

Operating instructions (EN)

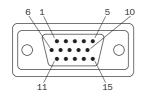
IST-RQC

02/2019

RQC **RFID** identification modules.

Description

Automatic recognition system of gripping tool (or EOAT) composed of a RFID reader RAQC (PNP version) or RAQCN (NPN version) and one or more memory TAGs RBQC.


Main characteristics:

- \cdot up to 255 identifiable tools with a single TAG;
- · binary coding of tools by means of 8 digital output signals (24Vdc);
- · digital input to counting tool cycles execution (stored in TAG memory);
- · memorization of tool technical data and user data memory available.

	RAQC	RAQCN	RBQC
Frame	Polycarbonate, glass fibre reinforced		
Working distance	<10mm		
Working frequeny	13.56 MHz		
Allowed temperature range	-20÷65°C		
Dimensions box	58mm x 42mm x 18mm		45mm x 42mm x 15mm
Weight	30 g		10 g
Electrical connection	DB 15 pins male (HD)		None
Environmental degree	IP40		IP67
Power supply	24 Vdc ± 10%, 0.15 Arms		None
Communication interface	RS232		None
Memory type	None		MIFARE DESfire EV2 4K
Output signals	10 digital (PNP)	10 digital (NPN)	None
Input signals	1 digital (PNP)	1 digital (NPN)	None
CE reference norm	EN 60950 2001, EN 300330-2 V1.3.1, EN 301489-1-3 V1.4.1		

Electric connections

Electric connections to the reader unit (RAQC or RBQC) is available by means of a 15 pins (high density) DB male connector according to the following schema.

$\overline{}$	ı		
Pin #	Pin name	Description	
Pin 1	DO_1	Digital output #1 (bit 1 of the binary representation of tool ID) - LSb	
Pin 2	DO_2	Digital output #2 (bit 2 of the binary representation of tool ID)	
Pin 3	RS_TX	RS232 Tx signal (only for TAG configuration-optional use)	
Pin 4	GND	Power supply GND	
Pin 5	RS_RX	RS323 Rx signal (only for TAG configuration-optional use)	
Pin 6	24 Vdc	Power supply 24 Vdc	
Pin 7	DO_Count	Digital output (maintenance alarm) (when set, tool executed the predefined number of working cycles)	
Pin 8	DO_3	Digital output #3 (bit 3 of the binary representation of tool ID)	
Pin 9	DO_Fault	Digital output (fault condition)	
Pin 10	DO_4	Digital output #4 (bit 4 of the binary representation of tool ID)	
Pin 11	DO_5	Digital output #5 (bit 5 of the binary representation of tool ID)	
Pin 12	DO_6	Digital output #6 (bit 6 of the binary representation of tool ID)	
Pin 13	DO_7	Digital output #7 (bit 7 of the binary representation of tool ID)	
Pin 14	DO_8	Digital output #8 (bit 8 of the binary representation of tool ID)	
Pin 15	DI_Count	Digital input (cycle completed triggering signal) (the number of executed cycles is increased by one per any rising edge of this signal)	

Principle of operation

The primary context of application of the system is the automatic handling of components. Usually to this purpose a robot is

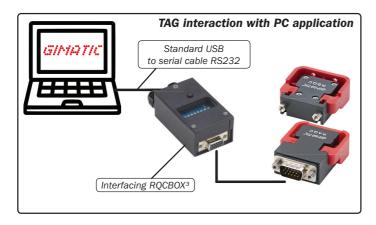
used in combination with several EOATs (End Of The Arm Tools) anyone dedicated to a specific operation. In a similar

application the robot wrist may be equipped with a reader unit (RAQC/RAQCN) and any EAOT may be equipped with a TAG

memory component (RBQC). During the setup of the application any single TAG can be filled up with EAOT specific information

(by using a smartphone with the dedicated APP1 or a software PC2 with a dedicated interfacing box) such as an identification

number (ID), mass or geometrical proprieties and a part list. All these data are permanently stored into the TAG memory and


some of them are eventually updated by the reader unit during normal operation. Whenever the reader approaches a specific

TAG the binary representation of the TAG's ID is generated on 8 digital output pins (DO_1...DO_8) allowing the robot to verify

the correspondence of the installed EOAT with the programmed task. A specific digital input signal (DI_Count) is also available

to counting the number of cycles executed by the EOAT (i.e. signal coming from a sensorbox) allowing the implementation of predictive maintenance.

Data memory of tag

The memory of the TAG is divided into several data groups and the following information can be stored into and retrieved

from the TAG. Additional memory space is available upon request to store custom data.

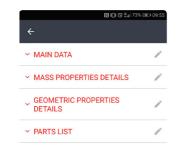
- MAIN DATA (i.e. tool name and description, tool ID number, tool mass and overall dimensions, etc);
- MASS PROPERTIES (i.e. tool principal moments of inertia, tool centre of gravity coordinates, etc.);
- GEOMETRIC PROPERTIES (i.e. geometric calibration parameters);
- PARTS LIST (i.e. up to 40 entries as parts list with editable description, quantity and edition).

Once the APP has been downloaded and installed from the store, access NFC tag functionality (1) from main menu on the left.

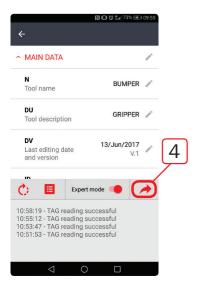
Eventually log-in (2) to access all the availble RFID features of the APP.

Anonymous users have read only access permissions to the MAIN DATA group. Registred users can access the Expert mode (3) with read and write permissioms of all the data fields.

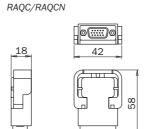
It's also possible to import and export XML formatted files with an image of the data memory of the TAG to simplify data sharing between several users and between smartphone and PC based applications.

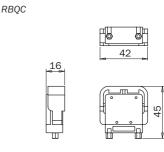

Automatic tool recognition example (RAQC - PNP output type)

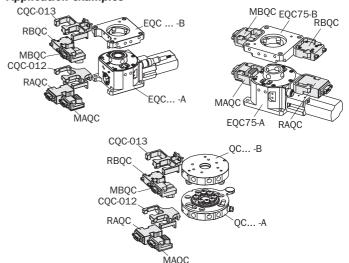
DB 15 connector (DO pin # only)				
DO_1	0	LOW		
D0_2	0	LOW		
D0_3	1	HIGH		
DO_4	1	HIGH		
DO_5	0	LOW		
DO_6	0	LOW		
DO_7	0	LOW		
DO_8	0	LOW		



App review







Dimensional

Application examples

¹Only smartphones with Android O.S. are currently supportaded.

Download Gimatic APP for free from your Store to interact with TAG (a registration of the APP might be necessary).

 $^2\!A$ dedicated Windows® based application can be downloaded for free from Gimatic website (www.gimatic.com)

³Available as separate product.