Robot., vol. 4, no. 37, Dec. 2019,
Art. no. eaay4663.

VOLUME 10, 2022 54345



Y. Fukuchi et al.: Explaining IAs Future Motion on Basis of Vocabulary Learning With Human Goal Inference

[13] K. Weitz, D. Schiller, R. Schlagowski, T. Huber, and E. André,
‘‘‘Do you trust me?’: Increasing user-trust by integrating virtual agents
in explainable AI interaction design,’’ in Proc. 19th ACM Int. Conf.
Intell. Virtual Agents. New York, NY, USA: ACM, 2019, pp. 7–9, doi:
10.1145/3308532.3329441.

[14] E. Puiutta and E. M. S. P. Veith, ‘‘Explainable reinforcement learning:
A survey,’’ inMachine Learning and Knowledge Extraction, A. Holzinger,
P. Kieseberg, A. M. Tjoa, and E. Weippl, Eds. Cham, Switzerland:
Springer, 2020, pp. 77–95.

[15] D. Hein, A. Hentschel, T. Runkler, and S. Udluft, ‘‘Particle swarm
optimization for generating interpretable fuzzy reinforcement
learning policies,’’ Eng. Appl. Artif. Intell., vol. 65, pp. 87–98,
Oct. 2017, [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0952197617301537

[16] B. Beyret, A. Shafti, and A. A. Faisal, ‘‘Dot-to-dot: Explainable hierarchi-
cal reinforcement learning for robotic manipulation,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Nov. 2019, pp. 5014–5019.

[17] T. Shu, C. Xiong, and R. Socher, ‘‘Hierarchical and interpretable skill
acquisition in multi-task reinforcement learning,’’ in Proc. 6th Int. Conf.
Learn. Represent. (ICLR), Vancouver, BC, Canada, Apr. 2018, pp. 1–14.
[Online]. Available: https://openreview.net/forum?id=SJJQVZW0b

[18] G. Liu, O. Schulte, W. Zhu, and Q. Li, ‘‘Toward interpretable deep rein-
forcement learning with linear model U-trees,’’ in Proc. Joint Eur. Conf.
Mach. Learn. Knowl. Discovery Databases (Lecture Notes in Computer
Science), vol. 11052, M. Berlingerio, F. Bonchi, T. Gärtner, N. Hurley,
and G. Ifrim, Eds. Dublin, Ireland: Springer, Sep. 2018, pp. 414–429, doi:
10.1007/978-3-030-10928-8_25.

[19] P. Tamagnini, J. Krause, A. Dasgupta, and E. Bertini, ‘‘Interpreting black-
box classifiers using instance-level visual explanations,’’ in Proc. 2nd
Workshop Hum.-Loop Data Anal. New York, NY, USA: ACM, 2017,
pp. 1–6, doi: 10.1145/3077257.3077260.

[20] R. Iyer, Y. Li, H. Li, M. Lewis, R. Sundar, and K. Sycara, ‘‘Transparency
and explanation in deep reinforcement learning neural networks,’’ in Proc.
AAAI/ACM Conf. AI, Ethics, Soc. New York, NY, USA: ACM, Dec. 2018,
pp. 144–150, doi: 10.1145/3278721.3278776.

[21] A. Mott, D. Zoran, M. Chrzanowski, D. Wierstra, and D. J. Rezende,
‘‘Towards interpretable reinforcement learning using attention aug-
mented agents,’’ in Advances in Neural Information Processing Systems.
Red Hook, NY, USA: Curran Associates Inc., 2019.

[22] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, ‘‘Machine
recognition of human activities: A survey,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 18, no. 11, pp. 1473–1488, Nov. 2008.

[23] J. K. Aggarwal and L. Xia, ‘‘Human activity recognition from
3D data: A review,’’ Pattern Recognit. Lett., vol. 48, pp. 70–80,
Oct. 2014. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167865514001299

[24] M. Barnachon, S. Bouakaz, B. Boufama, and E. Guillou,
‘‘Ongoing human action recognition with motion capture,’’ Pattern
Recognit., vol. 47, no. 1, pp. 238–247, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0031320313002720

[25] K. Yoshino, K. Wakimoto, Y. Nishimura, and S. Nakamura, ‘‘Caption
generation of robot behaviors based on unsupervised learning of action
segments,’’ in Conversational Dialogue Systems for the Next Decade (Lec-
ture Notes in Electrical Engineering), vol. 704, L. F. D’Haro, Z. Callejas,
and S. Nakamura, Eds. Singapore: Springer, 2021, doi: 10.1007/978-981-
15-8395-7_17.

[26] H. Mei, M. Bansal, and M. R. Walter, ‘‘Listen, attend, and walk: Neu-
ral mapping of navigational instructions to action sequences,’’ in Proc.
30th AAAI Conf. Artif. Intell. Palo Alto, CA, USA: AAAI Press, 2016,
pp. 2772–2778.

[27] P. Shah, M. Fiser, A. Faust, J. C. Kew, and D. Hakkani-Tur, ‘‘FollowNet:
Robot navigation by following natural language directions with deep rein-
forcement learning,’’ CoRR, vol. abs/1805.06150, pp. 1–7, May 2018.

[28] K. M. Hermann, F. Hill, S. Green, F. Wang, R. Faulkner, H. Soyer,
D. Szepesvari, W. M. Czarnecki, M. Jaderberg, D. Teplyashin,
M. Wainwright, C. Apps, D. Hassabis, and P. Blunsom, ‘‘Grounded
language learning in a simulated 3D world,’’ CoRR, vol. abs/1706.06551,
pp. 1–22, Jun. 2017.

[29] J. Luketina, N. Nardelli, G. Farquhar, J. Foerster, J. Andreas,
E. Grefenstette, S. Whiteson, and T. Rocktäschel, ‘‘A survey of
reinforcement learning informed by natural language,’’ in Proc. 28th
Int. Joint Conf. Artif. Intell., Aug. 2019, pp. 1–9.

[30] Y. Fukuchi, M. Osawa, H. Yamakawa, and M. Imai, ‘‘Autonomous self-
explanation of behavior for interactive reinforcement learning agents,’’ in
Proc. 5th Int. Conf. Hum. Agent Interact. New York, NY, USA: ACM,
Oct. 2017, pp. 97–101, doi: 10.1145/3125739.3125746.

[31] Y. Fukuchi, M. Osawa, H. Yamakawa, and M. Imai, ‘‘Application of
instruction-based behavior explanation to a reinforcement learning agent
with changing policy,’’ in Proc. Int. Conf. Neural Inf. Process. Cham,
Switzerland: Springer, 2017, pp. 100–108.

[32] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, ‘‘OpenAI Gym,’’ 2016, arXiv:1606.01540.

[33] S. Reddy, A. Dragan, and S. Levine, ‘‘Where do you think you’re going?:
Inferring beliefs about dynamics from behavior,’’ in Proc. NeurIPS, 2018,
pp. 1–12.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. U. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Advances in
Neural Information Processing Systems, vol. 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.
Red Hook, NY, USA: Curran Associates, Inc., 2017. [Online]. Available:
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd
053c1c4a845aa-Paper.pdf

[35] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-
training of deep bidirectional transformers for language understanding,’’
in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum.
Lang. Technol., vol. 1, Jun. 2019, pp. 4171–4186. [Online]. Available:
https://www.aclweb.org/anthology/N19-1423

[36] S. Griffith, K. Subramanian, J. Scholz, C. L. Isbell, and A. L. Thomaz,
‘‘Policy shaping: Integrating human feedback with reinforcement
learning,’’ in Advances in Neural Information Processing Systems,
vol. 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran Associates, Inc.,
2013. [Online]. Available: https://proceedings.neurips.cc/paper/2013/file/
e034fb6b66aacc1d48f445ddfb08da98-Paper.pdf

[37] Y. Fukuchi, M. Osawa, H. Yamakawa, T. Takahashi, and M. Imai,
‘‘Bayesian inference of self-intention attributed by observer,’’ in Proc. 6th
Int. Conf. Hum.-Agent Interact. New York, NY, USA: ACM, Dec. 2018,
pp. 3–10, doi: 10.1145/3284432.3284438.

[38] Y. Fukuchi, M. Osawa, H. Yamakawa, T. Takahashi, and M. Imai,
‘‘Conveying intention by motions with awareness of information
asymmetry,’’ Frontiers Robot. AI, vol. 9, pp. 1–9, Feb. 2022.
[Online]. Available: https://www.frontiersin.org/article/10.3389/frobt.
2022.783863

[39] D. K. Misra, J. Sung, K. Lee, and A. Saxena, ‘‘Tell me Dave: Context-
sensitive grounding of natural language to manipulation instructions,’’
Int. J. Robot. Res., vol. 35, nos. 1–3, pp. 281–300, Jan. 2016, doi:
10.1177/0278364915602060.

[40] H. Chen, H. Tan, A. Kuntz, M. Bansal, and R. Alterovitz, ‘‘Enabling
robots to understand incomplete natural language instructions using com-
monsense reasoning,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2020, pp. 1963–1969.

[41] S. Arora and P. Doshi, ‘‘A survey of inverse reinforcement learning:
Challenges, methods and progress,’’ Artif. Intell., vol. 297, Aug. 2021,
Art. no. 103500. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0004370221000515

[42] Y. Ye, M. Singh, A. Gupta, and S. Tulsiani, ‘‘Compositional video pre-
diction,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 10353–10362.

[43] N. Wichers, R. Villegas, D. Erhan, and H. Lee, ‘‘Hierarchical long-
term video prediction without supervision,’’ in Proc. 35th Int. Conf.
Mach. Learn., in Proceedings of Machine Learning Research, vol. 80,
J. Dy and A. Krause, Eds., Jul. 2018, pp. 6038–6046. [Online]. Available:
https://proceedings.mlr.press/v80/wichers18a.html

[44] M. Oliu, J. Selva, and S. Escalera, ‘‘Folded recurrent neural networks
for future video prediction,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
Sep. 2018, pp. 716–731.

[45] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, ‘‘Action-
conditional video prediction using deep networks in Atari games,’’
in Advances in Neural Information Processing Systems, vol. 28,
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds.
Red Hook, NY, USA: Curran Associates, Inc., 2015. [Online]. Avail-
able: https://proceedings.neurips.cc/paper/2015/file/6ba3af5d7b2790e73
f0de32e5c8c1798-Paper.pdf

[46] T. M. Moerland, J. Broekens, A. Plaat, and C. M. Jonker, ‘‘Model-based
reinforcement learning: A survey,’’ CoRR, vol. abs/2006.16712, pp. 1–61,
Jun. 2020.

54346 VOLUME 10, 2022

http://dx.doi.org/10.1145/3308532.3329441
http://dx.doi.org/10.1007/978-3-030-10928-8_25
http://dx.doi.org/10.1145/3077257.3077260
http://dx.doi.org/10.1145/3278721.3278776
http://dx.doi.org/10.1007/978-981-15-8395-7_17
http://dx.doi.org/10.1007/978-981-15-8395-7_17
http://dx.doi.org/10.1145/3125739.3125746
http://dx.doi.org/10.1145/3284432.3284438
http://dx.doi.org/10.1177/0278364915602060


Y. Fukuchi et al.: Explaining IAs Future Motion on Basis of Vocabulary Learning With Human Goal Inference

[47] Y. Fujita, P. Nagarajan, T. Kataoka, and T. Ishikawa, ‘‘ChainerRL:
A deep reinforcement learning library,’’ J. Mach. Learn. Res., vol. 22,
no. 77, pp. 1–14, 2021. [Online]. Available: http://jmlr.org/papers/v22/20-
376.html

YOSUKE FUKUCHI was born in Japan, in 1994.
He received the B.E. andM.E. degrees in computer
science from Keio University, Yokohama, Japan,
in 2017 and 2019, respectively.

From 2019 to 2021, he was an Assistant Pro-
fessor at Keio University. From 2021 to 2022,
he was a Project Researcher with the Keio
Leading-edge Laboratory of Science and Technol-
ogy (KLL). He is currently a Project Researcher
at the National Institute of Informatics, Tokyo,

Japan. His research interests include human–agent interaction, artificial
intelligence, and theory of mind. He is a member of the Japanese Society
for Artificial Intelligence.

MASAHIKO OSAWA received the Ph.D. degree
in computer science from Keio University,
in 2020.

He was a Research Fellow (DC1) at the
Japan Society of the Promotion of Science,
from 2017 to 2020. He is currently an Assis-
tant Professor of Nihon University. His dream
is making DORAEMON. His research interests
include machine learning, autonomous robots,
human–agent interaction, cognitive science, bio-

logically inspired cognitive architecture, and computational neuro science.
He is a member of the Japanese Society for Artificial Intelligence, the
Japanese Neural Network Society, the Japanese Cognitive Science Society,
the Asia Pacific Neural Network Assembly, and ACM.

HIROSHI YAMAKAWA received the M.S. degree
in physics and the Ph.D. degree in engineering
from The University of Tokyo, Japan, in 1989 and
1992, respectively.

In 1992, he joined Fujitsu Laboratories Ltd.
In 2014, he founded the Dwango AI Laboratory,
where he was the Director, until March 2019.
In 2015, he co-founded the Whole Brain Archi-
tecture Initiative (WBAI), non-profit organization,
where he is currently the Chairperson. He is also

a Project Researcher at the Graduate School of Engineering, The University
of Tokyo; a Visiting Professor at the Graduate School, The University of
Electro-Communications; the Director of the Intelligent Systems Division
(Visiting Professor), Institute of Informatics, Kinki University; and the
Chief Visiting Researcher at the RIKEN Center for Biosystems Dynamics
Research. He is an AI researcher interested in brain. His research interests
include brain-inspired artificial general intelligence, concept formation, neu-
rocomputing, and opinion aggregation technology.

MICHITA IMAI (Member, IEEE) received the
Ph.D. degree in computer science from Keio Uni-
versity, in 2002.

In 1994, he joined NTT Human Interface Lab-
oratories. In 1997, he joined ATR Media Integra-
tion and Communications Research Laboratories.
From 2009 to 2010, he was a Visiting Scholar
at The University of Chicago. He is currently a
Professor with the Faculty of Science and Technol-
ogy, Keio University, and a Researcher with ATR

Intelligent Robot Laboratories. His research interests include autonomous
robots, human–robot interaction, speech dialogue systems, humanoids, and
spontaneous behaviors. He is a member of the Information and Communica-
tion Engineers Japan (IEICE-J), the Information Processing Society of Japan,
the Japanese Cognitive Science Society, the Japanese Society for Artificial
Intelligence, the Human Interface Society, and ACM.

VOLUME 10, 2022 54347


