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記法

• N = {1, 2, . . .}.
• Z = {0,±1,±2, . . .}.
• Rd: d次元ユークリッド空間．

• Zd = {(x1, . . . , xd) : xi ∈ Z, 1 ≤ i ≤ d}.
• Rm×d: 実m× d行列全体．

• C: 複素数全体.

• |x|: x ∈ Rd のとき，xのユークリッドノルム．

• |S|: S が集合のとき，S の要素数．

• x+ = max{x, 0}, x ∈ R.
• x− = max{−x, 0}, x ∈ R.
• E[X]: 確率変数 X の期待値．

• V[X] = E[(X − E[X])2]: 確率変数 X の分散．

• Im: Rm×m の単位行列．
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第 1章

はじめに

確率の理論とは基本的に計算に還元さ

れた常識にすぎない．

ラプラス「確率の哲学的試論」より

本授業では，現代確率論の基礎を学ぶ．ここで言う「現代確率論」とは，コルモゴロフによって

定式化された公理論的確率論を指す．この「公理論的」とは，例えば確率の σ-加法性のような性

質を公理として定め，その上に理論体系を構築する立場を意味する．確率に関する基本的な性質

を公理として受け入れることで，特定の解釈（頻度説や主観説など）に依存しない数学的な枠組

みが確立されている．このように「確率」を公理的に取り扱うという姿勢は，これまで組合せ論

的確率論に親しんできた読者にとっては，やや抽象的で戸惑いを感じるかもしれない．高校まで

の確率論では，しばしば「確率＝数えるもの」という理解が中心だったが，ここから先は「確率＝

測るもの」という視点が必要となる．本授業では、そのために必要となる数学的道具を順を追っ

て整備していく．一つの目的は、それらの道具を一通り使いこなせるようになることであり，も

う一つの目的は，大数の法則や中心極限定理といった極限定理を理解し，その背後にある理論構

造を把握することである．「ランダムであるがゆえに成り立つ法則」が存在する．このことは確率

論の魅力の一つである．

1.1 組合せ確率の復習

例題から始める．

例題 1.1.1. ある箱に，ひらがな一字が書かれた紙が 12枚入っている．この箱から 1枚ず

つ紙を取り出す．箱に入っている紙は

「う」「す」「ち」「の」「も」「も」「も」「も」「も」「も」「も」「も」

である．このとき，取り出した順に左から並べ，「すもももももももものうち」になる確

率は？
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解答. 1枚ずつ取り出すことを独立試行といい，独立試行の確率は掛け算で求めたことを思い出そ

う．例えば，

Pr(1回目に「す」，2回目に「ち」) = Pr(1回目に「す」)× Pr(2回目に「ち」).

ここで Pr(A)は Aが起こる確率を表す．この考え方に従って，求める確率は

1

12
× 8

11
× 7

10
× 6

9
× 5

8
× 4

7
× 3

6
× 2

5
× 1

4︸ ︷︷ ︸
=1/11C8

×1

3
× 1

2
= 0.00008417508.

例題 1.1.2 (誕生日問題). ある年（うるう年ではない）に生まれた k 人のうち，最低 2人

以上が同じ誕生日である確率を求めよ．ただし以下を仮定する．

• k 人の誕生日は無関係である（特に，双子はいない）．

• 各日が同等に誕生日になり得る（日による出生率の違いは無視する）．

• k ≤ 365（そうでないと，必ず 2人以上の誕生日が同じになる）．

解答. k 人それぞれ 365通りあるので，起こり得る結果は 365k 通りである．k 人すべての誕生日

が異なるのは，
365× 364× 363× · · · × (365− k + 1)

通り．これより，k 人すべての誕生日が異なる確率は

365× 364× 363× · · · (365− k + 1)

365k
.

よって求める確率 pは

p = 1− 365!

(365− k)!365k
.

表 1.1.1はいくつかの値の k に対する最低 2人以上が同じ誕生日である確率 pを並べたもので

ある．これによれば，p ≥ 0.5となるためには 23人いれば十分ということなる．また，100人の

表 1.1.1 最低 2人以上が同じ誕生日である確率

k p k p

5 0.027 25 0.569

10 0.117 30 0.706

15 0.253 40 0.891

20 0.411 50 0.970

22 0.476 60 0.994

23 0.507

ときは p = 0.9999997であり，ほぼ 100%で 2人以上いると言ってよい．
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ここで組合せ確率の定義を思い出しておこう．組合せ論的確率論では，Aが起こる確率 Pr(A)

は

Pr(A) =
Aが起こる場合の数

起こりうるすべての場合の数

により定められている．この定義が機能するための前提として，「根元事象は同程度に起こりやす

い」という仮定を置いていたのだった．このとき，次のような疑問が思いつくだろう．

• 起こりうるすべての場合の数 = ∞のときは？
• 根元事象の起こりやすさに違いがあるときは？

このような状況に対応できるよう整備されているのが現代確率論である．すなわち，組合せ確率

を一般化，抽象化したのが現代確率論であると言える．

1.2 現代確率論の応用

ここでは現代確率論の応用例をいくつか紹介する．

初等確率論の応用

例 1.2.1 (People v. Collins事件). 裁判において確率論が適切に用いられた例として，1968年の

アメリカ合衆国カリフォルニア州控訴裁判所の有名な判例を取り上げよう．事件の概要は以下の

通り．

• ロサンゼルスで財布が盗まれた事件が発生した．

•「ブロンドヘアをポニーテールに束ねた若い女性とあごひげを生やした黒人運転手が黄色い

車に乗って逃走した」という証言があった．

• 特徴に合致するカップルが事件の数日後に逮捕された．

• 証言以外に物証はなく，無作為抽出したカップルがこの特徴に合致する可能性は 8.3 ×
10−8 ≈ 1200万分の 1．

• この確率の小ささと他に物証がないことから，陪審員は有罪の評決を下した．

しかし，裁判所は，この確率計算には根拠がないとし有罪判決を棄却した．以下がより有用な確

率計算である．特徴に合致するカップルが 1組存在するという条件の下で，2組目が存在する確率

を考える．カップル自体は n組存在し，先の特徴に合致するカップルが抽出される確率を pとす

ると，

Pr(最低 2組のカップルが特徴に合致 | 最低 1組のカップルが特徴に合致)

=
1− (1− p)n − np(1− p)n−1

1− (1− p)n
≈ 0.2966.

(1.2.1)

ここで P(A |B)は事象 B で条件付けた Aの条件付き確率である（これについては次章で学ぶ）．

0.2966という確率は被告人を有罪とすることに疑念を持つには十分な大きさである．



第 1章 はじめに 7

統計的推測

統計的推測とは，一般的には，観測データをもとに関心のある分布に関して確率論の概念を用

いた叙述を行うことを指す．これはもちろん確率論の重要な応用である．

例 1.2.2 (臨床試験). 医療における次のような状況を想定しよう．40人の患者がおり，患者それぞ

れについて有効か無効かの 2つの結果があり得るとする．i番目の患者が有効であれば，Xi = 1，

無効なら Xi = 0とする．有効率 P は患者次第で確率的だが，P = pのもとでの Xi = 1となる

確率は pであると仮定する．このとき，有効となる患者の数を X とすると，E[X |P ] = 40P で

ある．ベイズの定理（後述）を用いて患者の有効／無効のデータから期待有効率を推定すると，

E[P |X] =
X + 1

42

となる．ここで左辺は X が与えられたときの P の条件付き期待値を表している．

生成モデル

例 1.2.3 (大規模言語モデル). 近年の人工知能の進展，特に大規模言語モデル（Large Language

Models, LLMs）の成功は，確率分布の推定とサンプリングという現代確率論の基本的枠組みが，

極めて高次元かつ複雑な空間においても有効に機能しうることを示している．

具体的には，語彙集合 V に基づく列空間 V∞ 上で，訓練データに基づいて確率測度 Pθ を学習

し，これを用いて任意の系列 (x1, . . . , xn)に対する生成確率

Pθ(x1, . . . , xn) =

n∏
t=1

Pθ(xt |x1, . . . , xt−1)

をモデル化・推定する．ここで，θはモデルパラメータであり，実際には最尤推定等により近似的

に決定される．

このようにして得られた確率分布 Pθ からのサンプリングにより，人間の言語に類似したテキス

トが自動的に生成される．すなわち，LLMは「経験的分布から確率測度を構成し，そこから確率

変数を生成する」という現代確率論の中心的アイデアの応用例である．

例 1.2.4 (拡散モデル). 拡散モデル（Diffusion Models）は連続的なデータ空間（たとえば画像空

間）上の複雑な分布 µdata を学習する枠組みであり，時間を連続変数 t ∈ [0, T ]とした確率微分方

程式の解 {Xt}t∈[0,T ] を用いて，データをノイズに変換する順時間過程

dXt = −1

2
βtXtdt+

√
βtdWt

と，これを逆転させる逆時間過程

dXt =

(
1

2
βT−tXt + β1−t∇ log pT−t(Xt)

)
dt+

√
β1−tdW t
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により，元の分布からのサンプリングを実現する．拡散モデルも LLMsと同様に，(1) 高次元空

間上の未知の確率分布を推定し，(2) それに従った乱数の生成を行うという点で，現代的確率論の

応用例として捉えられる．

gfed`abcµdata

dXt=− 1
2βtXtdt+

√
βtdWt

**

jj

dXt=( 1
2βT−tXt+β1−t∇ log pT−t(Xt))dt+

√
β1−tdW t

gfed`abcN(0, Id)

確率論的手法

例 1.2.5 (モンテカルロ積分). 物理学や統計学，ファイナンスにおいて広く用いられるモンテカ

ルロ積分も，現代確率論の典型的な応用例である．モンテカルロ法は確率変数 X と関数 f に対

し，f(X)の期待値 E[f(X)]を近似するために，独立同分布な乱数列 X1, · · · , Xn を用いて

1

n

n∑
k=1

f(Xk)

という経験平均を計算する手法である．とくに高次元積分において，従来の数値積分が破綻する

場合でも，モンテカルロ法はその確率的性質により安定した近似を提供する．現在では，ベイズ

推論や生成モデルの学習アルゴリズムにおいて不可欠な手法となっている．

理論的には，例えば，X が 100 次元の一様分布に従う場合，これと同分布の確率変数 X(k),

k = 1, . . . , n, を独立に発生させるならば十分大きい nに対し

E

∣∣∣∣∣ 1n
n∑

k=1

f(X(k))−
∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , x100) dx1 · · · dx100

∣∣∣∣∣ = O(n−1/2)

となることが分かる．これについては第 5章でみる．

図 1.1 縦軸は積分の近似値（
∑n

k=1 f(X
(k))/n）．横軸は乱数の数（n）
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1.3 確率論の歴史

確率論の生みの親は賭け事である．古くは，ダンテの『神曲』についてのある注釈書の中に，3

個のサイコロを振って出る目の生起確率に関する記述がある．次に，カルダーノ (1444-1524)の

死後だいぶ経ったのちに出版された『さいころあそびについて』（1663年発行）がある．これは確

率を論じているというより「賭博指南書」とでも呼ぶべきもので，経験則から導いた結論や，論理

的に誤った議論も多い．16～17世紀のヨーロッパでは，サイコロやカードゲームの勝敗予測が知

識人の間で知的関心の対象となり，ケプラーやガリレオも著書の中で確率の問題について言及し

ている．特に，パスカルとフェルマーの書簡（1654年）は，現代確率論の嚆矢と見なされている．

彼らは賭けの配分問題（Problem of Points）を契機として，偶然の事象に数学的構造を見出そう

と試みた．その後，18世紀にはヤコブ・ベルヌーイが『アルス・コンジェクランディ（推測術）』

（1713年）を著し，大数の法則の初歩的な形を提示した．また，19世紀にはラプラスが確率論を

天文学や統計的推論に応用し，確率を理性に基づく不確実性の尺度として捉えた．この時期の確

率論は主に解析的手法と組み合わさり，直観に基づく古典的確率論（等確率な事象の比）として

発展した．しかし，20世紀に入ると，古典的な枠組みだけでは複雑な現象や無限次元空間上の確

率的対象を扱うには不十分であることが明らかになった．この課題に対し，1933年にコルモゴロ

フが『確率論の基礎』を発表し、測度論を土台とする公理的確率論を確立した．彼の理論により，

確率空間は測度空間の特別な場合として定式化され，確率論は解析学，特にルベーグ積分を基礎

とした厳密な数学的理論となった．

1.4 確率の解釈

「確率」とは何か．この問いに対する答えは，歴史的にも哲学的にも一様ではない．確率の解釈

にはさまざまな立場があり，しばしば次のように分類される．

（物的に）客観的解釈

この立場では，確率は観測される現象そのものに内在する客観的な性質であるとされる．典型

的な例が頻度説であり，試行を十分に繰り返したときの相対頻度の極限として確率が定義される．

例えば，特定の放射性原子が一定時間内に崩壊する確率や，偏りのないコインを何度も投げたと

きに表が出る比率などは，観測可能な頻度として確率を解釈できると考えられている．これらは

物理的・自然的な過程に起因する，客観的な確率である．

認識論的解釈

これに対して，確率を主観的な信念や不確実性に対する認識の度合いとして捉えるのが認識論

的解釈である．ここでは，確率は外部世界の性質というよりも，観測者の知識や情報の不完全性

に由来するものとされる．すなわち，確率は「知らないからこそそう思う」ものであり，これは主
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観説やベイズ的確率の立場と関係が深い．

例 1.4.1. 会社 A は株式市場に関する予測情報を提供していると称している．ある人物 B さん

は、会社 Aからのダイレクトメッセージ（DM）を毎週受け取り，7週連続で株価の予測が的中し

ていることに驚く．Bさんから見れば、この出来事が偶然である確率は 2−7 = 0.008と極めて小

さい．ところが，実際には会社 Aは最初から 27 = 128人の見込み客に対して以下のような方法

で DMを送っていた．

• 第 1週: 64人に「上がる」，64人に「下がる」と送信．

• 第 2週: 前週の的中者 64人のうち 32人に「上がる」，32人に「下がる」と送信．

• 以下同様に繰り返す．

この手法により，7週の終わりには「7週連続で予測が当たった唯一の人物」が必ず 1人存在す

る．つまりこの現象は確率的に偶然生じたものではなく，Bさんの知識が限られていることに起

因する主観的誤認識によって「ありそうもない出来事」に見えているにすぎない．

このように，同じ「確率」という語で表現される現象にも，物理的必然性と情報的限定性という

異なる側面がある．

現代確率論の立場

これらの解釈の多様性にもかかわらず，現代の確率論は，特定の確率解釈に依存しない形式体

系として構築されており，その背後にある解釈が客観的であれ主観的であれ，数学的には同等に

扱うことができる．言い換えれば，「確率をどう解釈するか」は確率論の外部の問題であり，理論

の内部では中立的である．

1.5 参考図書

本授業の参考図書として以下を挙げておく．この資料を作る際にも参考にした．

• P. ブレモー著『モデルで学ぶ確率論』丸善出版，2012. [6].

• 吉田伸生『新装版 確率の基礎から統計へ』日本評論社. [9].

• 佐藤担著『測度から確率へ』共立出版，1994. [10].

• 伊藤清著『確率論の基礎』岩波書店，1991. [7].

• W. フェラー『確率論とその応用』紀伊國屋書店. [2, 3, 4, 5].

• M. H. デグルート著，M. J. シャービッシュ著『確率と統計』[1].

[6]と [9]は本授業と同程度の難易度である．[10]や [7]は数学的に厳密に書かれており，本授業

で端折る測度論的議論を補うのによいかもしれない．フェラーの本は絶版で入手が難しいが（図

書館には置いてあるだろう），具体的で面白い問題が数多く載っている．[1]は測度論的取扱いは

無いが確率・統計についての網羅的なテキストである．
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第 2章

有限試行

高校数学における確率の考え方では，確率計算の対象となる事象 Aを日常言語で記述し，「同様

に確からしい」の原理を適用することで Aの確率を算出したのであった．これに対して現代確率

論では，Aを日常言語で記述し，さらに数学の言語に翻訳したのち確率論の諸定理を適用するこ

とで Aの確率を算出する．この過程において，事象 Aは集合論の枠組みで扱い，Aの確率は集合

関数として扱うことになる．この手続きに慣れるため，本章では，起こり得る結果は有限個と仮

定し，確率論の基本的な概念を学ぶ．

2.1 試行と確率空間

試行とは，同じ条件のもとで繰り返すことができ，その結果が偶然によって決まる実験や観察な

どのことをいう．有限試行とは，有限個の異なる結果しかもたない試行．各結果を標本点，標本

点全体の集合を標本空間という．記号としては標本点には ω, 標本空間には Ωを使うことが多い．

以下，本章では，試行は有限試行であるとし，現れる標本空間は全て有限集合とする．

例 2.1.1 (サイコロの 1回投げ試行). サイコロを 1回投げるとき，起こり得る結果は 1, 2, 3, 4, 5, 6

の 6通りである．よって，この試行の標本点は各 1, 2, 3, 4, 5, 6であり，標本空間は {1, 2, 3, 4, 5, 6}
である．

例題 2.1.2. チーム 1, 2, 3, 4がサッカーの試合をし，ノックアウト形式のトーナメントで

優勝チームを決める．この試行に対応する標本空間を求めよ．ただし，1 回戦第 1 試合は

チーム 1対チーム 2，第 2試合はチーム 3対チーム 4と決まっており，全ての対戦で引き分

けはないものとする．

解答. 1回戦第 1試合の勝者，1回戦第 2試合の勝者，決勝戦の勝者を左から並べて (1, 3, 1)など

と書くことにすると，

Ω = {(i, j, k) | k ∈ {i, j}, i ∈ {1, 2}, j ∈ {3, 4}}
= {(1, 3, 1), (1, 3, 3), (1, 4, 1), (1, 4, 4), (2, 3, 2), (2, 3, 3), (2, 4, 2), (2, 4, 4)}.
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Tを試行とし，Ωを Tの標本空間とする．A,B ⊂ Ωに対し，

• Aが起こる
def⇐⇒ 試行 T の結果として Aに属する標本点が実現する．

• A ⊂ Ωを事象と呼ぶ．

• Ac := Ω \A = {ω ∈ Ω |w /∈ A}を余事象（補集合）という．
• A ∪B = {ω ∈ Ω |ω ∈ A または ω ∈ B}を和事象（和集合）という．
• A ∩B = {ω ∈ Ω |ω ∈ A かつ ω ∈ B}を交事象（積集合）という．
• A \B = {ω ∈ Ω |ω ∈ A かつ ω /∈ B}を差事象（差集合）という．
• A ∩B = ∅のとき，Aと B は互いに排反であるという．

試行 Tがサイコロの 1回投げのとき，結果が同程度に確からしいとすれば，事象 Aの起こる確

率 P(A)は

P(A) =
|A|
6

.

確率の直観的意味を踏まえ，数学的には次のように確率を集合関数として定義する．

定義 2.1.3. Ωを試行 Tの標本空間とする．Ωの部分集合に対して定義される集合関数 P
で次の 3つの性質をもつものを Ω上の確率測度あるいは単に確率と呼ぶ．

(1) 任意の A ⊂ Ωに対して P(A) ≥ 0.

(2) 加法性: A ∩B = ∅なる任意の A,B ⊂ Ωに対して P(A ∪B) = P(A) + P(B).

(3) P(Ω) = 1.

• 2Ω で Ωの部分集合全体を表す．

• Ωの上の確率測度は P : 2Ω → [0, 1]で加法性を満たすものである．

• 組 (Ω,P)を確率空間という．
• 試行 Tを考えるとき確率は，数学的には，試行 Tに対応する Ω上の確率測度により表現

される．

• Tを調べることは，数学的には，確率空間 (Ω,P)を調べることに相当する．

定理 2.1.4. ある試行 Tに対応する確率空間 (Ω,P)を考える．このとき以下が成り立つ．

(1) i ̸= j に対し Ai ∩Aj = ∅ならば，P(
⋃n

i=1 Ai) =
∑n

i=1 P(Ai).

(2) A ⊂ B のとき，P(B \A) = P(B)− P(A).

(3) P(Ac) = 1− P(A).

(4) P(A ∪B) = P(A) + P(B)− P(A ∩B).

(5) P(A) =
∑

ω∈A P({ω}).

証明. (1) まず，A1 ∩ (
⋃n

i=2 Ai) = ∅ である．実際，ω ∈ A1 ∩ (
⋃n

i=2 Ai) ⇔ 「ω ∈ A1 かつ

ω ∈
⋃n

i=2 Ai」⇔ 「ω ∈ A1 かつ ω ∈ Ai となる i ∈ {2, . . . , n}が存在」であり，A1 ∩ Ai = ∅よ
りこれは不可能である．
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定義 2.1.3 (2)（確率測度の加法性）より，

P

(
n⋃

i=1

Ai

)
= P

(
A1 ∪

(
n⋃

i=2

Ai

))
= P(A1) + P

(
n⋃

i=2

Ai

)
.

⋃n
i=2 Ai = A2 ∪ (

⋃n
i=3 Ai)で，上の議論と同様にして A2 と

⋃n
i=3 Ai は互いに排反であるから再

び確率測度の加法性より

P

(
n⋃

i=1

Ai

)
= P(A1) + P(A2) + P

(
n⋃

i=3

Ai

)
.

この議論を繰り返すことにより，

P

(
n⋃

i=1

Ai

)
= P(A1) + · · ·+ P(An)

を得る．

(2) B = (B \A) ∪Aであり，B \Aと Aは互いに排反であるから，確率測度の加法性より

P(B) = P((B \A) ∪A) = P(B \A) + P(A).

よって P(B \A) = P(B)− P(A).

(3) Ω = A ∪Ac であるから定義 2.1.3より

1 = P(Ω) = P(A) + P(Ac).

よって P(Ac) = 1− P(A).

(4) A ∪B は互いに排反な 3事象の和事象として

A ∪B = (A \ (A ∩B)) ∪ (B \ (A ∩B)) ∪ (A ∩B)

と表される．よって確率の加法性と (2)の結果より

P(A ∪B) = P(A \ (A ∩B)) + P(B \ (A ∩B)) + P(A ∩B)

= P(A)− P(A ∩B) + P(B)− P(A ∩B) + P(A ∩B)

= P(A) + P(B)− P(A ∩B).

(5). A = {ω1, . . . , ωn}と表すとき，{ωi}, i = 1, . . . , nは互いに排反で，A =
⋃n

i=1{ωi}であ
る．この表現に確率の加法性を適用すればよい．

命題 2.1.5. ある試行 Tに対応する確率空間 (Ω,P)を考える．このとき以下が成り立つ．

(1) P (
⋃n

i=1 Ai) ≤
∑n

i=1 P(Ai).

(2) P (
⋂n

i=1 Ai) ≥ 1−
∑n

i=1 P(Ac
i ).
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証明. (1) 定理 2.1.4(4)と確率の非負性より

P

(
n⋃

i=1

Ai

)
= P

(
A1 ∪

(
n⋃

i=2

Ai

))
= P(A1) + P

(
n⋃

i=2

Ai

)
− P

(
A1 ∩

(
n⋃

i=2

Ai

))

≤ P(A1) + P

(
n⋃

i=2

Ai

)
.

この議論を繰り返し

P

(
n⋃

i=1

Ai

)
≤ P(A1) + P(A2) + P

(
n⋃

i=3

Ai

)
≤ P(A1) + · · ·+ P(An).

(2) 本命題 (1)の結果より

P

(
n⋃

i=1

Ac
i

)
≤

n∑
i=1

P(Ac
n).

他方，
⋂n

i=1 Ai = (
⋃n

i=1 A
c
i )

c である．実際，ω ∈ (
⋃n

i=1 A
c
i )

c ⇔ ω /∈
⋃n

i=1 A
c
i ⇔ 任意の i =

1, . . . , nに対して ω /∈ Ac
i ⇔ 任意の i = 1, . . . , nに対して ω ∈ Ai ⇔ ω ∈

⋂n
i=1 Ai. このことと

定理 2.1.4 (3)より

P

(
n⋂

i=1

Ai

)
= P

((
n⋃

i=1

Ac
i

)c)
= 1− P

(
n⋃

i=1

Ac
i

)
≥ 1−

n∑
i=1

P(Ac
i ).

2.2 確率変数

以下，ある試行 Tの確率空間を (Ω,P)とする．X : Ω → Rを（実）確率変数という．

例 2.2.1. Tをサイコロの 1回投げ試行とする．このとき，Ω = {1, 2, 3, 4, 5, 6}, P(A) = |A|/6
である．奇数が出れば 100円を得て，偶数が出れば 100円を失う賭けを考える．この収益は

X(ω) =

{
100 (ω = 1, 3, 5)

−100 (ω = 2, 4, 6)

と確率変数を用いて記述することができる．

例 2.2.2. サイコロの 2 回投げ試行を考えるとき，対応する標本空間と確率はそれぞれ Ω =

{(i, j) | i, j = 1, 2, 3, 4, 5, 6} = {1, 2, 3, 4, 5, 6}2, P(A) = |A|
36 により与えられる．X1 を 1 回目の

出目，X2 を 2回目の出目，X を二つの合計とする．すなわち，

X1(i, j) = i, X2(i, j) = j, X(i, j) = i+ j.

これらは全て Ω上の関数なので，確率変数である．
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ΩX := X(Ω) = {X(ω) |ω ∈ Ω}を X の状態空間と呼ぶ．

B ⊂ ΩX に対して，

• X−1(B) := {ω ∈ Ω |X(ω) ∈ B}を X による B の逆像という．

• X−1(B)は X の値が B に入るという事象を表す．

• {ω ∈ Ω |X(ω) ∈ B}を {X ∈ B}と略記することが多い．

定理 2.2.3. X を (Ω,P) 上の（実）確率変数とする．このとき，PX(B) := P(X ∈ B),

B ⊂ ΩX , は ΩX 上の確率である．

証明. 定義 2.1.3の 3条件を確かめればよい．まず，任意の B ⊂ ΩX に対して，PX(B) = P(X ∈
B) ≥ 0．よって条件 (1)は成り立つ．A,B ⊂ ΩX で A∩B = ∅のとき，X(ω) ∈ AとX(ω) ∈ B

は同時に起こらない．よって，{X ∈ A}と {X ∈ B}は互いに排反であるから，

PX(A ∪B) = P(X ∈ A ∪B) = P({X ∈ A} ∪ {X ∈ B})
= P(X ∈ A) + P(X ∈ B) = PX(A) + PX(B).

ゆえに条件 (2)も成り立つ．条件 (3)については PX(ΩX) = P(X ∈ ΩX) = P(X ∈ X(Ω)) = 1

より従う．

• PX を X の分布または確率法則という．

例題 2.2.4. サイコロ 2回投げ試行の例における確率変数 X1, X2, X の分布を求めよ．

解答. ΩX1 = ΩX2 = {1, 2, 3, 4, 5, 6},

PXi({k}) = P(Xi = k) = P({k, j} | j ∈ ΩXi) =

6∑
j=1

P({k, j}) =
6∑

j=1

1

36
=

1

6
, k ∈ ΩXi , i = 1, 2

である．X は X1 と X2 の和なので，ΩX = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}であり，

PX{k} = P(X = k) = P(X1 +X2 = k) =


k − 1

36
(2 ≤ k ≤ 7),

13− k

36
(8 ≤ k ≤ 12).

• 上の解答のように，P({k})を P{k}としばしば略記する．

命題 2.2.5. X を確率変数，φ : ΩX → Rとする．このとき，Y (ω) := φ(X(ω))について，

ΩY = φ(ΩX), PY (B) = PX(φ−1(B)).

証明. y ∈ ΩY ⇔ y ∈ Y (Ω) ⇔ ∃ω ∈ Ω s.t. Y (ω) = y ⇔ ∃ω ∈ Ω s.t. φ(X(ω)) = y ⇔
y ∈ φ(X(Ω)). よって ΩY = φ(ΩX). 二つ目の主張は

PY (B) = P(Y ∈ B) = P(φ(X) ∈ B) = P(X ∈ φ−1(B)) = PX(φ−1(B))
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より従う．

• 確率変数 X1, X2 に対し，X = (X1, X2)を (2次元)確率ベクトルという．

• ΩX ⊂ ΩX1 × ΩX2 .

• PX を X1 と X2 の結合分布という．

2.3 期待値

実確率変数 X に対して，
E[X] =

∑
ω∈Ω

X(ω)P{ω}

を X の期待値または平均値という．

A ⊂ Ωに対し，
E[X,A] :=

∑
ω∈A

X(ω)P{ω}.

確率ベクトル X = (X1, . . . , Xn)に対し，

EX := (EX1, . . . ,EXn) ∈ Rn.

すなわち，EX は成分ごとに定義する．EX を X の期待値ベクトルという．

定理 2.3.1. 実確率変数 X,Y に対して以下が成り立つ．

(1) E[αX + βY ] = αE[X] + βE[Y ] (α, β は定数).

(2) E[X,A ∪B] = E[X,A] + E[X,B] (A, B は排反事象) .

(3) EX =
∑

x∈ΩX xPX{x}.
(4) Ef(X) =

∑
x∈ΩX f(x)PX{x}.

(5) X ≥ Y ならば EX ≥ EY .

(6) X ≥ Y かつ EX = EY ならば P(X = Y ) = 1.

証明. (1).

E[αX + βY ] =
∑
ω∈Ω

(αX + βY )(ω)P{ω} =
∑
ω∈Ω

(αX(ω) + βY (ω))P{ω}

= α
∑
ω∈Ω

X(ω)P{ω}+ β
∑
ω∈Ω

Y (ω)P{ω} = αE[X] + βE[Y ].

(2).

E[X,A ∪B] =
∑

ω∈A∪B

X(ω)P{ω} =
∑
ω∈A

X(ω)P{ω}+
∑
ω∈B

X(ω)P{ω}

= E[X,A] + E[X,B].
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(3). Ωは Ω =
⋃

x∈ΩX{X = x}と排反事象の和として表されるので，直前の (2)より，

E[X] =
∑

x∈ΩX

E[X, {X = x}] =
∑

x∈ΩX

∑
ω∈{X=x}

X(ω)P{ω}

=
∑

x∈ΩX

x
∑

ω∈{X=x}

P{ω} =
∑

x∈ΩX

xP(X = x).

(4). 直前の (3)と同様に，

E[f(X)] =
∑

x∈ΩX

E[f(X), {X = x}] =
∑

x∈ΩX

∑
ω∈{X=x}

f(X(ω))P{ω}

=
∑

x∈ΩX

f(x)P(X = x).

(5).

EX =
∑
ω∈Ω

X(ω)P{ω} ≥
∑
ω∈Ω

Y (ω)P{ω} = EY.

(6). 仮定より，0 =
∑

ω∈Ω(X(ω) − Y (ω))P{ω} であり，X ≥ Y であるから，P{ω} > 0

なる任意の ω ∈ Ω に対して X(ω) = Y (ω) である．よって，P(X ̸= Y ) = 0. すなわち，

P(X = Y ) = 1− P(X ̸= Y ) = 1.

• P(X = Y ) = 1のとき，X と Y はほとんど確実に（almost surely）等しいといい，

X = Y a.s.

と書く．

例題 2.3.2. X > 0とする．次の等式は成立するか調べよ．

E
[
1

X

]
?
=

1

EX
. (2.3.1)

解答. （第 1段階）．X(ω) = C > 0（定数）のときは (2.3.1)は等号で成立する．実際，

E[X] =
∑
ω∈Ω

X(ω)P{ω} = C
∑
ω∈Ω

P{ω} = CP(Ω) = C.

同様に，E[1/X] = 1/C.

（第 2段階）．一般に，X,Y ≥ 0に対して，コーシー・シュワルツの不等式

E[XY ] ≤
√

E[X2]
√

E[Y 2] (2.3.2)

が成立する．これを確認しよう．まず，E[X] = 0 のときは定理 2.3.1 (6) の証明と同じ議論に

より X = 0 a.s. 従って (2.3.1) は両辺 0 で成立する．E[Y ] = 0 のときも同様である．よって，

E[X] > 0かつ E[Y ] > 0を仮定して示す．実数 x, y ≥ 0に対して xy ≤ x2/2 + y2/2であるから，

X̃ := X/
√

E[X2], Ỹ := Y/
√
E[Y 2]について

X̃Ỹ ≤ 1

2
X̃2 +

1

2
Ỹ 2.
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定理 2.3.1 (1)と (5)より，

E[X̃Ỹ ] ≤ 1

2
E[X̃2] +

1

2
E[Ỹ 2] = 1.

再び定理 2.3.1 (1)より E[X̃Ỹ ] = E[XY ]/
√
E[X2]E[Y 2]であるから，(2.3.1)が従う．

（第 3段階）．
√
X と 1/

√
X についてコーシー・シュワルツの不等式 (2.3.2)を適用すると，

1 = E
[√

X × 1√
X

]
≤
√

E[X]

√
E
[
1

X

]
.

よって，

E
[
1

X

]
≥ 1

E[X]
. (2.3.3)

もし逆の不等式が成立すれば (2.3.1)は等号で成立するということになるが，一般にこれは成り立

たない．実際，コインの 1回投げ試行の確率空間 Ω = {0, 1}, P{0} = P{1} = 1/2において，確

率変数 X(ω) = 2ω + 2を考える．このとき，

E
[
1

X

]
=

1

2
× 1

2
+

1

2
× 1

4
=

3

8
, E[X] =

1

2
× 2 +

1

2
× 4 = 3.

よって

E
[
1

X

]
=

3

8
>

1

3
=

1

E[X]
.

（第 4 段階）．以上より (2.3.1) は不等式 (2.3.3) で成立することが分かった．最後に，等式が

成立するのはどの場合か調べよう．第 1 段階で X が定数の場合に成立するのは確かめた．仮に

(2.3.3)で等号が成立しているとする．このとき，

X̃ :=

√
X√

E[X]
, Ỹ :=

√
1/X√

E[1/X]

は

1 = X̃Ỹ ≤ 1

2
X̃2 +

1

2
Ỹ 2

かつ

E
[
1

2
X̃2 +

1

2
Ỹ 2

]
= 1

を満たす．従って定理 2.3.1 (6)より，ほとんど確実に

X̃Ỹ =
1

2
X̃2 +

1

2
Ỹ 2.

これより，(X̃ − Ỹ )2 = 0 a.s. よって X̃ = Ỹ . すなわち X = E[X] a.s. これは X が確率 1で定

数であることを意味する．ゆえに，(2.3.3)で等号が成立するのはX が確率 1で定数のとき，およ

びその時に限る．
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2.4 独立性

公平なコインを 2回投げるとき，2回目の結果は 1回目の結果の影響を受けない．言い換える

と，1回目と 2回目は独立試行であり，例えば，1回目が表で 2回目が裏となる確率は，1回目が

表となる確率 1/2と 2回目が裏となる確率 1/2の積により与えられるのであった．

定義 2.4.1. 事象 Aと事象 B が独立であるとは，次が成り立つときにいう．

P(A ∩B) = P(A)P(B), A,B ∈ 2Ω.

• 2つの事象が互いに排反であることは独立性を意味しない．実際，A ∩ B = ∅, P(A) > 0,

P(B) > 0 ならば，P(A ∩ B) = 0 < P(A)P(B) である．よって A と B は独立ではない．

排反事象は「同時には起こらない」という意味で互いに依存している．

• A1, . . . , An の独立性は次により定義する．

P

(
m⋂
i=1

Ani

)
=

m∏
i=1

P(Ani
), {n1, . . . , nm} ⊂ {1, . . . , n}.

例題 2.4.2. サイコロの 1回投げ試行において，出目が偶数である事象と出目が 3の倍数で

ある事象は独立であることを示せ．

解答. この試行に対応する確率空間 (Ω,P) はもちろん Ω = {1, 2, 3, 4, 5, 6}, P{i} = 1/6, i ∈ Ω,

である．出目が偶数である事象を A, 出目が 3の倍数である事象を B で表すことにすると，

P(A ∩B) = P{6} =
1

6
, P(A) =

1

2
, P(B) = P{3, 6} =

1

3
.

よって
P(A ∩B) = P(A)P(B).

例 2.4.3. サイコロ 2回投げの試行を考える．このとき，対応する確率空間 (Ω,P)は Ω = {(i, j) |
i, j = 1, 2, 3, 4, 5, 6}, P(A) = |A|/36, A ⊂ Ω, である．事象

A = {2回目に 1または 2または 5が出る },
B = {2回目に 4または 5または 6が出る },
C = {2回の出目の和が 9}

を考える．このとき，

P(A) = P(B) =
1

2
, P(C) =

1

9

であり，

P(A ∩B ∩ C) =
1

36
= P(A)P(B)P(C).
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他方，

P(A ∩B) =
1

6
̸= 1

4
= P(A)P(B),

P(B ∩ C) =
1

12
̸= 1

18
= P(B)P(C),

P(C ∩A) =
1

36
̸= 1

18
= P(C)P(A).

よって A,B,C は独立ではない．

定義 2.4.4. 二つの確率変数 X,Y が独立であるとは，次が成り立つときにいう．

P(X = x, Y = y) = P(X = x)P(Y = y), x ∈ ΩX , y ∈ ΩY .

• 確率変数 X1, . . . , Xn の独立性は次により定義する．

P

(
m⋂
i=1

{Xni = xni}

)
=

m∏
i=1

P(Xni = xni), xni ∈ ΩXi , {n1, . . . , nm} ⊂ {1, . . . , n}.

定理 2.4.5. 確率変数 X,Y , 事象 A,B に対して以下が成り立つ．

(1) X と Y が独立 ⇐⇒ P(X ∈ E, Y ∈ F ) = P(X ∈ E)P(Y ∈ F ), E ⊂ ΩX , F ⊂ ΩY .

(2) Aと B が独立 ⇐⇒ 確率変数 1A と 1B が独立．

(3) X と Y が独立 =⇒ f(X)と g(Y )も独立．

(4) 実確率変数 X, Y が独立 =⇒ E[XY ] = E[X]E[Y ].

証明. (1) (⇒). E ⊂ ΩX , F ⊂ ΩY を任意にとる．事象 {X ∈ E, Y ∈ F}は排反事象の和として
{X ∈ E, Y ∈ F} =

⋃
x∈E, y∈F {X = x, Y = y}と表されるので，

P(X ∈ E, Y ∈ F ) =
∑

x∈E, y∈F

P(X = x, Y = y) =
∑

x∈E, y∈F

P(X = x)P(Y = y)

=
∑
x∈E

P(X = x)
∑
y∈F

P(Y = y) = P(X ∈ E)P(Y ∈ F ).

(⇐). 任意の x ∈ ΩX , y ∈ ΩY に対して，E = {x}, F = {y}を考えればよい．
(2) (⇒). 事象 Aと B の独立性より，

P(1A = 1, 1B = 1) = P(A ∩B) = P(A)P(B) = P(1A = 1)P(1B = 1).

次に，A = (A ∩B) ∪ (A ∩Bc)より，

P(A ∩Bc) = P(A)− P(A ∩B) = P(A)(1− P(B)) = P(A)P(Bc).

よって
P(1A = 1, 1B = 0) = P(A ∩Bc) = P(A)P(Bc) = P(1A = 1)P(1B = 0).
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Aと B の役割を入れ替えることで

P(1A = 0, 1B = 1) = P(1A = 0)P(1B = 1)

も従う．さらに，定理 2.1.4 (4)と Aと B の独立性より

P(Ac ∩Bc) = P((A ∪B)c) = 1− P(A ∪B) = 1− P(A)− P(B) + P(A ∩B)

= 1− P(A)− P(B) + P(A)P(B) = (1− P(A))(1− P(B))

= P(Ac)P(Bc).

よって

P(1A = 0, 1B = 0) = P(Ac ∩Bc) = P(Ac)P(Bc) = P(1A = 0)P(1B = 0).

(⇐). この主張は

P(A ∩B) = P(1A = 1, 1B = 1) = P(1A = 1)P(1B = 1) = P(A)P(B)

より従う．

(3). E ⊂ Ωf(X), F ⊂ Ωg(Y ) を任意にとる．命題 2.2.5より，Ωf(X) = f(ΩX), Ωg(Y ) = g(ΩY )

であるから，f−1(E) ⊂ ΩX , g−1(F ) ⊂ ΩY である．よって本定理 (1)の結果より

P(f(X) ∈ E, g(Y ) ∈ F ) = P(X ∈ f−1(E), Y ∈ g−1(F )) = P(X ∈ f−1(E))P(Y ∈ g−1(F ))

= P(f(X) ∈ E)P(g(Y ) ∈ F ).

(4). 定理 2.3.1 (3)の証明と同様にして，

E[XY ] =
∑

x∈ΩX

y∈ΩY

E[XY, {X = x, Y = y}] =
∑

x∈ΩX

y∈ΩY

∑
ω∈{X=x,Y=y}

X(ω)Y (ω)P{ω}

=
∑

x∈ΩX

y∈ΩY

xyP(X = x, Y = y) =
∑

x∈ΩX

xP(X = x)
∑
y∈ΩY

yP(Y = y)

= E[X]E[Y ].

例題 2.4.6. サイコロをm+ n回振るとき，始めのm回に出た目の和と後の n回に出た目

の積は独立であることを示せ．

解答. Xi を i回目の出目とし，X = (X1, . . . , Xm), Y = (Xm+1, . . . , Xm+n)とおく．このとき，

f(X) と g(Y ) が独立であることを示せばよい．ただし，関数 f, g はそれぞれ f(x1, . . . , xm) =∑m
i=1 xi, g(y1, . . . , yn) =

∏n
i=1 yi により定義する．

まず，X1, . . . , Xm+n が独立であるから，二つの確率ベクトル X,Y も独立である．これ

を確かめよう．独立性の定義で {1, . . . ,m} ⊂ {1, . . . ,m + n} を考えれば，xi ∈ ΩXi , i =

1, . . . ,m, に対して P(X1 = x1, . . . , Xm = xm) = P(X1 = x1) · · ·P(Xm = xm). 同様に，
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P(Xm+1 = xm+1, . . . , Xm+n = xm+n) = P(Xm+1 = xm+1) · · ·P(Xm+n = xm+n), P(X1 =

x1, . . . , Xm+n = xm+n) = P(X1 = x1) · · ·P(Xm+n = xm+n) が任意の xi ∈ ΩXi , i = m +

1, . . . ,m+ n, に対して成り立つ．よって，

P(X = (x1, . . . , xm), Y = (xm+1, . . . , xm+n))

= P(X1 = x1, . . . , Xm = xm, Xm+1 = xm+1, . . . , Xm+n = xm+n)

=

m+n∏
i=1

P(Xi = xi)

= P(X1 = x1, . . . , Xm = xm)P(Xm+1 = xm+1, . . . , Xm+n = xm+n)

= P(X = (x1, . . . , xn)P(Y = (xm+1, . . . , xm+n).

従って，定理 2.4.5 (3)より f(X)と g(Y )は独立である．

2.5 条件付き確率

引き続き，(Ω,P)を試行 Tに対応する確率空間とする．

P(A) > 0なる事象 Aと事象 B とに対し，Aの下での B の条件付き確率 P(B |A)を

P(B |A) =
P(B ∩A)

P(A)

により定義する．これは Aが起こる前提で B が起こる確率と解釈できる．

例題 2.5.1. People v. Collins 事件（例 1.2.1）を確率空間を用いて記述し，等式 (1.2.1)を

正当化せよ．

解答. この場合，試行は計 n組のカップルから 1組を無作為抽出することである．対応する確率

空間は Ω = {1, . . . , n}, P{i} = 1/n, i ∈ Ω, である．「ブロンドヘアをポニーテールに束ねた若い

女性とあごひげを生やした黒人のカップルで，黄色い車に乗って黒人が運転している」という特

徴を (∗)とおく．Ai ⊂ Ωをカップル iが特徴 (∗)に合致する事象とすると，仮定より P(Ai) = p

が各 i ∈ Ωに対して成り立つ．事象 A,B,C を

A = {最低 1組が特徴 (∗)に合致 },
B = {最低 2組が特徴 (∗)に合致 },
C = {ちょうど 1組だけ特徴 (∗)に合致 }

と定めると，求める確率は P(B |A)であり，C は排反事象の和として

C = (A1 ∩Ac
2 ∩Ac

3 ∩ · · · ∩Ac
n) ∪ (Ac

1 ∩A2 ∩Ac
3 ∩ · · · ∩Ac

n) ∪ · · · ∪ (Ac
1 ∩ · · · ∩Ac

n−1 ∩An)
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と表される．よって，カップル間の独立性より

P(C) = P(A1 ∩Ac
2 ∩Ac

3 ∩ · · · ∩Ac
n) + P(Ac

1 ∩A2 ∩Ac
3 ∩ · · · ∩Ac

n)

+ · · ·+ P(Ac
1 ∩ · · · ∩Ac

n−1 ∩An)

= P(A1)P(Ac
2) · · ·P(Ac

n) + P(Ac
1)P(A2)P(Ac

3) · · ·P(Ac
n) + · · ·+ P(Ac

1) · · ·P(Ac
n−1)P(An)

= np(1− p)n−1.

他方，A =
⋃n

i=1 Ai と Ai たちの独立性より，

P(Ac) = P

(
n⋂

i=1

Ac
i

)
=

n∏
i=1

P(Ac
i ) = (1− p)n.

よって定理 2.1.4より，
P(A) = 1− P(Ac) = 1− (1− p)n.

さらに，
B = A ∩ Cc, A ⊃ C

と定理 2.1.4より

P(B) = P(A)− P(C) = 1− (1− p)n − np(1− p)n−1.

以上より，

P(B |A) =
P(B ∩A)

P(A)
=

P(B)

P(A)
=

1− (1− p)n − np(1− p)n−1

1− (1− p)n
.

条件付き確率は確率測度を定義する．

定理 2.5.2. P(A) > 0 とする．このとき，PA(B) := P(B |A), B ⊂ Ω, は Ω 上の確率で

ある．

証明. 定義 2.1.3の 3条件を確かめればよい．任意の B ⊂ Ωに対して，明らかに

PA(B) = P(B |A) ≥ 0.

B ∩ C = ∅なる任意の B,C ⊂ Ωに対して，

PA(B ∪ C) =
P((B ∩A) ∪ (C ∩A))

P(A)
=

P(B ∩A) + P(C ∩A)

P(A)
= PA(B) + PA(C).

さらに，

PA(Ω) =
P(Ω ∩A)

P(A)
= 1.

ゆえに定理の主張が従う．
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ベイズの公式あるいはベイズの定理の名で呼ばれる次の結果は，与えられた「結果」Aの下で，

「原因」B の起こる確率を計算する方法であり，応用上特に有用である．

定理 2.5.3 (ベイズの公式). P(A ∩B) > 0のとき，

P(B |A) =
P(A |B)P(B)

P(A)
(2.5.1)

証明. A ∩ B ⊂ A と定理 2.1.4 (2) より，P(A) ≥ P(A ∩ B) > 0. 同様に P(B) > 0. 従って，

(2.5.1)の両辺は意味を持ち，

P(A |B)P(B)

P(A)
=

P(A ∩B)

P(B)
· P(B)

P(A)
= P(B |A).

例題 2.5.4. あなたは次のようなゲームに参加する．箱 1, . . . , N の一つに 100万円が入っ

ており，残りは「たわし」である．あなたは箱を一つ選ぶことができる．司会者はどれが当

たりか知っている．例えば，あなたは箱 iを選ぶとする．この時点で当たりの確率は 1/N

である．司会者は箱 iの中身を見せる前に箱 i以外の箱を開ける．そこにはたわしが入って

いる（司会者は当たりの箱は開けない）．さて，この時点での当たりの確率について，正し

いのはどちらか？

(1) 外れの箱が一つ減ったから，当たりの確率は 1/(N − 1)に上がった．

(2) 司会者は外れの箱しか開けないから，当たりの確率は変わらない．

解答. 箱 1が当たりで，選ばれ方は等確率で決まるとして解答を考えよう．Ai をあなたが箱 iを

選ぶ事象，Bj を司会者が j ∈ {2, . . . , N}を選ぶ事象とする．このとき，P(Ai) = 1/N であり，

P(Bj |Ai) =


1

N − 1
, (i = 1),

1

N − 2
, (i ̸= 1)

である．ベイズの公式（定理 2.5.3）より，

P(A1 |Bj) =
P(Bj |A1)P(A1)

P(Bj)
=

P(Bj |A1)P(A1)∑
i ̸=j P(Bj |Ai)P(Ai)

=
1

N−1 · 1
N

1
N−1 · 1

N +
∑

i ̸=j
i ̸=1

1
N−2 · 1

N

=
1

N−1 · 1
N

N
N−1 · 1

N

=
1

N
.

ゆえに，答えは (2)で，当たりの確率は変わらない．
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2.6 大数の法則

ここでは (Ω,P) を n 回コイン投げ試行の確率空間とする．{Xi}ni=1 を独立同分布（Indepen-

dently and Identically Distributed, IID）で，P(X1 = 1) = P(X1 = 0) = 1/2を満たすとする．

すなわち，確率変数 X1, . . . , Xn は独立で，各 Xi の分布は P(Xi = 1) = P(Xi = 0) = 1/2によ

り与えられるとする．そして，Xi たちの算術平均

Sn :=
X1 + · · ·+Xn

n

を考える．

定理 2.6.1 (ベルヌーイ（Bernoulli）の大数の法則). 任意の ε > 0に対して，

lim
n→∞

P
(∣∣∣∣Sn − 1

2

∣∣∣∣ > ε

)
= 0.

EX1 = 1/2であるから，この定理は Sn が EX1 と「ずれる」確率が小さいということを述べて

いる．平たく述べると，nが十分大きいとき，コインの表と裏は（ほぼ）同じ割合で出現するとい

う，常識的に当然と思われることが数学的にも正しいということを示している．

定理 2.6.1の証明. An = {|Sn − EX1| > ε} とおく．ω ∈ An のとき，1 < |Sn(ω) − EX1|/ε だ
から，

P(An) =
∑

ω∈An

P{ω} ≤
∑

ω∈An

|Sn(ω)− EX1|2

ε2
P{ω} ≤

∑
ω∈Ω

|Sn(ω)− EX1|2

ε2
P{ω}

=
1

ε2
E|Sn − EX1|2 =

1

ε2
E

( 1

n

n∑
i=1

(Xi − EXi)

)2


=
1

ε2n2


n∑

i=1

E|Xi − EXi|2 +
∑
i̸=j

E[(Xi − EXi)(Xj − EXj)]

 .

ここで V[Xi] := E|Xi − EXi|2 = 1/4であり，定理 2.4.5 (3), (4)より，i ̸= j に対して

E[(Xi − EXi)(Xj − EXj)] = E[Xi − EXi]E[Xj − EXj ] = 0.

従って，n → ∞のとき，
P(An) ≤

V[X1]

ε2n
→ 0.

章末問題

問題 2.1. (1) (Ω,P)をある有限試行 Tに対応する確率空間とする．A1, A2, A3 ⊂ Ωに対して

P(A1∪A2∪A3) = P(A1)+P(A2)+P(A3)−P(A1∩A2)−P(A2∩A3)−P(A1∩A3)+P(A1∩A2∩A3)
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が成り立つことを証明せよ．

(2) 300人の社会人のうち，185人は英会話クラス，90人はプログラミング講座，160人はビジネ

スマナー講座を受講している．英会話とプログラミングの両方を受講しているのは 48人，プ

ログラミングとビジネスマナーの両方は 42人，英会話とビジネスマナーの両方は 103人，3

講座すべてを受講しているのは 27人である．

今，300人から 1人を無作為に選ぶ．その人が少なくとも 1つの講座を受講している確率は

いくらか？

問題 2.2. n頭出馬の競馬を考える．馬 k のオッズは 1 + πk である．すなわち，馬 k に A円賭

けた場合の払い戻し金は {
(1 + πk)A (k が 1位),

0 (k が 2位以下).

今，
n∑

k=1

1

1 + πk
< 1

が成り立っていると仮定する．このとき，あなたならどう賭けるか？

(Ω,P)を有限試行の確率空間とし，任意の ω ∈ Ωに対して P{ω} > 0を仮定する．空でない事

象 A ⊂ Ωと確率変数 X に対し，

E[X |A] =
E[X,A]

P(A)

を事象 Aの下での X の条件付き期待値という．さらに，確率変数 X,Y に対し，

E[X |Y ] =
∑
y∈ΩY

E[X |Y = y]1{Y=y}

を Y が与えられた下での X の条件付き期待値という．

問題 2.3. (Ω,P)を有限試行の確率空間とし，任意の ω ∈ Ωに対して P{ω} > 0を仮定する．X

を実確率変数，Y は確率ベクトルとし，X と Y は独立とする．このとき，f : ΩY → Rに対し，

E[f(Y )X |Y ] = f(Y )E[X]

が成り立つことを示せ．

問題 2.4. N 回コイン投げ試行を考える．各コイン投げは独立とし，表の出る確率を p ∈ (0, 1)

とする．この試行に対応する確率空間を (Ω,P)とし，その上の確率変数列 S0, S1, . . . , SN を次の

ように定義する:

Sn = Sn−1 ×

{
u (n回目が表),

d (n回目が裏).

ただし，0 < d < 1 < uで，S0 は定数とする．

(1) E[S3 |S1]を求めよ．

(2) 任意の n = 1, . . . , N に対して E[Sn |Sn−1] = Sn−1が成り立つための必要十分条件を求めよ．
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(Ωn,Pn) を n 回コイン投げ試行に関する確率空間とする．Sn を表の出る割合とすると，定理

2.6.1（ベルヌーイの大数の法則）より limn→∞ Pn(|Sn − 1/2| > ε) = 0であった．直感的には，

もっと強く，「ωごとに」limn→∞ Sn(ω) = 1/2が成立しそうである．しかし，数学的には，Ωn は

n 回までしか定義されていないので，n 無限大のときの標本は考えられない．この問題を解決す

るため，Ω∞ = {ω1ω2 · · · | ωi = 0または 1}を考えればよいのかもしれない．このとき，例えば，
全て表が出る確率は (1/2)∞ = 0 となる．後で示すように，この Ω∞ は非可算無限集合なので，

前章の枠組みでは，無限個の標本を持つ事象 Aに対して，Aが起こる確率 = |A|/2∞ = ∞× 0と

なり意味がわからない．P(Ω∞) = 1, P{ω} = 0であり，P(n回目まで全て裏) = 1/2n 等，直感に

合っていて，かつ P(limn→∞ Sn = 1/2)を考えられるような確率測度を定義したい．前章より一

般的な理論を構築することでこの問いに答える．

3.1 無限集合おさらい

Aを任意の集合とする．

• Aが有限集合であるとは，Aに属する元の個数 |A|が有限個のときにいう．
• 空集合も有限集合と考える．

• 有限集合でない集合を無限集合という．

• Aが可算集合であるとは，Aから自然数全体 Nへの全単射が存在するときにいう．
• Aが高々可算集合であるとは，Aが有限集合または可算集合のときにいう．

• Aが非可算集合であるとは，Aが高々可算集合でないときにいう．

例題 3.1.1. 整数全体の集合 Zは可算集合であることを確かめよ．

解答. Nから Zへの全単射が存在することを示せばよい．例えば，

f(n) =


0 (n = 1),

−k (n = 2k, k ≥ 1),

k (n = 2k + 1, k ≥ 1)
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と定義すると，f : N → Zは全単射である．

補題 3.1.2. (1) Aが高々可算集合，B ⊂ Aならば，B も高々可算集合

(2) A,B が高々可算集合ならば，A×B も高々可算集合

(3) 各 n ∈ Nに対して An が高々可算集合ならば．
⋃∞

n=1 An も可算集合

証明. (1). Aが有限集合のときは明らか．Aが可算集合とすると，Aは適当な全単射 f : A → N
の逆像なので，A = {an : n ∈ N} の形で表される．an ∈ B なる n だけ抜き出し，N の部分列
n(1) < n(2) < · · · を作ると，

{n(k) : k ∈ N} = {n ∈ N : an ∈ B}

である．よって B = {an(k) : k ∈ N}と表されるので，これは可算集合である．Aが有限集合の

場合と併せて，結局，B は高々可算集合である．

(2). A = {an : n ∈ N}, B = {bn : n ∈ N}とするとき，

A×B = {(ak, bℓ) : k, ℓ ∈ N}

と書ける．f : A×B → Nを

f(ak, bℓ) =
1

2
((k + ℓ− 2)(k + ℓ− 1) + 2ℓ) ∈ N, (ak, bℓ) ∈ A×B,

により定義すると，これは全単射である．実際，いくつか計算してみると，

f(a1, b1) = 1, f(a2, b1) = 2, f(a1, b2) = 3,

f(a3, b1) = 4, f(a2, b2) = 5, f(a1, b3) = 6.

一般の k, ℓに対して，k+ ℓ = nは固定し，k > 1から k = 1になるまで kを 1つずつ減らしてい

くとき，f(ak, bℓ) = ((n− 2)(n− 1) + 2(n− k))/2 = N とおけば，k > 1のとき，

f(ak−1, bℓ+1) =
1

2
((n− 2)(n− 1) + 2(n− k + 1)) = N + 1

となる．k = 1まで来たら k + ℓを 1つ増やし，k = nとする．すると，

f(an, b1) =
1

2
((n+1−2)(n+1−1)+2(n+1−n)) =

1

2
((n−2)(n−1)+2(n−1)+2) = N +1.

以上により全射性が分かる．次に単射性を確認しよう．f(ak, bn−k) = f(ak′ , bn′−k′) (n > k, n′ >

k′), が成り立っていると仮定する．この等式は

(n− 2)(n− 1) + 2(n− k) = (n′ − 2)(n′ − 1) + 2(n′ − k′) (3.1.1)

と同値である．もし n > n′ かつ k < k′ なら，n, n′ ≥ 2 であるから，(n − 2)(n − 1) ≥
(n′ − 2)(n′ − 1), n− k > n′ − k′ を得る．これは (3.1.1)に矛盾する．もし n > n′, k > k′ なら，

(n− 2)(n− 1) ≥ (n′ − 2)(n′ − 1), n− k′ > n′ − k, であるから，(3.1.1)と同値な等式

(n− 2)(n− 1) + 2(n− k′) = (n′ − 2)(n′ − 1) + 2(n′ − k)
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にやはり矛盾する．nと n′ の役割を入れ替えても同様である．従って，n = n′, k = k′.

(3). 必要なら有限集合を除外すればよいので，An たちは全て可算集合と仮定してよい．集合列

B1 := A1, Bn := An \
n−1⋃
j=1

Aj , n ≥ 2,

を考える．このとき，{Bn}は互いに排反で，各 Bn が高々可算集合である．さらに，

∞⋃
n=1

An =
∞⋃

n=1

Bn.

各 Bn を Bn = {bn,k : k ∈ N}と表すとき，f(bn,k) := (n, k)は
⋃∞

n=1 Bn から N×Nへの単射で
ある．他方，f(

⋃∞
n=1 Bn) ⊂ N × Nであるから，本補題 (1)より，f(

⋃∞
n=1 Bn)は高々可算であ

り，f は単射なので，
⋃∞

n=1 Bn も高々可算集合である．

命題 3.1.3. 有理数全体 Qは可算集合である．

証明. Q = {n/m : m,n ∈ N} と表される．ただし n/m は既約分数とする．f : Q → N × N を
f(n/m) = (m,n)により定義すると，f(Q) ⊂ N×Nであり，f は単射であるから，補題 3.1.2よ

り，Qは高々可算集合である．Qは明らかに有限集合ではないので，可算集合である．

命題 3.1.4. 無限回コイン投げ試行の標本空間 Ω = {ω1ω2 · · · |ωn ∈ {0, 1}, n ∈ N}は非可
算無限集合である．

証明. Ωが有限集合でないのは明らか．Ωが可算集合と仮定すると，Ω = {ω(1), ω(2), · · · }と書け
る．各 ω(i) を

ω(i) = ω
(i)
1 ω

(i)
2 ω

(i)
3 · · ·

と表すことにする．このとき，ω̂ = ω̂1ω̂2ω̂3 · · · を

ω̂i =

{
0 (ω

(i)
i = 1のとき),

1 (ω
(i)
i = 0のとき),

と定義すると，ω̂ は ω(1), ω(2), · · · の何とも一致しない．すなわち，ω̂ /∈ Ω. これは Ωが可算集合

であることに矛盾する．

3.2 確率が意味をもつ集合

後述するように，無限回コイン投げのための標本空間 Ω に適切な確率測度を定義することが

できる．しかし Ω の全ての部分集合に対して確率を定義することは実はできない． 一般には，

{確率が意味をもつ集合 } ⊊ 2Ω である．

以下，Ωを任意の空でない集合とする．
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定義 3.2.1. Ωの部分集合族 F が σ-集合体（σ-field）または σ-加法族（σ-algebra）とは次

の条件が満たされるときにいう．

(1) Ω ∈ F .

(2) A ∈ F ならば Ac ∈ F .

(3) A1, A2, . . . ∈ F ならば
⋃∞

n=1 An ∈ F .

• 2Ω, {∅,Ω}は共に Ω上の σ-集合体である．

例題 3.2.2. A ⊂ Ωとする．このとき，σ(A) := {∅, A,Ac,Ω}は Ω上の σ-集合体であるこ

とを確かめよ．

解答. 略．

定理 3.2.3. Aを Ωの任意の部分集合族とする．このとき，Aを含む最小の σ-集合体 σ[A]

が一意的に存在する．

• σ[A]を Aから生成される Ω上の σ-集合体と呼ぶ．

定理 3.2.3の証明. 次の (A1), (A2), (A3)を満たす σ-集合体 σ[A]が一意に存在することを示す．

(A1) A ⊂ σ[A].

(A2) σ[A]は Ω上の σ-集合体である．

(A3) Aを含む Ω上の σ-集合体 B に対し，σ[A] ⊂ B である．

この目的のため，
H = {B ⊂ 2Ω | B ⊃ A, B は σ-集合体 }

を考える．2Ω は Aを含む σ-集合体であるから，2Ω ∈ H. 特に，H ̸= ∅. Hを H = {Bλ}λ∈Λ と

表すことにして，
σ[A] :=

⋂
λ∈Λ

Bλ

を考える．これが求めるものであることを示そう．

まず，定義より，任意の λ ∈ Λに対して，A ⊂ Bλ である．よって，A ⊂
⋂

λ∈Λ Bλ = σ[A]. す

なわち (A1)は満たされる．

次に，B を Aを含む σ-集合体とする．定義より，σ[A]をそのような σ-集合体の共通部分であ

るから，σ[A] ⊂ B. すなわち (A3)が成り立つ．

(A2) を示すために σ[A] が定義 3.2.1 の 3 条件を満たすか確認しよう．各 Bλ は σ-集合体な

ので，任意の λ ∈ Λ に対して Ω ∈ Bλ. よって Ω ∈
⋂

λ∈Λ Bλ = σ[A] である．A ∈ σ[A] な

らば，任意の λ ∈ Λ に対して A ∈ Bλ である．Bλ は σ-集合体であるから，Ac ∈ Bλ. よって

Ac ∈
⋂

λ∈Λ Bλ = σ[A]である．An ∈ σ[A], n ∈ N, とするとき，任意の n ∈ N, λ ∈ Λに対して

An ∈ Bλ である．再び各 Bλ が σ-集合体であることを使うと，各 λに対して
⋃∞

n=1 An ∈ Bλ. ゆ
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えに
⋃∞

n=1 An ∈
⋂

λ∈Λ Bλ = σ[A].

最後に一意性を示そう．C を A を含む最小の σ-集合体とする．すなわち，C は (A1), (A2),

(A3)を満たすとする．このとき，σ[A]の最小性と C ⊃ Aより，σ[A] ⊂ C である．C と σ[A]の

役割を入れ替えて C ⊂ σ[A]を得る．従って，C = σ[A].

次に，R上の区間の集合族

I := {(a, b] | −∞ ≤ a ≤ b ≤ +∞}

を導入する．ただし，(a,+∞]は (a,+∞)を表すものとする．

• B(R) := σ[I]を（1次元）ボレル集合体という．

• B(R)に属する集合を（1次元）ボレル集合という．

任意の a, b ∈ Rに対して，[a, b], (a, b), [a, b) ∈ B(R)である．実際，

(a, b) =

∞⋃
n=1

(
a, b− 1

n

]
と B(R)が σ-集合体であることを使えば分かる．他も同様．従って，B(R)は高々可算個の区間か
ら作られる集合族と解釈してよい．

例題 3.2.4. {無理数 } ∈ B(R)を示せ．

解答. 任意の x ∈ Rと n ∈ Nに対して，(x− 1/n, x] ∈ B(R)である．よって，{x} =
⋂∞

n=1(x−
1/n, x] ∈ B(R). すなわち，1点集合はボレル集合である．命題 3.1.3より Qは可算集合であるか
ら Q = {q1, q2, · · · }と書ける．ゆえに Q =

⋃∞
n=1{qn} ∈ B(R)であり，従って，Qc ∈ B(R).

多次元のボレル集合を定義しておこう．1次元の場合と同様に Rd の集合族

Id := {(a1, b1]× (a2, b2]× · · · (ad, bd] | −∞ ≤ ai ≤ bi ≤ +∞, i = 1, . . . , d}

を導入する．

• B(Rd) := σ(Id)を d次元ボレル集合体という．

• B(Rd)に属する集合を d次元ボレル集合という．

• S ⊂ Rd に対して，B(S) := B(Rd) ∩ S は S 上の σ-集合体になる．

3.3 確率測度・確率分布

Ωを空でない集合，F を Ωを Ω上の σ-集合体とする．
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定義 3.3.1. F 上の集合関数 Pで次の条件を満たすものを (Ω,F)上の確率測度または単に

確率という．

(1) 任意の A ∈ F に対して 0 ≤ P(A) ≤ 1.

(2) P(Ω) = 1.

(3) σ-加法性: Ai ∈ F , Ai ∩Aj = ∅ (i ̸= j), i, j ∈ Nのとき，

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An).

• 有限試行のときの加法性（定義 2.1.3）が「σ-加法性」に置き換わっていることに注意せよ．

• Ωが有限集合のとき，確率の加法性と σ-加法性は同値である．

• 3つ組 (Ω,F ,P)を確率空間という．
• 確率空間 (Ω,F ,P)を考えているとき，Ωを標本空間，A ∈ F を事象と呼ぶ．

確率測度の例をいくつか挙げておこう．確率変数の状態空間上で定義される確率測度を確率分

布と呼ぶことが多い．

例 3.3.2 (離散一様分布). N ≥ 2 を自然数とする．S := {1, 2, . . . , N} を考え，2S 上の集合関

数 µを

µ(A) =
|A|
N

, A ∈ 2S ,

により定義する．このとき，(S, 2S , µ)は確率空間である．µを離散一様分布と呼ぶ．N = 2のと

き，（公平な）コイン投げの試行に対応し，N = 6のときは （公平な）サイコロ投げに対応する．

例 3.3.3 (ベルヌーイ分布). 0 ≤ p ≤ 1とする．2{0,1} 上の集合関数 µを

µ(∅) = 0, µ{0} = 1− p, µ{1} = p, µ({0, 1}) = 1,

により定義すると，({0, 1}, 2{0,1}, µ)は確率空間であり，これは成功／失敗の試行に対応する．µ

をベルヌーイ（二項）分布と呼ぶ．

例 3.3.4 (ポアソン分布). S := N ∪ {0} = {0, 1, 2, . . .} を考え，各 n ∈ S に対して pn =

e−cncn/(n!)とおく．ただし cは正定数とする．2S 上の集合関数 µを

µ(A) :=
∑
n∈A

pn, A ∈ 2S ,

により定義する．このとき (S, 2S , µ)は確率空間である．µをポアソン分布と呼ぶ．ポアソン分布

は件数や人数，品数などをモデル化するときによく用いられる．

例 3.3.5 (一様分布). a, b ∈ Rは所与で，a < bを満たすとする．このとき，([a, b],B[a, b])上の
確率測度 µで，

µ((x, y]) =
y − x

b− a
, a ≤ x ≤ y ≤ b,
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を満たすものが一意に存在する（証明略）．µを [a, b]上の一様分布と呼ぶ．[a, b] = [0, 1]のとき

の µを特にルベーグ測度という．

例 3.3.6 (指数分布). 所与のパラメータ λ > 0に対し，((0,∞),B(0,∞))上の確率測度 µで，

µ((a, b]) =

∫ b

a

λe−λxdx = e−λa − e−λb, 0 ≤ a < b,

を満たすものが一意に存在する（証明略）．µを指数分布と呼ぶ．関数

ρ(x) := λe−λx, x > 0,

を指数分布の密度または密度関数という．指数分布はイベントから次のイベントまでの時間間隔

の分布として用いられることが多い．

例 3.3.7 (正規分布). 所与のm ∈ R, v > 0に対し，(R,B(R))上の確率測度 µで，

µ((a, b]) =

∫ b

a

e−(x−m)2/(2v)

√
2πv

dx, 0 < a < b,

を満たすものが一意に存在する（証明略）．µを平均m，分散 v の正規分布あるいはガウス分布と

呼ぶ．関数

ρ(x) :=
e−(x−m)2/(2v)

√
2πv

, x ∈ R,

を正規分布の密度または密度関数という．m = 0, v = 1のときの µを特に標準正規分布と呼ぶ．

次に確率測度の基本的性質をみていこう．

命題 3.3.8. (Ω,F ,P)を確率空間とするとき，以下が成り立つ．

(1) P(∅) = 0.

(2) Ai ∈ F , Ai ∩Aj = ∅ (i ̸= j), i, j = 1, . . . , n, ならば

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai).

(3) A,B ∈ F が A ⊂ B を満たすとき，

P(A) ≤ P(B).

(4) A,B ∈ F に対し
P(A ∪B) = P(A) + P(B)− P(A ∩B).

(5) An ∈ F , n ∈ N, に対し，

P

( ∞⋃
n=1

An

)
≤

∞∑
n=1

P(An).
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証明. (1). A1 = Ω とし，n ≥ 2 に対し An = ∅ とおいて，P(Ω) = 1 と P の σ-加法性（定義

3.3.1）を使うと，

1 = P(Ω) = P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An) = 1 +

∞∑
n=2

P(∅).

従って，P(∅) = 0.

(2). i ≥ n+ 1に対し Ai = ∅とすると，直前の (1)の結果から，i ≥ n+ 1に対し P(Ai) = 0.

このことと確率の σ-加法性より，

P

(
n⋃

i=1

Ai

)
= P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai) =

n∑
i=1

P(Ai).

(3). A1 = A, A2 = B \Aとして本命題 (2)を使うと，

P(B) = P(A1 ∪A2) = P(A1) + P(A2) = P(A) + P(B \A). (3.3.1)

定義 3.3.1 (1)より P(B \A) ≥ 0. よって主張する等式が成り立つ．

(4). A1 = A \ (A∩B), A2 = B \ (A∩B), A3 = A∩B として本定理 (2)および (3.3.1), すな

わち C ⊂ D ならば P(D \ C) = P(D)− P(C)を使うと，

P(A ∪B) = P(A1 ∪A2 ∪A3) = P(A1) + P(A2) + P(A3)

= P(A \ (A ∩B)) + P(B \ (A ∩B)) + P(A ∩B)

= P(A)− P(A ∩B) + P(B)− P(A ∩B) + P(A ∩B)

= P(A) + P(B)− P(A ∩B).

(5). B1 = A1, Bn = An \ (A1 ∪ · · · ∪ An−1) (n ≥ 2) により事象列 {Bn}∞n=1 を定義する．こ

のとき，Bi ∩Bj = ∅ (i ̸= j) であるから，確率の σ-加法性と本命題 (3)より，

P

( ∞⋃
n=1

An

)
= P

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

P(Bn) ≤
∞∑

n=1

P(An).

命題 3.3.9 (確率の連続性). (Ω,F ,P)を確率空間とするとき，以下が成り立つ．

(1) {An}∞n=1 ⊂ F が単調増加のとき，すなわち A1 ⊂ A2 ⊂ · · · のとき，

P

( ∞⋃
n=1

An

)
= lim

n→∞
P(An).

(2) {An}∞n=1 ⊂ F が単調減少のとき，すなわち A1 ⊃ A2 ⊃ · · · のとき，

P

( ∞⋂
n=1

An

)
= lim

n→∞
P(An).
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証明. (1). B1 = A1, Bn = An\An−1 (n ≥ 2)により事象列 {Bn}∞n=1を定義すると，Bi∩Bj = ∅
(i ̸= j) であるから，確率の σ-加法性と本命題 (2)より，

P

( ∞⋃
n=1

An

)
= P

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

P(Bn) = lim
n→∞

n∑
k=1

P(Bk)

= lim
n→∞

P

(
n⋃

k=1

Bk

)
= lim

n→∞
P(An).

(2). Bn = Ac
n (n ≥ 1) により定義される事象列 {Bn}∞n=1 は単調増加である．よって本命題

(1)を適用し，

P

( ∞⋃
n=1

Bn

)
= lim

n→∞
P(Bn).

他方，
∞⋂

n=1

An =

( ∞⋃
n=1

Bn

)c

(3.3.2)

であるから，

P

( ∞⋂
n=1

An

)
= 1− P

( ∞⋃
n=1

Bn

)
= 1− lim

n→∞
P(Bn) = 1− lim

n→∞
(1− P(An)) = lim

n→∞
P(An).

例題 3.3.10. (Ω,F ,P)を確率空間とする．各 n ∈ Nに対し An ∈ F が P(An) = 1を満た

すとき，

P

( ∞⋂
n=1

An

)
= 1

が成り立つことを示せ．

解答. {Bn}∞n=1 ⊂ F を Bn = Ac
n により定義すると，P(Bn) = 1− P(An) = 0である．このこと

と命題 3.3.8 (5)より，

P

( ∞⋃
n=1

Bn

)
≤

∞∑
n=1

P(Bn) = 0.

(3.3.2)を用いて

P

( ∞⋂
n=1

An

)
= 1− P

( ∞⋃
n=1

Bn

)
= 1

を得る．
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3.4 確率変数

以下，(Ω,F ,P)を確率空間とする．確率変数とは，端的には，Ω上の関数のことである．例え

ば，明日午前 9時における地点 Aの気温（℃）は確率変数とみなせる．この場合 X(ω) = 30な

どと表される．数学的に議論するためには，X に関係する集合が Pの定義域である F に属さなけ
ればいけない．具体的には，{X > 25} ∈ F でないと P(X > 25)を定義できない．

定義 3.4.1. X : Ω → R ∪ {±∞}が確率変数であるとは，

{X > a} ∈ F , a ∈ R, (3.4.1)

が満たされるときにいう．

この定義から，確率変数に関連する様々な集合が F に属すことが分かる．ボレル集合を用いた
性質 (4)については測度論の知識が必要になるので証明は略す．

命題 3.4.2. X : Ω → R ∪ {±∞}が確率変数であるとき，以下が成り立つ．

(1) 任意の a ∈ Rに対して {X ≥ a} ∈ F .

(2) 任意の a, b ∈ Rに対して {a < X ≤ b} ∈ F .

(3) 任意の a, b ∈ Rに対して {a ≤ X ≤ b} ∈ F .

(4) 任意の B ∈ B(R)に対して {X ∈ B} ∈ F．
(5) {X = ∞} ∈ F .

(6) {X = −∞} ∈ F .

証明. (1). X が確率変数のとき (3.4.1)が成り立つ．このとき任意の a ∈ Rに対して，

{X ≥ a} =
∞⋂

n=1

{
X > a− 1

n

}
∈ F .

よって (1)が成り立つ．

(2). (3.4.1)より，任意の a, b ∈ Rに対して，{X > a}, {X > b} ∈ F . これより，{X ≤ b} =

{X > b}c ∈ F . よって

{a < X ≤ b} = {X > a} ∩ {X ≤ b} ∈ F .

(3). 本命題 (1)の結果より {X ≥ a} ∈ F . よって

{a ≤ X ≤ b} = {X ≥ a} ∩ {X > b}c ∈ F , a, b ∈ R.

(5) は {X = ∞} =
⋂∞

n=1{X > n}, (6) は {X = −∞} =
⋂∞

n=1{X ≤ −n} =
⋂∞

n=1{X >

−n}c より従う．
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注意 3.4.3. X が実数値のときは，(3.4.1)は命題 (1)–(4)のいずれとも同値である．実際，命題

3.4.2 (1)が成り立っているとすると，任意の a ∈ Rに対して，

{X > a} =

∞⋃
n=1

{
X ≥ a+

1

n

}
∈ F .

また，命題 3.4.2 (2)が成り立つとき，

{X > a} =

∞⋃
n=1

{a < X ≤ a+ n} ∈ F , a ∈ R.

命題 3.4.2 (3)を使う場合は，

{X > a} =
∞⋃

n=1

{
a+

1

n
≤ X ≤ a+ n

}
∈ F , a ∈ R.

命題 3.4.2 (4)が満たされる場合は，ボレル集合として B = (a,∞)を考えればよい．

命題 3.4.4. {Xn}∞n=1 を実確率変数列とするとき，

sup
n∈N

Xn, inf
n∈N

Xn, lim sup
n→∞

Xn, lim inf
n→∞

Xn

は全て確率変数である．

証明の前に，上極限 lim sup と下極限 lim inf の定義を確認しておこう．実数列 {an}∞n=1 に対

して，

lim sup
n→∞

an := lim
k→∞

sup
n≥k

an ∈ R ∪ {±∞},

lim inf
n→∞

an := lim
k→∞

inf
n≥k

an ∈ R ∪ {±∞}.

命題 3.4.4により，標語的には「確率変数列の極限も確率変数である」と言える．

命題 3.4.4の証明. 任意の a ∈ Rに対して，{
sup
n≥1

Xn > a

}
=

∞⋃
n=1

{Xn > a},
{
inf
n≥1

Xn < a

}
=

∞⋃
n=1

{Xn < a} ∈ F

であるから，supn≥1 Xn と infn≥1 Xn はともに確率変数である．この事実と

lim sup
n→∞

Xn = lim
n→∞

sup
k≥n

Xk = inf
n≥1

sup
k≥n

Xk,

lim inf
n→∞

Xn = lim
n→∞

inf
k≥n

Xk = sup
n≥1

inf
k≥n

Xk

より lim supn→∞ Xn と lim infn→∞ Xn もともに確率変数であることも分かる．

命題 3.4.5. X を実確率変数，f : R → Rを連続とするとき，f(X)は確率変数である．
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証明. a ∈ Rとする．連続写像の定義より，f−1((a,∞))は開集合である．ここで Rの任意の開
集合 B に対して，B =

⋃∞
n=1(an, bn)なる an, bn ∈ R, an < bn, n ∈ N, が存在する（これについ

ては例えば，[10]の 15章をみよ）．この事実を B = f−1((a,∞))に対して適用すると，

{f(X) > a} = {X ∈ f−1((a,∞)} =

∞⋃
n=1

{X ∈ (an, bn)} ∈ F .

f : R → Rがボレル関数であるとは，

{f > α} = {x ∈ R | f(x) > α} ∈ B(R), α ∈ R,

が満たされるときにいう．

• 連続関数，階段関数はボレル関数である．

• 命題 3.4.5 の一般化として，次が成り立つ．X が実確率変数のとき，任意のボレル関数 f

に対して f(X)も実確率変数である．

多次元版のボレル関数を導入しておく．f : Rd → Rが d次元ボレル関数であるとは，

{f > α} = {x ∈ Rd | f(x) > α} ∈ B(Rd), α ∈ R,

が満たされるときにいう．

• X1, . . . , Xd を実確率変数，f を d次元ボレル関数とするとき，f(X1, . . . , Xd)も実確率変

数である．

• {Rd 上の連続関数 } ⊂ {d次元ボレル関数 }.
• X,Y を実確率変数とするとき，任意の α, β ∈ Rに対して，αX + βY , XY も実確率変数

である．

次に一般の確率空間における確率変数の分布を考えよう．

X を実確率変数とする．このとき，

µX(B) := P(X ∈ B), B ∈ B(R)

は (R,B(R))上の確率測度を定義する（読者はこれを確かめよ）．

• µX を X の分布または確率法則と呼ぶ．

• X が S-値（S ⊂ R）のとき，µX は (S,B(S))上の確率測度である．

次の定理が示すように，実確率変数 X の分布は P(a < X ≤ b), a ≤ b, によって決定される．

証明については例えば [10, 定理 3.3]をみよ．
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定理 3.4.6. 二つの実確率変数 X,Y について，

P(a < X ≤ b) = P(a < Y ≤ b), −∞ < a < b < ∞,

が成り立つとき，任意のボレル集合 B ∈ B(R)に対して µX(B) = µY (B). すなわち X と

Y の分布は等しい．

• 実確率変数の分布は (R,B(R))上の確率測度ではあるが，これを決定するためには B(R)を
生成する半開区間の族 I = {(a, b] | −∞ ≤ a < b ≤ +∞}だけ考えれば十分だと定理 3.4.6

は述べている．

• 確率変数 X と Y の分布が等しいとき，X
d
= Y と書くこともある．

• 確率変数 X に対し，

P(a < X ≤ b) =

∫ b

a

ρ(x)dx, a < b, a, b ∈ R, (3.4.2)

を満たす関数 ρが存在するとき，ρを X の確率密度関数あるいは単に密度関数という．

• 実用上現れる密度関数の多くは R上の区分的連続関数である．そのような場合，(3.4.2)の

右辺の積分は（広義）リーマン積分として解釈される．以下，特に断らない限り，本授業で

現れる被積分関数は（広義）リーマン積分可能な関数と仮定して議論を進める．ルベーグ積

分の理論を知っている読者はルベーグ積分として解釈すればよい．多次元の場合でも同様．

例 3.4.7. m ∈ R, v > 0を所与とする．X の密度関数 ρが

ρ(x) =
e−(x−m)2/(2v)

√
2πv

, x ∈ R,

により与えられるとき，X は平均 m，分散 v の正規分布またはガウス分布に従うといい，

X ∼ N(m, v)と書く．m = 0, v = 1のときの正規分布を特に標準正規分布と呼ぶ．Z ∼ N(0, 1)

ならばX := m+
√
vZ ∼ N(m, v)である．小さい ε > 0に対して Y ∼ N(0, ε2)であるような確

率変数 Y を現象の観測ノイズ，あるいは推定誤差とみなすことが多い．

例 3.4.8. a < bなる a, b ∈ Rを所与とする．X の密度関数 ρが

ρ(x) =


1

b− a
(a ≤ x ≤ b),

0 (それ以外),

により与えられるとき，X は [a, b]上の一様分布に従うといい，X ∼ U [a, b]と書く．

実確率変数 X に対して，
F (x) := P(X ≤ x), x ∈ R,

をX の分布関数という．定理 3.4.6を踏まえると，X の分布関数によりX の分布（確率法則）は

完全に決定されることが分かる．



第 3章 確率論の基本的枠組み 40

命題 3.4.9. 確率変数 X の分布関数 F は次の性質を満たす．

(1) limx→−∞ F (x) = 0, limx→∞ F (x) = 1.

(2) (単調性) x ≤ y =⇒ F (x) ≤ F (y).

(3) (右連続性) limy↘x F (y) = F (x).

証明. {xn}を xn → −∞なる任意の実数列とする．yn := supk≥n xk とおくと，{yn}は単調非
増加で，yn → −∞. よって，命題 3.3.8より 0 ≤ P(X ≤ xn) ≤ P(X ≤ yn)であり，確率の連続

性（命題 3.3.9）より，

lim
n→∞

P(X ≤ yn) = P

( ∞⋂
n=1

{X ≤ yn}

)
= P(∅) = 0.

{xn}は任意だったので，limx→−∞ F (x) = 0が従う．

次に {x̃n}を x̃n → ∞なる任意の実数列とする．ỹn := infk≥n xk とおくと，{yn}は単調非減
少で，ỹn → ∞. よって，P(X ≤ ỹn) ≤ P(X ≤ x̃n) ≤ 1であり，再び確率の連続性より，

lim
n→∞

P(X ≤ ỹn) = P

( ∞⋃
n=1

{X ≤ ỹn}

)
= P(Ω) = 1.

ゆえに limn→∞ P(X ≤ x̃n) = 1であり，{x̃n}は任意だったので，limx→∞ F (x) = 1を得る．

次に単調性を確認する．x ≤ y ならば，{X ≤ x} ⊂ {X ≤ y}であるから，命題 3.3.8 (3)より

F (x) = P(X ≤ x) ≤ P(X ≤ y) = F (y).

最後に右連続性を示す．x ∈ Rに対し，xn > x, limn→∞ xn = xを満たす実数列 {xn}を任意
にとる．このとき，単調性より，F (xn) ≥ F (x)である．他方，yn = supk≥n xk とおくと，{yn}
は単調非増加で，yn → x. よって F (x) ≤ F (xn) ≤ F (yn)であり，これと確率の単調性より，

F (x) ≤ lim
n→∞

P(X ≤ yn) = P

( ∞⋂
n=1

{X ≤ yn}

)
≤ P(X ≤ x) = F (x).

ゆえに limy↘x F (y) = F (x).

• 命題 3.4.9の 3条件を満たす F : R → [0, 1]に対し，ある確率測度 µが存在し，

F (x) = µ((−∞, x]), x ∈ R.

• X の分布関数 F が連続のとき，X は連続分布を持つという．

例題 3.4.10. X ∼ N(m, v)，0 < α < 1のとき，F−1(α)を求めよ．

解答. 関数 Φ : R → Rを

Φ(x) =

∫ x

−∞

e−y2/2

√
2π

dy



第 3章 確率論の基本的枠組み 41

により定める．これは標準正規分布に従う確率変数の分布関数である．このとき，Z ∼ N(0, 1)

とすると，

P(X ≤ x) = P(m+
√
vZ ≤ x) = P

(
Z ≤ x−m√

v

)
= Φ

(
x−m√

v

)
(3.4.3)

となる．Φは連続かつ狭義単調増加で limx→∞ Φ(x) = 1, limx→−∞ Φ(x) = 0を満たすから連続

な逆関数 Φ−1 が存在する．従って，任意の α ∈ (0, 1)に対し

x−m√
v

= Φ−1(α)

を満たす x ∈ Rが一意に定まる．X の分布関数 F も同様に連続な逆関数 F−1 が存在するから，

(3.4.3)より
F−1(α) = m+

√
vΦ−1(α).

• 確率変数X は投資による金融資産の損失額を表すと仮定し，α = 0.01とするとき，F−1(α)

は 1%で起こる最大の損失とみなせる．

定理 3.4.11. 確率変数 X の分布関数 F は R上連続で狭義単調増加とし，U ∼ U [0, 1]と

する．このとき X
d
= F−1(U).

証明. 例題 3.4.10の解答で示したように，F の連続な逆関数 F−1 : R → Rが存在する．任意の
a < bに対し，F の狭義単調性より

P(a < F−1(U) ≤ b) = P(F (a) < U ≤ F (b)) = F (b)− F (a) = P(a < X ≤ b).

従って，定理 3.4.6より X と F−1(U)は同分布である．

• 定理 3.4.11は X のサンプリングの方法を示している．すなわち，X の擬似乱数を発生さ

せるためには，U の擬似乱数を発生させ，F−1(U)を計算すればよい．

定義 3.4.12. 実確率変数 X1, X2, . . . , Xn が独立であるとは，

P

(
n⋂

i=1

{ai < Xi ≤ bi}

)
=

n∏
i=1

P(ai < Xi ≤ bi), ai, bi ∈ R, i = 1, . . . , n,

が成り立つときにいう．

• X1, . . . , Xnが独立で，Xiの分布が全て同じとき，独立同分布（Independent and Identically

Distributed）であるといい，IIDと書く（i.i.d., iidとも書く）．

定義 3.4.13. 実確率変数 X1, X2, . . .が独立であるとは，

P

(
n⋂

i=1

{ai < Xi ≤ bi}

)
=

n∏
i=1

P(ai < Xi ≤ bi), ai, bi ∈ R, i ∈ N,

が成り立つときにいう．
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• {Xn}∞n=1 が独立で，Xn の分布が全て同じとき，独立同分布列であるという．

事象 A1, A2, . . .が独立であるとは，任意の {i1, . . . , in} ⊂ Nに対して

P

(
n⋂

k=1

Aik

)
=

n∏
k=1

P(Aik)

が成り立つときにいう．

• 事象 A ∈ F は P(A) > 0を満たすとする．第 2章と同様に，Aの下での B ∈ F の条件付
き確率を

P(B |A) =
P(B ∩A)

P(A)

により定義する．

• 条件付き確率を用いると，Aと B が独立 ⇐⇒ P(B |A) = P(B).

定理 2.4.5と同様に，次の結果が得られる．

定理 3.4.14. 事象 A1, A2, . . .が独立 ⇐⇒ 1A1 , 1A2 , . . .が独立

また，次の定理を参考までに述べておこう．

定理 3.4.15. 実確率変数 X1, . . . , Xn が独立であるための必要十分条件は

P

(
n⋂

i=1

{Xi ∈ Bi}

)
=

n∏
i=1

P(Xi ∈ Bi), Bi ∈ B(R), i = 1, . . . , n.

例 3.4.16 (二項分布). p ∈ (0, 1)とする．{Xi}ni=1 は P(X1 = 1) = p = 1 − P(X1 = 0)を満た

す IIDとする．このとき，確率変数

S := X1 + · · ·+Xn

をサイズ n，パラメータ pの二項確率変数といい，S の分布を二項分布という．S は n回投げた

コインの中で表が出た枚数を表しており，その分布は

P(S = k) =
n!

k!(n− k)!
pk(1− p)n−k, 0 ≤ k ≤ n,

により与えられるのであった．

例 3.4.17 (幾何分布). p ∈ [0, 1]とする．{Xn}∞n=1 は IIDで，共通の分布は P(Xn = 1) = p =

1− P(Xn = 0)を満たすとする．このとき，確率変数

T := inf{n ∈ N : Xn = 1}
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はパラメータ pの幾何分布に従うという．ただし，inf ∅ = +∞. T は N ∪ {+∞}-値確率変数で
あり，コインが表になる最初の nを表している．p ∈ (0, 1]のとき，幾何分布は

P(T = n) = p(1− p)n−1, n ∈ N,

により与えられる．特に，P(T = ∞) = 0であり，p = 1のとき，P(T = 1) = 1である．また，

p = 0のときは P(T = ∞) = 1である．

例題 3.4.18. パラメータ p ∈ [0, 1)の幾何分布をもつ確率変数 T は次の無記憶性

P(T ≥ n+ k |T > n) = P(T ≥ k), n, k ∈ N, (3.4.4)

を満たす．

解答. p = 0 のとき (3.4.4) は両辺 0 で成立する．p ∈ (0, 1) のとき，条件付き確率の定義と例

3.4.17より，

P(T ≥ n+ k |T > n) =
P(T ≥ n+ k)

P(T > n)
=

P(T > n+ k − 1)

P(T > n)

=
(1− p)n+k−1

(1− p)n
= (1− p)k−1 = P(T ≥ k).

• 無記憶性の意味は「これまでは失敗続きだった．これから成功するまでに要する回数は，こ

れまでの失敗回数とは関係ない．」

例題 3.4.19. Y ∼ N(0, 1), H は P(H = 1) = P(H = −1) = 1/2を満たし，Y と H は独

立とする．このとき，X := H + Y の確率密度関数を求めよ．

解答. ϕを標準正規分布の密度関数とする．このとき，Y と H の独立性より，

P(a < X ≤ x) = P(a < X ≤ x,H = 1) + P(a < X ≤ x,H = −1)

= P(a− 1 < Y ≤ x− 1,H = 1) + P(a+ 1 < Y ≤ x+ 1,H = −1)

= P(a− 1 < Y ≤ x− 1)P(H = 1) + P(a+ 1 < Y ≤ x+ 1)P(H = −1)

=
1

2

∫ x−1

a−1

ϕ(y)dy +
1

2

∫ x+1

a+1

ϕ(y)dy.

よって，X の密度関数 ρは

ρ(x) =
d

dx
P(a < X ≤ x) =

1

2
(ϕ(x− 1) + ϕ(x+ 1)) , x ∈ R,

により与えられる．

• この例題の X の分布を混合正規分布という．

ここで少数の法則を紹介しておこう．
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定理 3.4.20 (少数の法則). Sn はパラメータ (n, p)の二項分布とする．すなわち，{Xi}は
IIDで各 Xi は P(Xi = 1) = p = 1− P(Xi = 0)を満たすとき，Sn

d
= X1 + · · ·+Xn と仮

定する．p = pn が limn→∞ npn = c > 0を満たすならば，

lim
n→∞

P(Sn = k) =
e−cck

k!
, k = 0, 1, 2, . . .

証明.（第一段階）．一般に，実数列 {an}, {bn} が an → 0, bn → ∞, anbn → c を満たすなら，

limn→∞(1 + an)
bn = ec が成り立つ．実際，log(1 + x)を x = 0近傍でテーラー展開すると

log(1 + x) = x+O(x2), x → 0.

これより，
bn log(1 + an) = anbb +O(a2nbn) → c, n → ∞.

（第二段階）．仮定より，k ≥ 2に対して

n(n− 1) · · · (n− k + 1)pk =

(
1− 1

n

)
· · ·
(
1− k − 1

n

)
(np)kt → ck

であり，第一段階の結果より，

(1− p)n−k = (1− p)n(1− p)−k → e−c.

ゆえに，任意の k ≥ 0に対して，

n!

k!(n− k)!
pk(1− p)n−k → e−cck

k!
, n → ∞.

少数の法則により，ポアソン分布を使って人数や件数，品数の分布をモデル化することが正当

化される．例として，1 時間の間に銀行に来る人数の分布について考えよう．n が十分大きいと

き，時間区間 [(i− 1)/n, i/n]の間に来る人数 Xi は互いに独立で，Xi = 0または 1とみなせる．

さらに Xi = 1 の確率は n に反比例すると考えてよい．このとき，各 Xi はベルヌーイ分布とな

り，P(Xi = 1) = c/n を満たす正定数 c が存在する．定理 3.4.20 より，1 時間の間の到着人数

X1 + · · ·+Xn は近似的にパラメータ cのポアソン分布に従う．表 3.4.1はパラメータ (100, 0.3)

の二項分布とパラメータ 3のポアソン分布を比較したものである．

X と Y を実確率変数とする．

• 2次元確率ベクトル (X,Y )の分布（確率法則）のことを X と Y の同時分布または結合分

布と呼ぶ．

• 各成分 X, Y の分布を周辺分布という．

• 等式

P(a < X ≤ b, c < Y ≤ d) =

∫ b

a

∫ d

c

ρ(x, y)dxdy, a, b, c, d ∈ R, a < b, c < d,
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表 3.4.1 二項分布 B(100, 0.03) とポアソン分布 Poi(3) の比較

k P(X = k) (二項分布) P(Y = k) (ポアソン分布) 絶対誤差

0 0.0476 0.0498 0.0022

1 0.1471 0.1494 0.0023

2 0.2252 0.2240 0.0011

3 0.2275 0.2240 0.0034

4 0.1706 0.1680 0.0026

5 0.1013 0.1008 0.0005

6 0.0496 0.0504 0.0008

7 0.0210 0.0216 0.0006

を満たす関数 ρが存在するとき，ρ = ρX,Y を X と Y の同時確率密度関数または結合確率

密度関数と呼ぶ．もう少し短く，同時密度関数または結合密度関数と呼ぶことも多い．

• 各成分 X, Y の確率密度関数 ρX , ρY が存在するとき，それらを周辺確率密度関数あるい

は短く周辺密度関数という．

• (X,Y )の結合密度関数 ρが存在するとき，

ρX(x) =

∫ ∞

−∞
ρX,Y (x, y)dy, x ∈ R,

は X の密度関数である．Y についても同様である．

命題 3.4.21. 2次元確率ベクトル (X,Y )は結合密度 ρX,Y を持つと仮定する．さらに，X

の密度関数 ρX と Y の密度関数 ρY は R上の連続関数であり，ρX,Y は R2 上の連続関数と

する．このとき，

X と Y が独立 ⇐⇒ ρX,Y (x, y) = ρX(x)ρY (y), x, y ∈ R.

証明. (⇒). 任意の a < x, b < y に対し，∫ x

a

∫ y

b

ρX,Y (x
′, y′)dx′dy′ = P(a < X ≤ x, b < Y ≤ y)

= P(a < X ≤ x)P(b < Y ≤ y) =

∫ x

a

ρX(x′)dx′
∫ y

b

ρY (y
′)dy′.

両辺 x, y で偏微分し，ρX,Y (x, y) = ρX(x)ρY (y)を得る．

(⇐). 重積分を累次積分とみなすと，任意の a < c, b < dに対し，

P(a < X ≤ c, b < Y ≤ d) =

∫ c

a

∫ d

b

ρX,Y (x
′, y′)dx′dy′

=

∫ c

a

ρX(x′)dx′
∫ d

b

ρY (y
′)dy′ = P(a < X ≤ c)P(b < Y ≤ d).
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例題 3.4.22. 確率ベクトル (X,Y )の同時密度関数 ρが

ρ(x, y) =


3

2
y2 (0 ≤ x ≤ 2, 0 ≤ y ≤ 1),

0 (その他)

により与えられているとする．このとき以下の問いに答えよ．

(1) (X,Y )の周辺密度関数を求めよ．

(2) X と Y は独立か？

解答. まず， ∫
R2

ρ(x, y)dxdy =

∫ 2

0

∫ 1

0

3

2
y2dydx = 1

より ρは確かに密度関数である．X と Y の密度をそれぞれ ρX , ρY とすると，0 ≤ x ≤ 2のとき，

ρX(x) =

∫ ∞

−∞
ρ(x, y)dy =

3

2

∫ 1

0

y2dy =
1

2

であり，x < 0または 2 < xのとき ρX(x) = 0. すなわち X は [0, 2]上の一様分布に従う．さら

に，0 ≤ y ≤ 1に対し，

ρY (y) =

∫ ∞

−∞
ρ(x, y)dx = 3y2

であり，y < 0または 1 < y のとき ρY (y) = 0.

また，ρ(x, y) = ρX(x)ρY (y)が任意の x, y ∈ Rに対して成り立つから命題 3.4.21より X と Y

は独立である．

結合密度関数が周辺密度関数の積と一致しない例を挙げておこう．

例 3.4.23. (X,Y )の結合密度関数 ρが

ρ(x, y) =


21

4
x2y (x2 ≤ y ≤ 1),

0 (その他)

により与えられているとする．このとき，−1 ≤ x ≤ 1に対し

ρX(x) =

∫ ∞

−∞
ρ(x, y)dy =

21x2

4

∫ 1

x2

ydy =
21

8
x2(1− x2)

であり，x < −1または 1 < xのとき ρX(x) = 0. さらに，0 ≤ y ≤ 1に対し，

ρY (y) =

∫ ∞

−∞
ρ(x, y)dx =

21y

4

∫ √
y

0

x2dx =
7

4
y5/2

であり，y < 0または 1 < y のとき ρY (y) = 0. よってもちろん一般には ρ(x, y) ̸= ρX(x)ρY (y).
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3.5 期待値

前節に引き続き，(Ω,F ,P) を任意の確率空間とする．特に，Ω は有限集合／無限集合ど

ちらの場合もあり得る．有限試行の確率空間においては，確率変数 X の期待値は E[X] =∑
ω∈Ω X(ω)P{ω}により定義されるのであった．このように定義されるのは Ωが有限集合だから

X が必然的に離散的に値をとるが故である．

Ωが無限集合の場合でも，X が離散的の場合は同様に期待値を定義できる．すなわち，適当な

実数 a1, a2, . . .が存在して

X(ω) =

∞∑
n=1

an1{X=an}(ω)

と表される場合に，その期待値 E[X]を

E[X] =

∞∑
n=1

anP(X = an) (3.5.1)

と定義するのは自然なことであろう．

他方，X が連続的な場合，すなわち X が密度関数 pをもつ場合，その期待値 E[X]を

E[X] =

∫ ∞

−∞
xp(x)dx (3.5.2)

と定義することも自然である．

では，X が離散的とも連続的とも言えない場合はどうだろうか？ 例えば，H は P(H =

0) = P(H = 1) = 1/2を満たす確率変数，Z ∼ N(0, 1)とし，H と Z は独立とする．このとき

X := HZ を考える．Z = 0の確率は 0だから

P(X = 0) = P({H = 0} ∪ {Z = 0}) = P(H = 0) =
1

2
.

よって X は連続的とは言えないし，任意の b > 0に対し

P(0 < X < b) = P(H = 1, 0 < Z < b) = P(H = 1)P(0 < Z < b) =
1

2

∫ b

0

e−x2/2

√
2π

dx

と表されるので，離散的でもない．このような確率変数は決して病的なものでないことに気付く

だろう．この場合は期待値を (3.5.1), (3.5.2)どちらの方法でも定義することはできない．

以下では，まず任意の確率変数に対して適用可能な形で期待値を定義する．そしてその定義の

帰結として，離散的な確率変数に対しては (3.5.1)が成立し，連続的な確率変数に対しては (3.5.2)

が成立することをみる．
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単純確率変数に対する定義

X が単純確率変数であるとは，X が適当な ai ∈ R, Ci ∈ F , i = 1, . . . , n, を用いて X =∑n
i=1 ai1Ci

と表されるときにいう．ただし Ci ∩Cj = ∅ (i ̸= j). このとき，X の期待値 E[X]を

E[X] =

n∑
i=1

aiP(Ci)

により定義する.

非負確率変数に対する定義

非負の確率変数 X に対して，単純確率変数の単調非減少列 {Xn}∞n=1 が存在して，

X(ω) = lim
n→∞

Xn(ω), ω ∈ Ω,

とできる．例えば，

Xn =

n2n∑
k=1

k − 1

2n
1{ k−1

2n ≤X< k
2n } + n1{X≥n}

とすればよい．このとき，
E[X] = lim

n→∞
E[Xn] ∈ [0,∞]

と定義する．この定義は近似単純確率変数列の取り方に依らない（証明略）．

一般の確率変数に対する定義

一般の R ∪ {±∞}-値確率変数 X に対して，X+ := max{X, 0}, X− := max{−X, 0}とおく．
E[X+] < ∞または E[X−] < ∞のとき，

E[X] = E[X+]− E[X−]

と定義する．

• E[X]を X の期待値または平均値と呼ぶ．

• E[X]は ±∞をとり得る．
• E[X+] < ∞かつ E[X−] < ∞のとき，X は可積分または平均可能という．

期待値は離散的な確率変数の場合は和で，連続的な場合は積分で表される．

命題 3.5.1. X が N ∪ {0}-値確率変数のとき，

E[X] =

∞∑
n=1

nP(X = n) ∈ [0,∞].

証明. Xn :=
∑n

k=1 k1{X=k} を考える．{Xn}∞n=1 は単調非減少な確率変数列で，limn→∞ Xn =

X である．すなわち，{Xn}は X の近似単純確率変数列である．よって非負確率変数に対する期
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待値の定義より，

E[X] = lim
n→∞

E[Xn] = lim
n→∞

n∑
k=1

kP(X = k) =

∞∑
k=1

kP(X = k).

この等式は右辺が発散する場合も含む．

命題 3.5.2. 実確率変数 X が密度関数 pを持つとする．このとき，∫ ∞

−∞
|x|p(x)dx < ∞

ならば X は可積分で，

E[X] =

∫ ∞

−∞
xp(x)dx.

証明. 各 n ≥ 1に対して非負確率変数 X+
n を

X+
n =

n2n∑
k=1

k − 1

2n
1{ k−1

2n ≤X+< k
2n } + n1{X+≥n}

と定義すると，{X+
n }∞n=1 は X+ の近似単純確率変数列である．よって期待値の定義より

E[X+] = lim
n→∞

E[X+
n ].

α > 0のとき {X+ ≥ α} = {X ≥ α}だから

X+
n =

n2n∑
k=2

k − 1

2n
1{ k−1

2n ≤X< k
2n } + n1{X≥n}.

これより

E[X+
n ] =

n2n∑
k=2

k − 1

2n
P
(
k − 1

2n
≤ X <

k

2n

)
+ nP(X ≥ n)

=

n2n∑
k=2

k − 1

2n

∫ k/2n

(k−1)/2n
p(x)dx+ n

∫ ∞

n

p(x)dx.

このことと ∫ ∞

0

xp(x)dx =

n2n∑
k=1

∫ k/2n

(k−1)/2n
xp(x)dx+

∫ ∞

n

xp(x)dx
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より，

0 ≤
∫ ∞

0

xp(x)dx− EX+
n

=

∫ 1/(2n)

0

xp(x)dx+

n2n∑
k=2

∫ k/2n

(k−1)/2n

(
x− k − 1

2n

)
p(x)dx+

∫ ∞

n

(x− n) p(x)dx

≤ 1

2n

∫ 1/(2n)

0

p(x)dx+
1

2n

n2n∑
k=2

∫ k/2n

(k−1)/2n
p(x)dx+

∫ ∞

n

xp(x)dx

=
1

2n

∫ n

0

p(x)dx+

∫ ∞

n

xp(x)dx.

右辺は n → ∞のとき 0に収束するので，

E[X+] =

∫ ∞

0

xp(x)dx

が従う．同様にして，

E[X−] =

∫ 0

−∞
(−x)p(x)dx

を得る．ゆえに X は可積分であり，

E[X] = E[X+]− E[X−] =

∫ ∞

−∞
xp(x)dx.

次の二つの命題はそれぞれ命題 3.5.1, 3.5.2の一般化であり有用である．証明は略す．

命題 3.5.3. X を Zd-値確率変数，f : Zd → Rとする．このとき，

E[f(X)] =
∑
n∈Zd

f(n)P(X = n).

ただし，等号は右辺，左辺どちらかが有限値であれば他辺も有限値で，その値が一致するこ

とを意味する．f が非負なら，等号は両辺ともに +∞となる場合を含む．

命題 3.5.4. X は d次元確率変数で密度関数 pを持つとする．このとき，Rd 上の連続関数

f に対し，

E[f(X)] =

∫
Rd

f(x)p(x)dx.

ただし，等号は右辺，左辺どちらかが有限値であれば他辺も有限値で，その値が一致するこ

とを意味する．f が非負なら，等号は両辺ともに +∞となる場合を含む．

E|X|2 < ∞のとき，
V[X] := E[(X − E[X])2]
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を X の分散といい，
Cov(X,Y ) := E[(X − E[X])(Y − E[Y ])]

を X と Y の共分散という．また，Cov(X,Y ) = 0のとき，X と Y は無相関であるという．

例 3.5.5. Z ∼ N(0, 1)のとき，xe−x2/2 が奇関数であることから

E[Z] =

∫ ∞

−∞
x
e−x2/2

√
2π

dx = 0

であり，部分積分により

E[Z2] =

∫ ∞

−∞
x2 e

−x2/2

√
2π

dx =

∫ ∞

−∞
x

(
−e−x2/2

√
2π

)′

dx

=

[
x

(
−e−x2/2

√
2π

)]∞
−∞

−
∫ ∞

−∞

(
−e−x2/2

√
2π

)
dx

= 1.

よって V[Z] = 1.

X ∼ N(m, v)のとき，

E[X] =

∫ ∞

−∞
x
e−(x−m)2/(2v)

√
2πv

dx =

∫ ∞

−∞
(m+

√
vy)

e−y2/2

√
2π

dy

= m+
√
v

∫ ∞

−∞
y
e−y2/2

√
2π

dy

= m.

また，

E[(X − E[X])2] =

∫ ∞

−∞
(x−m)2

e−(x−m)2/(2v)

√
2πv

dx =

∫ ∞

−∞
(
√
vy)2

e−y2/2

√
2π

dy

= v

∫ ∞

−∞
y2

e−y2/2

√
2π

dy = v.

よって V[X] = v.

例 3.5.6. X がパラメータ λの指数分布に従うとき，命題 3.5.4より

E[X] = E[X+] =

∫ ∞

0

xλe−λxdx =

∫ ∞

0

x(−e−λx)′dx =

∫ ∞

0

e−λxdx

=
1

λ
.

例題 3.5.7. ポアソン分布に従う確率変数の平均と分散を求めよ．



第 3章 確率論の基本的枠組み 52

解答. X がパラメータ cのポアソン分布に従うとすると（このことを X ∼ Poi(c)と書くことも

ある），

P(X = n) = e−c c
n

n!
, n = 0, 1, 2, . . .

である．これより，

E[X] =

∞∑
n=0

nP(X = n) = ce−c
∞∑

n=1

cn−1

(n− 1)!
= ce−c

∞∑
n=0

cn

n!

= c.

また，

E[(X − c)2] =

∞∑
n=0

(n− c)2P(X = n) =

∞∑
n=1

n2 e
−ccn

n!
− 2c

∞∑
n=0

n
e−ccn

n!
+ c2

∞∑
n=0

e−ccn

n!

= c

∞∑
n=1

n
e−ccn−1

(n− 1)!
− 2c2 + c2 = c

∞∑
n=0

(n+ 1)
e−ccn

n!
− c2

= c(c+ 1)− c2

= c.

よって V[X] = c.

例題 3.5.8. X ∼ N(m, v)のとき，P(eX ≤ E[eX ]) >
1

2
を確かめよ．

解答. 命題 3.5.4より，

E[eX ] =

∫ ∞

−∞
ex

e−(x−m)2/(2v)

√
2πv

dx

であり，

x− (x−m)2

2v
= − 1

2v
(x− (m+ v))2 +m+

v

2

であるから，

E[eX ] = em+v/2

∫ ∞

−∞

e−(x−(m+v))2/(2v)

√
2πv

dx = em+v/2.

よって，

P(eX ≤ EeX) = P
(
X ≤ m+

v

2

)
=

∫ m+v/2

−∞

e−(x−m)2/(2v)

√
2πv

dx

=
1

2
+

∫ m+v/2

m

e−(x−m)2/(2v)

√
2πv

dx >
1

2
.

• Y = eX の分布を対数正規分布と呼ぶ．

• 世帯年収を対数正規分布でモデル化するとき，上の結果はラフには「平均世帯年収以下の

世帯数は半数を超える」ことを意味している．
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例題 3.5.9. X ∼ U [−2, 2], Y := X6 について，X と Y は無相関だが，独立ではないこと

を示せ．

解答. 命題 3.5.4

E[X] =
1

4

∫ 2

−2

x dx = 0, E[Y ] =
1

4

∫ 2

−2

x6dx =
64

7

であり，定数 cに対し，

E[X(Y − c)] = E[X7 − cX] =
1

4

∫ 2

−2

(x7 − cx) dx = 0.

よって

Cov(X,Y ) = E
[
X

(
Y − 7

64

)]
= 0.

すなわち X と Y は無相関である．

一方，

P(X ≥ 1, Y ≤ 1) = P(X ≥ 1, X6 ≤ 1) = P(X = 1) = 0,

P(X ≥ 1) =
1

4
, P(Y ≤ 1) = P(|X| ≤ 1) =

1

2
.

よって 0 = P(X ≥ 1, Y ≤ 1) < P(X ≥ 1)P(Y ≤ 1)であるから X と Y は独立ではない．

期待値の基本的性質をみていこう．

定理 3.5.10. X,Y を実確率変数とするとき，以下が成り立つ．

(1) E|X| < ∞，E|Y | < ∞のとき，任意の α, β ∈ Rに対して

E[αX + βY ] = αE[X] + βE[Y ].

(2) X ≤ Y で，E[X]と E[Y ]は共に存在するとき，

E[X] ≤ E[Y ].

(3) E|X| < ∞のとき，
|E[X]| ≤ E|X|.

証明. (1). 確率ベクトル (X,Y )の結合密度関数 ρX,Y が存在する場合に示そう．一般の場合の証

明は [10]や [7]など測度論的確率論のテキストを参照のこと．この場合，X と Y の密度関数 ρX ,

ρY が存在し，それぞれ

ρX(x) =

∫ ∞

−∞
ρX,Y (x, y)dy, ρY (y) =

∫ ∞

−∞
ρX,Y (x, y)dx
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により与えられる．このことと，命題 3.5.4，および積分の線形性より

E[αX + βY ] =

∫
R2

(αx+ βy)ρ(x, y)dxdy = α

∫
R2

xρ(x, y)dxdy + β

∫
R2

yρ(x, y)dxdy

= α

∫
R
xρX(x)dx+ β

∫
R
yρY (y)dy = αE[X] + βE[Y ].

(2). Z = X − Y とおくと，Z は非負確率変数だから期待値の定義より

E[Z] = lim
n→∞

{
n2n∑
k=1

k − 1

2n
P
(
k − 1

2n
≤ Z <

k

2n

)
+ nP(Z ≥ n)

}
≥ 0.

これと本定理 (1)の結果より E[X]− E[Y ] = E[Z] ≥ 0.

(3). |X| = X++X−と書ける．X+, X−は共に非負だから本定理 (2)の結果より，E[X+] ≥ 0,

E[X−] ≥ 0. これらと期待値の定義，線形性より，

|E[X]| = |E[X+]− E[X−]| ≤ E[X+] + E[X−] = E|X|.

• 定理 3.5.10より，E[X],E[X2]がともに存在するとき，

V[X] = E[X2]− (E[X])2. (3.5.3)

後で示すコーシー・シュワルツの不等式（系 3.5.20）を使うと，EX2 < ∞のとき，E[X]

も存在するので，(3.5.3)が成り立つ．同様に，E[X],E[Y ],E[XY ]がすべて存在するとき，

Cov(X,Y ) = E[XY ]− E[X]E[Y ]. (3.5.4)

これについてもコーシー・シュワルツの不等式（系 3.5.20）を使うと，EX2 < ∞, E[Y 2] < ∞
のとき，E[X],E[Y ],E[XY ]がすべて存在するので (3.5.4)が成り立つ．

• E[X,A] := E[X1A], A ∈ F .

• P(X = Y ) = 1のとき，X と Y はほとんど確実に（almost surely）等しいといい，

X = Y, a.s.

と書く．

命題 3.5.11. X,Y を平均可能確率変数とする．このとき，

E[X,A] = E[Y,A], A ∈ F ,

ならば
X = Y a.s.
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証明. Z = X − Y とおく．各 n ∈ Nに対し，事象 A+
n := {Z > 1/n}, A−

n := {Z < −1/n}を考
える．このとき，

0 = E[Z,A+
n ] ≥

1

n
P(A+

n ),

0 = E[Z,A−
n ] ≤ − 1

n
P(A−

n )

が成り立つ．よって任意の n ∈ Nに対して

P(A+
n ) = P(A−

n ) = 0.

従って，確率の連続性（命題 3.3.9）より，

P(Z ̸= 0) = P(Z > 0) + P(Z < 0) = P

( ∞⋃
n=1

A+
n

)
+ P

( ∞⋃
n=1

A−
n

)
= lim

n→∞
P(A+

n ) + lim
n→∞

P(A−
n )

= 0.

命題 3.5.12. X は非負確率変数で E[X] = 0を満たすとする．このとき，

X = 0 a.s.

証明. 各 n ∈ Nに対して事象 An = {X > 1/n}を考える．このとき，

0 = E[X] ≥ E[X,An] ≥
1

n
P(An).

よって任意の n ≥ 1に対して P(An) = 0. これと確率の連続性より

P(X > 0) = P

( ∞⋃
n=1

An

)
= lim

n→∞
P(An) = 0.

命題 3.5.13. X が平均可能確率変数ならば，|X| < ∞ a.s.

• 逆は成り立たない．例えば，Z ∼ N(0, 1)として X := eZ
2

を考えよ．

命題 3.5.13の証明. A = {|X| = +∞} ∈ F とおく．このとき，任意の ω ∈ Aと N ≥ 1に対し

て |X(ω)| ≥ N である．これより，

P(A) ≤ E
[
|X|
N

,A

]
≤ E|X|

N
.

N → ∞として P(A) = 0を得る．
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命題 3.5.14. 平均可能確率変数 X に対し，

E[|X|] =
∫ ∞

0

P(|X| > x)dx.

証明の概略. フビニの定理により非負確率変数に対する期待値と積分の順序変更が正当化される．

フビニの定理については [10]や [7]など測度論的確率論のテキストあるいはルベーグ積分のテキ

ストをみよ．これを用いると，

E|X| = E

[∫ |X|

0

dx

]
= E

∫ ∞

0

1{|X|>x}dx =

∫ ∞

0

E[1{|X|>x}]dx

=

∫ ∞

0

P(|X| > x)dx.

確率変数 X が N ∪ {0}に値をとるとき，n ≤ x < n + 1ならば P(X > x) = P(X > n)であ

る．よって ∫ ∞

0

P(X > x)dx =

∞∑
n=0

∫ n+1

n

P(X > x)dx =

∞∑
n=0

P(X > n).

ゆえに命題 3.5.14の系として次が得られる．

系 3.5.15. N ∪ {0}-値確率変数 X に対して，

E[X] =

∞∑
n=0

P(X > n).

注意 3.5.16. 系 3.5.15 は次のようにして直接導くこともできる．X が N ∪ {0}-値確率変数で，
pn = P(X = n)とおくとき，

E[X] =

∞∑
n=1

npn = p1 + 2p2 + 3p3 + · · ·

=

∞∑
n=1

pn +

∞∑
n=2

pn +

∞∑
n=3

pn + · · ·

= P(X ≥ 1) + P(X ≥ 2) + P(X ≥ 3) + · · ·

=

∞∑
n=0

P(X > n).

独立性と期待値の関係については次が基本的である．

定理 3.5.17. X と Y はともに平均可能確率変数で，互いに独立とする．このとき，XY も

平均可能で，
E[XY ] = E[X]E[Y ].
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• 定理 3.5.17より，X と Y が独立で二乗可積分（i.e., E|X|2 < ∞, E|Y |2 < ∞）ならば，

V[X + Y ] = V[X] + V[Y ].

定理 3.5.17の証明.（第一段階）．まず，X,Y ≥ 0 を仮定する．確率変数列 {Xn}∞n=1, {Yn}∞n=1

を

Xn =

n2n∑
k=1

(k − 1)2−n1{(k−1)2−n≤X<k2−n},

Yn =

n2n∑
k=1

(k − 1)2−n1{(k−1)2−n≤Y <k2−n}

により定義すると，
0 ≤ X1Y1 ≤ X2Y2 ≤ · · · ≤ XY

かつ
XY = lim

n→∞
XnYn

が成り立つ．よって {XnYn}∞n=1 は XY の近似単純確率変数列である．ゆえに期待値の定義より

E[XY ] = lim
n→∞

E[XnYn].

他方，独立性より，

E[XnYn]

= E

 n2n∑
k,j=1

(k − 1)(j − 1)2−2n1{(k−1)2−n≤X<k2−n,(j−1)2−n≤Y <j2−n}


=

n2n∑
k,j=1

(k − 1)(j − 1)2−2nP((k − 1)2−n ≤ X < k2−n, (j − 1)2−n ≤ Y < j2−n)

=

n2n∑
k=1

(k − 1)2−nP((k − 1)2−n ≤ X < k2−n)

n2n∑
j=1

(j − 1)2−nP((j − 1)2−n ≤ Y < j2−n)

= E[Xn]E[Yn].

従って，
E[XY ] = lim

n→∞
E[Xn]E[Yn] = E[X]E[Y ].

（第二段階）．X,Y が一般の場合に示す．第一段階の結果より，E|XY | = E|X|E|Y | < ∞. よっ

て XY は可積分である．さらに，第一段階の結果を X+, X−, Y +, Y − たちに適用して

E[XY ] = E[(X+ −X−)(Y + − Y −)] = E[X+Y +]− E[X+Y −]− E[X−Y +] + E[X−Y −]

= E[X+]E[Y +]− E[X+]E[Y −]− E[X−]E[Y +] + E[X−]E[Y −]

= E[X]E[Y ]

を得る．
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次に，期待値を評価するために有用な不等式をいくつか紹介する．

定理 3.5.18 (ヘルダーの不等式). X,Y を実確率変数，p, q ∈ R は 1 < p, q < ∞ かつ

(1/p) + (1/q) = 1を満たすとする．このとき，

E|XY | ≤ (E[|X|p])1/p(E[|Y |q])1/q.

証明. E|X|p = 0のとき，命題 3.5.12よりX = 0 a.s. よってこの場合，命題の不等式は両辺 0で

成立する．E|Y |q = 0のときも同様である．

E|X|p > 0, E|Y |q > 0を仮定する．a, b ≥ 0を任意にとって固定する．関数

f(t) =
tp

p
+

1

q
− t, t ≥ 0,

は t = 1のとき最小値 0をとる．よって任意の t ≥ 0に対して f(t) ≥ 0. これを書き換えると，

t ≤ tp

p
+

1

q

であり，両辺 bq を掛けて

bqt ≤ bqtp

p
+

bq

q
, t ≥ 0,

を得る．t = ab/bq として

ab ≤ ap

p
+

bq

q
.

a = |X|(E|X|p)−1/p, b = |Y |(E|Y |q)−1/q を代入し，両辺期待値をとると，

E|XY |
E[|X|p]1/pE[|Y |q]1/q

≤ 1

p
E
[
|X|p

E|X|p

]
+

1

q
E
[
|Y |q

E|Y |q

]
=

1

p
+

1

q
= 1.

これより命題が従う．

系 3.5.19 (コーシー・シュワルツの不等式). X,Y を実確率変数とするとき，

E|XY | ≤ (E[|X|2])1/2(E[|Y |2])1/2.

• コーシー・シュワルツの不等式より，E|X|2 < ∞のとき，X は平均可能である．このこと

と期待値の線形性より
V[X] = E|X|2 − (EX)2.

さらに，E|Y |2 < ∞ならば，定理 3.5.10 (3)とコーシー・シュワルツの不等式より

|Cov(X,Y )| = |E[(X − EX)(Y − EY )]| ≤ E|(X − EX)(Y − EY )|

≤
√
E|X − EX|2

√
E|Y − EY |2 =

√
V[X]

√
V[Y ] < ∞.

(3.5.5)

Y も可積分であるから，結局，期待値の線形性より，

Cov(X,Y ) = E[XY ]− E[X]E[Y ].
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• (3.5.5)より，相関係数

ρ(X,Y ) :=
Cov(X,Y )√
V[X]

√
V[Y ]

は
−1 ≤ ρ(X,Y ) ≤ 1

を満たしている．今，⟨U, V ⟩ = E[UV ]を確率変数 U, V の「内積」，∥U∥2 =
√
EU2 を U

の「ノルム」とみなすと（ここでは厳密さは気にしなくてもよい），

X と Y の相関係数 =
⟨X̃, Ỹ ⟩

∥X̃∥2∥Ỹ ∥2

と表すことができる．ただし X̃ = X −EX, Ỹ = Y −EY . すなわち，X と Y の相関係数

はそれらの偏差 X̃, Ỹ のなす「角度」と解釈できる．

系 3.5.20. 実確率変数 X と 0 < p < q < ∞を満たす p, q ∈ Rに対し，

E[|X|p])1/p ≤ (E[|X|q])1/q.

証明. X ′ = |X|p,Y ′ = 1, p′ = q/p, q′ = q/(q − p)に対してヘルダーの不等式（定理 3.5.18）を

適用すると，

E|X|p ≤
(
E|X|p·q/p

)p/q
E[1q/(q−p)](q−p)/q = (E|X|q)p/q .

これより系が得られる．

定理 3.5.21 (マルコフの不等式). X を非負確率変数とする．このとき，任意の a > 0 に

対し，

P(X ≥ a) ≤ E[X]

a
.

証明. 1{X≥a} ≤ (X/a)1{X≥a} より，

P(X ≥ a) = E[1{X≥a}] ≤ E
[
X

a
1{X≥a}

]
≤ 1

a
EX.

• マルコフの不等式の右辺の 1/a は最良定数である．実際，P(X = 0) = 24/25, P(X =

5) = 1/25のとき，P(X ≥ 5) = 1/25 = (1/5)E[X].

定理 3.5.21は次のように一般化できる．証明はほとんど同じなので割愛する．

定理 3.5.22 (一般化マルコフの不等式). X を実確率変数，φ : [0,∞) → (0,∞)を単調非

減少関数とする．このとき，

P(|X| ≥ a) ≤ E[φ(|X|)]
φ(a)

.
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次のチェビシェフの不等式も有用である．これは一般化マルコフの不等式により容易に導くこ

とができる．

定理 3.5.23 (チェビシェフの不等式). X は確率変数で E|X|2 < ∞を満たすとする．この
とき，任意の ε > 0に対し，

P(|X − E[X]| ≥ ε) ≤ V[X]

ε2
.

最後にイェンセンの不等式を紹介して不等式シリーズを閉めよう．

定理 3.5.24 (イェンセンの不等式). f を区間 J 上に定義された連続凸関数とする．X は

平均可能確率変数で f(X)も平均可能と仮定する．このとき，

f(E[X]) ≤ E[f(X)].

3.6 期待値の収束

確率変数列 {Xn}∞n=1 が確率変数 X に概収束するとは，P(limn→∞ Xn = X) = 1, すなわち

limn→∞ Xn = X a.s. が成り立つときにいう．

例 3.6.1. (Ω,F ,P) = ([0, 1],B[0, 1],Leb)において，Xn(ω) = nωn は 0に概収束する．

{Xn} を非負確率変数 X の近似単純確率変数列とするとき，期待値の定義の際にみたように，

{Xn}は X に概収束，かつ limn→∞ E[Xn] = E[X]が成り立つ．すなわち，この場合は

lim
n→∞

E[Xn] = E
[
lim
n→∞

Xn

]
(3.6.1)

が成り立っている．

一般の確率変数列に対して期待値と極限の交換 (3.6.1)が成り立つための十分条件を調べよう．

定理 3.6.2 (単調収束定理). X1, X2, . . .は非負確率変数列で，

0 ≤ X1 ≤ X2 ≤ · · · ≤ Xn ≤ · · · a.s.

とする．このとき，
lim

n→∞
E[Xn] = E

[
lim
n→∞

Xn

]
.

• 定理 3.6.2において単調性の仮定は本質的である．例えば (Ω,F ,P) = ([0, 1],B[0, 1],Leb)
において，Xn(ω) = nωn−1 は limn→∞ Xn = 0, a.s. を満たすが limn→∞ E[Xn] = 1.

定理 3.6.2の証明. 仮定より

A := {ω ∈ Ω | 0 ≤ X1(ω) ≤ X2(ω) ≤ · · · } =

∞⋂
n=1

{Xn ≤ Xn+1} ∈ F
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は P(A) = 1 を満たす．ω ∈ A に対し X(ω) := limn→∞ Xn(ω) と定め，ω ∈ Ac に対しては

Xn(ω) = 0と再定義し，X(ω) := 0と定める．この定義の下，任意の ω ∈ Ωに対して

0 ≤ X1(ω) ≤ X2(ω) ≤ · · ·

となる．このように Xn を再定義しても

E[Xn, A] = E[Xn]− E[Xn, A
c] = E[Xn]

であるから期待値に影響を与えない．すなわち修正後の {Xn}に対して定理を示せばよい．
（第一段階）．まず E[X] < ∞の場合に示す．Xn ≤ Xn+1 より

lim
n→∞

E[Xn] ≤ E[X] (3.6.2)

は明らか．期待値の定義より，単調非減少単純確率変数列 {X̃n}が存在し，E[X] = limn→∞ E[X̃n].

よって，任意の ε > 0に対し k ∈ Nが存在し，

E[X] < E[X̃k] + ε.

Y = X̃k とおき，事象 An := {Xn + ε > Y }を考える．このとき，

Y 1An
≤ (Xn + ε)1An

≤ Xn + ε.

各点で Xn は単調非減少で X に収束することと，Y ≤ X より，

An ⊂ An+1, n ≥ 1,

∞⋃
n=1

An = Ω.

さらに，Y は
∑

i ci1Bi の形で表されるので，確率の連続性より，n → ∞の極限で，

E[Y 1An
] =

∑
i

ciP(B ∩An) →
∑
i

ciP

( ∞⋃
N=1

AN ∩B

)
= E[Y ].

よって，
E[X]− ε < E[Y ] = lim

n→∞
E[Y 1An

] ≤ lim
n→∞

E[Xn] + ε.

εは任意だったから
E[X] ≤ lim

n→∞
E[Xn].

これと (3.6.2)を併せて定理の主張が従う．

（第二段階）．E[X] = +∞のとき，単調非減少非負単純確率変数列 {X̃n}が存在し，

lim
n→∞

X̃n = X, lim
n→∞

E[X̃n] = +∞.

よって，任意の N ≥ 1に対し Y := X̃k が存在し，E[Y ] > N . An = {Xn ≥ Y }とおいて第一段
階と同じ議論を行うことにより，

N < E[Y ] = lim
n→∞

E[Y 1An
] ≤ lim

n→∞
E[Xn1An

] ≤ lim
n→∞

E[Xn].

N → ∞として，
lim
n→∞

E[Xn] = +∞ = E[X]

を得る．
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単調収束定理の系として次が得られる．

系 3.6.3. X,X1, X2, . . .を非負確率変数とする．このとき以下が成り立つ．

(1) 期待値が発散する場合も含めて

E

[ ∞∑
n=1

Xn

]
=

∞∑
n=1

E[Xn].

(2) An ∈ F , Ai ∩Aj = ∅ (i ̸= j) ならば

E

[
X,

∞⋃
n=1

An

]
=

∞∑
n=1

E[X,An].

証明. (1). Yn :=
∑n

k=1 Xk は定理 3.6.2の満たすので，

E

[ ∞∑
n=1

Xn

]
= E

[
lim
n→∞

Yn

]
= lim

n→∞
E[Yn] = lim

n→∞

n∑
k=1

E[Xk] =

∞∑
n=1

E[Xn].

(2). 直前の (1)の結果より，

E

[
X,

∞⋃
n=1

An

]
= E

[ ∞∑
n=1

X1An

]
=

∞∑
n=1

E[X1An
].

定理 3.6.4 (ルベーグの収束定理（優収束定理）). {Xn}は概収束する確率変数列で，ある
平均可能非負確率変数 Y が存在し

|Xn| ≤ Y, n = 1, 2, . . .

を満たすと仮定する．このとき，

lim
n→∞

E[Xn] = E
[
lim

n→∞
Xn

]
.

証明. X を {Xn}の概収束極限とする．すなわち，X = limn→∞ Xn, a.s. このとき，極限が存在

しているから，{Xn}の上極限と下極限は確率 1で一致する．言い換えると，

X = lim
n→∞

inf
k≥n

Xk = lim
n→∞

sup
k≥n

Xk, a.s.

各 n ∈ Nに対して，Zn = infk≥n(Y −Xk), Z
′
n = infk≥n(Y +Xk)とおくと，{Zn}と {Z ′

n}は
ともに非負単調非減少であり，

lim
n→∞

Zn = Y − lim
n→∞

sup
k≥n

Xk = Y −X,

lim
n→∞

Z ′
n = Y + lim

n→∞
inf
k≥n

Xk = Y +X.
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よって単調収束定理（定理 3.6.2）より，

lim
n→∞

E[Zn] = E[Y ]− E[X],

lim
n→∞

E[Z ′
n] = E[Y ] + E[X].

(3.6.3)

他方，Zn, Z
′
n の定義より，Z ′

n − Y ≤ Xn ≤ Y − Zn. よって

E[Z ′
n]− E[Y ] ≤ E[Xn] ≤ E[Y ]− E[Zn], n ∈ N. (3.6.4)

従って，(3.6.3)と (3.6.4)より，はさみうちの原理を適用し，

E[X] = lim
n→∞

E[Xn].

• 定理 3.6.4における確率変数 Y が定数でとれるとき，ルベーグの収束定理を有界収束定理

と呼ぶこともある．

微分と期待値の交換は次の命題によって正当化される．

命題 3.6.5. X を Rd-値確率変数，I を Rの開区間とする．関数 f : I ×Rd → Rは，任意
の (t, x) ∈ I × Rに対して偏微分 (∂/∂t)f(t, x)が存在し，f(t,X)が任意の t ∈ I に対して

確率変数となるものとする．さらに，

sup
t∈I

∣∣∣∣∂f∂t (t,X)

∣∣∣∣
は平均可能と仮定する．このとき，

d

dt
E[f(t,X)] = E

[
∂f

∂t
(t,X)

]
.

証明. t ∈ I を任意にとり固定する．{hn}を 0に収束する任意の数列とする．このとき，

∂

∂t
f(t,X) = lim

n→∞

f(t+ hn, X)− f(t,X)

hn
.

確率変数の極限として表されるので，命題 3.4.4より，(∂/∂t)f(t,X)は確率変数である．平均値

の定理より，sn(ω) ∈ I が存在して，∣∣∣∣f(t+ hn, X)− f(t,X)

hn

∣∣∣∣ = ∣∣∣∣∂f∂t (sn, X)

∣∣∣∣ ≤ sup
s∈I

∣∣∣∣∂f∂t (s,X)

∣∣∣∣ .
ここで

Xn =
f(t+ hn, X)− f(t,X)

hn
, Y = sup

s∈I

∣∣∣∣∂f∂t (s,X)

∣∣∣∣
とおくと，命題 3.4.4と仮定より Y は可積分確率変数である．よって，ルベーグの収束定理（定

理 3.6.4）より，

d

dt
E[f(t,X)] = lim

n→∞
E[Xn] = E

[
lim

n→∞
Xn

]
= E

[
∂f

∂t
(t,X)

]
.
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X を実確率変数，I ⊂ Rを開区間とする．

G(t) := E[etX ], t ∈ I,

が存在するとき，Gを X のモーメント母関数と呼ぶ．

定理 3.6.6. X のモーメント母関数 Gが I = (−ε, ε)上存在するような適当な ε > 0がと

れると仮定する．このとき，任意の n ∈ Nに対し，

E[Xn] = G(n)(0).

証明. t ∈ I を任意にとり固定する．このとき，−ε < t− δ < t+ δ < εを満たすような δ > 0が

存在する．実数 xに対し |x| ≤ eδ|x| であるから，

E

[
|X| sup

|t|≤ε/2

etX

]
= E

[
X1{X>0} sup

|t|≤ε/2

etX + (−X)1{X≤0} sup
|t|≤ε/2

etX

]

≤ E

[
1{X>0} sup

|t|≤ε/2

e(t+δ)X + 1{X≤0} sup
|t|≤ε/2

e(t−δ)X

]
= E

[
1{X>0}e

(ε/2+δ)X + 1{X≤0}e
(−ε/2−δ)X

]
≤ E

[
e(ε/2+δ)X

]
+ E

[
e(−ε/2−δ)X

]
< ∞.

従って，命題 3.6.5が適用でき，

d

dt
E[etX ] = E

[
XetX

]
, |t| < ε

2
.

t = 0 として G′(0) = E[X] を得る. 同様の議論を繰り返すことで，一般の n ∈ N に対して
G(n)(0) = E[Xn]が成り立つことも示せる．

例題 3.6.7. X ∼ N(0, 1)のとき，モーメント母関数を用いて

E[Xn] =

{
(n− 1)!! (nが偶数),

0 (nが奇数)

を確かめよ．

解答. まず，任意の t ∈ Rに対して，

G(t) = E[etX ] =

∫ ∞

−∞
etx

e−x2/2

√
2π

dx = et
2/2

∫ ∞

−∞

e−(x−t)2/2

√
2π

dx = et
2/2 =

∞∑
j=0

t2j

2jj!
.
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これより，k ≥ 1に対し，

G(2k−1)(t) =

∞∑
j=k

(2j)(2j − 1) · · · (2j − (2k − 2))

2jj!
t2j−(2k−1),

G(2k)(t) =

∞∑
j=k

(2j)(2j − 1) · · · (2j − (2k − 1))

2jj!
t2j−2k.

よって，

G(2k−1)(0) = 0, G(2k)(0) =
(2k)!

2kk!
= (2k − 1)!!.

3.7 無限回コイン投げ空間

無限回コイン投げ標本空間Ω = {ω = (ω1, ω2, . . .) | ωn = 0, 1, n ∈ N}を考える．各 im = 0, 1

に対し，

Ωi1i2···ik := {ω = (i1, i2, . . . , ik, ωk+1, ωk+2, . . .) | ωn = 0, 1, n ≥ k + 1}

と定める．すなわち，Ωi1i2···ik = {1回目 = i1, . . ., k 回目 = ik} である．従って，この事象
Ωi1i2···ik の確率 P (Ωi1i2···ik) を P (Ωi1i2···ik) := 2−k により定めるのは自然である．さらに，

Ωi1i2···ik たちから作られる集合族 Aを以下のように定義する．

A :=

{
n⋃

i=1

Ii

∣∣∣∣∣ Ii ∈ I, Ii ∩ Ij = ∅ (i ̸= j)

}
.

ただし，
I := {Ωi1i2···ik | iℓ = 0, 1 (ℓ = 1, . . . , k), k ≥ 1}.

Aの事象については

P (A) :=

n∑
i=1

P (Ii), A =

n⋃
i=1

Ii ∈ A,

により確率を付与する．

命題 3.7.1. P は A上で σ-加法的である．これより，F := σ[A]上の確率測度 Pが一意的
に存在し，

P(A) = P (A), A ∈ A.

• この (Ω,F ,P)が求める無限回コイン投げ空間である．
• 証明については [7]の定理 2.4, 例題 2.2をみよ．

次の命題は Pが定義できない A ⊂ Ωの存在を意味する．

命題 3.7.2. 無限回コイン投げ空間 (Ω,F ,P)において，Pの 2Ω 上への拡張は存在しない．



第 3章 確率論の基本的枠組み 66

証明の概略. そのような拡張が存在すると仮定し，{Xn}を IIDで P(Xn = −1) = P(Xn = 1) =

1/2 とする．このとき，X :=
∑∞

n=1 2
−nXn ∼ U [−1, 1] である（これについては後述の例題

5.1.11をみよ）．ここで，E を [0, 1] ⊂ E ⊂ [−1, 2]で Leb(E)が定義されない集合とすると（こ

のような E はルベーグ非可測集合と呼ばれている．構成については [8]参照），{X ∈ E} ∈ 2Ω だ

が P(X ∈ E) = Leb(E)は定義されない．

章末問題

問題 3.1. Ω = [0, 1]× [0, 1] ⊂ R2, Aを点 (0, 0), (1, 0), (0, 1)を結ぶ三角形，Bを点 (0, 0), (1, 0),

(1, 1)を結ぶ三角形とする．このとき，σ[{A,B}]に属する集合で ∅以外のものを全て図示せよ．

問題 3.2. かき氷屋 Aが 1日に売るかき氷の氷の量を X（10kg当たり）とする．過去の傾向か

ら X の分布をモデル化し，仕入れの量を再検討したい．そこで，X の確率密度関数 ρが

ρ(x) =


a

(1 + bx)2
, (x > 0),

0, (x ≤ 0)

により表されると仮定する．ただし，a, b は正定数である．過去の実績から，おおよそ P(X <

3) = 0.9である．これを満たすような a, bの値を求めよ．

有限試行の確率と同様に，一般の確率空間 (Ω,F ,P)においても，条件付き確率を

P(B |A) =
P(B ∩A)

P(A)

と定義する．ただし，A,B ∈ F で P(A) > 0.

問題 3.3. 確率変数 X はパラメータ λ > 0の指数分布に従うとする．以下の問いに答えよ．

(1) lim∆x→0
P(x < X ≤ x+∆x |X > x)

∆x
= λを示せ．

(2) 無記憶性: P(X > x+ y |X > x) = P(X > y), x, y > 0, を示せ．

問題 3.4. 確率空間 ([0, 1],B[0, 1],Leb) を考える．ただし，Leb は [0, 1] 上のルベーグ測度であ

る．このとき，
Leb(Q) = 0

を示せ．

問題 3.5. Aさんが加入している損害保険は，損害額（保険請求）に対する保険金の上限が 2000

万円，自己負担分（免責分）が 10万円である．推定される損害額から自己負担分を引いた額が保

険金として支払われる．損害額が自己負担分以下なら支払いなし，上限以上なら上限から自己負

担分を引いた額が支払いとなる．例えば，

• 損害額が 5万円なら支払いゼロ，
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• 損害額が 120万円なら 110万円の支払い，

• 損害額が 2005万円なら 1990万円の支払い

となる．このとき次の問いに答えよ．

(1) 非負確率変数 X により損害額を表すことにする．支払われる保険金 Y を X の関数として

表せ．

(2) Y の分布関数を求め，グラフの概形を描け．

問題 3.6. ある交差点では，週末に発生する交通事故の件数はポアソン分布に従うと考えられてい

る．過去 5週の週末に記録された事故件数は

1, 0, 2, 1, 3

であった．

(1) このデータから 1週末あたりの事故件数の平均を求め，それによりポアソン分布のパラメー

タを推定せよ．

(2) 今週末に 2件以上の事故が起こる確率を求めよ．

問題 3.7 (再生性). X, Y は実確率変数で，互いに独立とする．

(1) X と Y が共にポアソン分布に従うとき，X + Y もポアソン分布に従うことを示せ．

(2) X と Y が共に標準正規分布に従うとき，X + Y は平均 0，分散 2 の正規分布に従うことを

示せ．

問題 3.8. ギャンブルを繰り返し行う．確率変数列 {Xn}∞n=1 を

Xn =

{
1 (n回目が勝ち),

0 (n回目が負け)

と定義する．各回の勝敗は独立に決まるとし，各 nに対し P(Xn = 1) = p ∈ (0, 1)と仮定する．

(1) 初めて勝つまでに要する賭け数

T1 := inf{n ≥ 1 | Xn = 1}

の期待値を求めよ．

(2) T2 を 2勝目までに要する賭け数とする．すなわち，

T2 = inf{n > T1 | Xn = 1}

とする．このとき，確率変数 T2 − T1 はパラメータ pの幾何分布に従うことを示せ．

(3) 2回勝つまでに必要な平均賭け数を求めよ．

問題 3.9 (Buffon の針). ある用紙の上に距離 d の間隔で平行な直線が規則的に書かれている．

長さ ℓの針を用紙の上にランダムに落とす．このとき，針がいずれかの直線と交わる確率を求め

よう．
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そのために，まず ℓ < dを仮定する（同時に 2本の平行線と交わらないようにするため）．X を

落とした針の中点から最も近い平行線までの垂直距離，Θ を針の軸と平行線がなす鋭角とする．

次の問いに答えよ．

(1) 落とした針がある平行線と交わるための必要十分条件が

X ≤ ℓ

2
sinΘ

であることを説明せよ．

(2) X は [0, d/2]上の一様分布，Θは [0, π/2]上の一様分布にそれぞれ従うとし，X と Θは独立

と仮定する．この仮定の下で，落とした針がいずれかの平行線と交わる確率を求めよ．

問題 3.10. X,Y は N ∪ {0}-値確率変数で，独立同分布とする．各 n ≥ 0に対して pn = P(X =

n) = P(Y = n)とおき，さらに rn =
∑∞

k=n pk とおく．このとき，系 3.5.15を使って

E[min(X,Y )] =

∞∑
n=1

r2n

を確かめよ．

問題 3.11 (複合分布). {Xn}∞n=1は IIDで，X1がパラメータ λ > 0の指数分布に従うとする．確

率変数 N はパラメータ cのポアソン分布に従い，{Xn}と独立とする（すなわち，N,X1, X2, . . .

は独立）．このとき，Z :=
∑N

n=0 Xn の期待値と分散を求めよ．ただし，
∑0

n=1 = 0とする．

問題 3.12. 実数列 {ai}ni=1, {pi}ni=1 は ai, pi > 0,
∑n

i=1 pi = 1を満たすとする．このとき，イェ

ンセンの不等式を用いて，不等式

a1p1 + · · ·+ anpn ≥ ap1

1 · · · apn
n

を証明せよ（ヒント: P(X = log ai) = pi を満たす確率変数 X と f(x) = ex を考える）．

問題 3.13. 確率変数X の分散が 0ならば，X はほとんど確実に定数であることを示せ（ヒント:

命題 3.5.12を用いる）．

問題 3.14 (モンティ・ホール問題). あなたは次のようなゲームに参加する: 箱 1, . . . , N の一つ

に 100 万円，残りはたわし．箱を一つ選ぶ．司会者はどれが当たりか知っている．あなたは箱 i

を選ぶとする．この時点で当たりの確率は 1/N．司会者は箱 iの中身を見せる前に箱 i以外の箱

（例えば箱 j）を開ける．そこにはたわしが入っている（司会者は当たりの箱は開けない）．このと

き，あなたは次の２つの選択肢のうち，一方を選べる．

(a) あくまで最初に選んだ箱 iを最終選択とする．

(b) 改めて i, j 以外から箱 k を選び，箱 k を最終選択とする．

両者で当たりの確率は異なるか？

（ヒント: 箱 1 が実際に当たりとする．Ai をあなたが箱 i を選ぶ事象，Bj を司会者が箱 j ∈
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{2, . . . , N} \ {i} を選ぶ事象とすると，授業中に示した通り，P(Ai) = 1/N で，i = 1 のとき

P(Bj | Ai) = 1/(N − 1), i ̸= 1のとき P(Bj | Ai) = 1/(N − 2)である．C1 を改めて i, j 以外か

ら選んだ箱が当たりである事象として，P(C1 |Bj)と P(A1 |Bj)を比較すればよい）

問題 3.15 (包除公式). A1, . . . , An を事象とし，A =
⋃n

i=1 Ai とおく．

(1) 1A = 1−
∏n

i=1(1− 1Ai)を示せ．

(2) (1)の右辺を展開し，両辺期待値をとることにより

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai)−
∑
i<j

P(Ai∩Aj)+
∑

i<j<k

P(Ai∩Aj∩Ak)−· · ·+(−1)n−1P

(
n⋂

i=1

Ai

)

を示せ．

問題 3.16. 確率変数 X, Y は同時密度関数 ρX,Y (x, y)を持つとする．このとき，

ρX|Y (x | y) =


ρX,Y (x, y)

ρY (y)
(ρY (y) ̸= 0),

0 (ρY (y) = 0)

と定め，ρX|Y (x | y)を Y = y の下での X の条件付き密度と呼ぶ．ここで，ρY は Y の密度関数

を表す．以下の問いにおいて，現れる積分や期待値は全て存在すると仮定する．

(1) m(y) :=
∫∞
−∞ xρX|Y (x | y)dxとおくとき，

E[X, {a < Y ≤ b}] = E[m(Y ), {a < Y ≤ b}]

を示せ．

(2) 確率密度に関するベイズの公式

ρY |X(y |x) =
ρX|Y (x | y)ρY (y)

ρX(x)

を示せ．ここで，ρX は X の密度関数．

(3) E[f(X,Y ) |Y ] :=
∫∞
−∞ f(x, Y )ρX|Y (x |Y )dxとおく．このとき，次の 2性質

E[Xg(Y ) |Y ] = g(Y )E[X |Y ],

E[E[f(X,Y ) |Y ]] = E[f(X,Y )]

を示せ．

(4)
min
g

E[|X − g(Y )|2] = E[|X − E[X | Y ]|2]

を示せ．ただし，最小化は g はボレル関数で g(Y ) が二乗可積分となるもの全体で考える．

（ヒント: |X − g(Y )|2 = |X − g(Y ) + E[X |Y ] − E[X |Y ]|2 = (X − E[X |Y ])2 + 2(X −
E[X |Y ])(E[X |Y ]− g(Y )) + (E[X |Y ]− g(Y ))2 と展開し，期待値を計算してみよ．）
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第 4章

大数の法則

第 3 章のはじめに，ベルヌーイの大数の法則（定理 2.6.1）は ω ごとに成立しそうだと述べ

た．この章ではいよいよその法則を示す．そのために必要な枠組みは第 3章で全て整えた．以下，

(Ω,F ,P) を一般の確率空間として，現れる確率変数は全てこの確率空間上で定義されていると
する．

4.1 ボレル・カンテリの補題

ボレル・カンテリの補題は概収束を証明するための強力な道具である．結果を述べる前に集合

列の上極限の定義を確認しておこう．{An} ⊂ F に対し，

lim sup
n→∞

An :=

∞⋂
n=1

∞⋃
k=n

Ak

= {ω ∈ Ω | ω ∈ Anとなる nが無限個ある }.

• lim supn→∞ An = {An, i.o.} (infinitely often の略)と書く．

定理 4.1.1 (ボレル・カンテリの第一補題). {An}∞n=1 ⊂ F とする．このとき，

∞∑
n=1

P(An) < ∞ =⇒ P
(
lim sup
n→∞

An

)
= 0.

証明. 確率の連続性と劣加法性（命題 3.3.9 (2), 命題 3.3.8 (5)）より，

P
(
lim sup
n→∞

An

)
= P

( ∞⋂
n=1

∞⋃
k=n

Ak

)
= lim

n→∞
P

( ∞⋃
k=n

Ak

)
≤ lim

n→∞

∞∑
k=n

P(Ak) = 0.

• 定理 4.1.1の逆は成立しない．反例: (Ω,F ,P) = ([0, 1],B[0, 1],Leb), An = (0, 1/n].
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例題 4.1.2. {Xn}∞n=1 は独立で，P(Xn = 1) = pn = 1 − P(Xn = 0) とする．このとき，∑∞
n=1 pn < ∞ならば，Xn → 0, a.s. であることを証明せよ．

解答. An = {Xn = 1} とおき，ボレル・カンテリの第一補題を適用すると，P(An, i.o) = 1.

すなわち，B := (lim supn→∞ An)
c =

⋃∞
n=1

⋂∞
k=n A

c
k は P(B) = 1 を満たす．ω ∈ B ならば，

ある n = n(ω) が存在し，k ≥ n に対し，Xk(ω) = 0. よって，limn→∞ Xn(ω) = 0. ゆえに

P(Xn → 0) = 1.

定理 4.1.3 (ボレル・カンテリの第二補題). {An}∞n=1 ⊂ F を独立事象の列とし，∑∞
n=1 P(An) = ∞を仮定する．このとき，

P
(
lim sup
n→∞

An

)
= 1.

証明. Pの連続性と {An}の独立性，および不等式 1− x ≤ e−x (x ≥ 0)を使うと，

P
((

lim sup
n→∞

An

)c)
= P

( ∞⋃
n=1

∞⋂
k=n

Ac
k

)
= lim

n→∞
P

( ∞⋂
k=n

Ac
k

)
= lim

n→∞
lim

m→∞
P

(
m⋂

k=n

Ac
k

)

= lim
n→∞

lim
m→∞

m∏
k=n

P(Ac
k) = lim

n→∞
lim

m→∞

m∏
k=n

(1− P(Ak))

≤ lim
n→∞

lim
m→∞

exp

(
−

m∑
k=n

P(Ak)

)
= 0.

例題 4.1.4. 100 個のキーを持つ PC のキーボードを考える．あるサルが一様にランダム

にキータイプを繰り返すとする．このとき，14文字 W. Shakespeare（これらは 100個の

キーに含まれるとする）がほとんど確実に無限回現れることを示せ．

解答. Xn をサルが n回目にタイプした文字とし，

An = {X14(n−1)+1 · · ·X14(n−1)+14 = W. Shakespeare}

とおく．このとき，{An} は独立で，P(An) = 100−14. B を 14 文字が無限回現れる事象とする

と，{An, i.o.} ⊂ B である．よってボレル・カンテリの第二補題より，P(B) ≥ P(An, i.o.) = 1.

4.2 大数の弱法則

• 確率変数列 {Xn}が確率変数 X に確率収束するとは，任意の ε > 0に対して

lim
n→∞

P(|Xn −X| > ε) = 0

が成り立つときにいう．
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• Xn が X に確率収束することを Xn → X in prob. と書く．

定理 4.2.1. X,X1, X2, . . .を確率変数とする．このとき，以下が成り立つ．

(1) Xn → X, a.s. =⇒ Xn → X in prob.

(2) Xn → X in prob. =⇒ Xnk
→ X, a.s. となる部分列 {nk}が存在する．

証明. (1). Xn → X, a.s. とする．このとき，

0 = P(Xnが X に収束しない) = P

( ∞⋃
p=1

∞⋂
n=1

∞⋃
k=n

{
|X −Xk| >

1

p

})

= lim
p→∞

P

( ∞⋂
n=1

∞⋃
k=n

{
|X −Xk| >

1

p

})
.

任意の ε > 0に対して，十分大きな p ≥ 1で ε > 1/pなるものがとれるので，

lim
p→∞

P

( ∞⋂
n=1

∞⋃
k=n

{
|X −Xk| >

1

p

})
≥ P

( ∞⋂
n=1

∞⋃
k=n

{|X −Xk| > ε}

)

= lim
n→∞

P

( ∞⋃
k=n

{|X −Xk| > ε}

)
≥ lim sup

n→∞
P(|X −Xn| > ε).

従って，
lim
n→∞

P(|X −Xn| > ε) = 0, ε > 0.

すなわち {Xn}は X に確率収束する．

(2). Xn → X in prob. とする．このとき，部分列 n1 < n2 < · · · を

P
(
|Xnk

−X| > 1

2k

)
<

1

2k

を満たすようにとれる．Ak = {|Xnk
−X| > 2−k}とおくと，

∑∞
k=1 P(Ak) < ∞. よって，ボレ

ル・カンテリの第一補題より，P(An, i.o.) = 0である．ω ∈ (lim supn→∞ An)
c =

⋃∞
n=1

⋂∞
k=n A

c
k

ならば，ある n = n(ω) が存在し，任意の k ≥ n に対して |X(ω) − Xnk
(ω)| ≤ 2−k. よって

limk→∞ Xnk
(ω) = X(ω). ゆえに Xn → X, a.s.

定理 4.2.1 (1) の逆は一般に成立しない．

例 4.2.2. {Xn}∞n=1 は 0か 1に値をとる独立確率変数列で，pn = P(Xn = 1) = 1− P(Xn = 0)

とおくとき，

lim
n→∞

pn = 0,

∞∑
n=1

pn = ∞

を満たしていると仮定する．このとき，任意の ε > 0 に対して P(Xn > ε) ≤ pn → 0. よって

Xn → 0 in prob. 一方，ボレル・カンテリの第二補題より，P(無限個の nで Xn = 1) = 1. よっ

て P(Xn → 0) = 0.
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ベルヌーイの大数の法則（定理 2.6.1）の一般化が次の大数の弱法則である．

定理 4.2.3 (大数の弱法則). X1, X2, . . .は無相関で，m = E[Xn], supn≥1 V[Xn] ≤ C < ∞
とする．すなわち，期待値は一定で分散は有界とする．このとき，

X1 + · · ·+Xn

n
→ m, in prob.

証明. Sn =
∑n

i=1 Xi とおく，このとき，

E
∣∣∣∣Sn

n
−m

∣∣∣∣2 = E

∣∣∣∣∣ 1n
n∑

i=1

(Xi − E[Xi])

∣∣∣∣∣
2

=
1

n2

n∑
i,j=1

Cov(Xi, Xj) =
1

n2

n∑
i=1

V[Xi]

≤ C

n
.

チェビシェフの不等式（定理 3.5.23）より，任意の ε > 0に対し，

P
(∣∣∣∣Sn

n
−m

∣∣∣∣ > ε

)
≤ 1

ε2
E
∣∣∣∣Sn

n
−m

∣∣∣∣2 → 0, n → ∞.

ゆえに Sn/n → m in prob.

• 定理 4.2.3の証明で示しているように，limn→∞ E|Sn/n−m|2 = 0が成り立っている．一

般に，limn→∞ E|Xn −X|2 = 0が成り立つとき，{Xn}は X に L2 収束するという．

例題 4.2.4 (Bernsteinの多項式近似). [0, 1]上の任意の連続関数 f は多項式

fn(x) :=

n∑
k=0

f

(
k

n

)
n!

k!(n− k)!
xk(1− x)n−k, x ∈ [0, 1]

により一様に近似できること，すなわち，

sup
0≤x≤1

|f(x)− fn(x)| → 0, n → ∞, (4.2.1)

が成り立つことを示せ．

解答. fn(0) = f(0), fn(1) = f(1)なので，0 < x < 1の場合を考える．{Xn}を {0, 1}-値の IID

で P(Xn = 1) = xとする．このとき，E[Xn] = xである．Sn = X1 + · · ·+Xn とおくと，大数

の弱法則より，Sn/n → x in prob. より強く，定理 4.2.3の証明中に示したように，

P
(∣∣∣∣Sn

n
− x

∣∣∣∣ > c

)
≤ V[X1]

nc2
(4.2.2)

が任意の c > 0, n ∈ Nに対して成り立つ．
他方，Sn は二項分布に従うから

P(Sn = k) =
n!

k!(n− k)!
xk(1− x)n−k, k = 0, 1, . . . , n,



第 4章 大数の法則 74

であり，これより，

E
[
f

(
Sn

n

)]
=

n∑
k=0

f

(
k

n

)
P(Sn = k) =

n∑
k=0

f

(
k

n

)
n!

k!(n− k)!
xk(1− x)n−k = fn(x).

f は [0, 1]上一様連続なので，ε > 0に対し，δ > 0が存在し，|y−y′| ≤ δならば |f(y)−f(y′)| ≤ ε.

よって，M = max0≤y≤1 |f(y)|とおけば，(4.2.2)より，

|f(x)− fn(x)|

=

∣∣∣∣f(x)− E
[
f

(
Sn

n

)]∣∣∣∣ ≤ E
∣∣∣∣f(x)− f

(
Sn

n

)∣∣∣∣
= E

[∣∣∣∣f(x)− f

(
Sn

n

)∣∣∣∣ ,{∣∣∣∣Sn

n
− x

∣∣∣∣ > δ

}]
+ E

[∣∣∣∣f(x)− f

(
Sn

n

)∣∣∣∣ ,{∣∣∣∣Sn

n
− x

∣∣∣∣ ≤ δ

}]
≤ 2MP

(∣∣∣∣Sn

n
− x

∣∣∣∣ > δ

)
+ εP

(∣∣∣∣Sn

n
− x

∣∣∣∣ ≤ δ

)
≤ 2M

nδ2
V[X1] + ε.

V[X1] = x(1− x) ≤ 1より，

sup
0≤x≤1

|f(x)− fn(x)| ≤
2M

nδ2
+ ε

を得る．上式で n → ∞としてから ε → 0とすることで (4.2.1)が従う．

例題 4.2.5 (高次元超立方体はほとんど球の境界). ε ∈ (0, 1)を固定し，

An =
{
x ∈ Rn;

n

3
(1− ε) ≤ |x|2 ≤ n

3
(1 + ε)

}
を考える．このとき，大数の弱法則を用いて

lim
n→∞

1

2n
|An ∩ (−1, 1)n| = 1

を示せ．ただし，|B|は B の体積（ルベーグ測度）である．

• この結果は，nが十分大きいとき，超立方体 (−1, 1)n の体積のほとんどが半径
√
n/3の球

の境界付近 An の体積で占められていることを意味する．

解答. {Xn}を IIDで，各 Xn が (−1, 1)上の一様分布に従うとする．このとき，

E[X2
n] =

1

2

∫ 1

−1

x2dx =
1

3
, E[|Xn|4] =

1

2

∫ 1

−1

x4dx =
1

5
< ∞.

{X2
n}も IIDなので，大数の弱法則より，

P
(∣∣∣∣ 1n (X2

1 + · · ·+X2
n)−

1

3

∣∣∣∣ > ε

)
→ 0.

ゆえに，

lim
n→∞

1

2n
|An ∩ (−1, 1)n| = lim

n→∞
P((X1, . . . , Xn) ∈ An ∩ (−1, 1)n) = 1.
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4.3 大数の強法則

大数の弱法則は独立同分布列の標本平均が期待値に確率収束することであった．次の大数の強

法則は概収束を保証するものである．これにより，n回のコイン投げで表が出た割合は ω ごとに

（確率 1で）1/2に収束することが示される．

定理 4.3.1. {Xn}∞n=1 は IIDで，各 Xn は平均可能とする．このとき，

lim
n→∞

1

n

n∑
i=1

Xi = E[X1], a.s.

証明. M := E[|X1|4] < ∞を仮定して証明する．一般の場合の証明については [7]や [10]などを

みよ．

一般性を失うことなく E[X1] = 0を仮定できる．系 3.5.20より，(
E|X1|2

)1/2 ≤
(
E|X1|3

)1/3 ≤
(
E|X1|4

)1/4
= M1/4.

これより各 Xn の 2 次モーメント E[X2
n], 3 次モーメント E[X3

n] が存在することに注意せよ．

Sn = X1 + · · ·+Xn とおく．このとき，

S4
n =

∑
i,j,k,ℓ

XiXjXkXℓ =
∑

i=j=k=ℓ

+
∑

1 つだけ異なる
i,j,k,ℓ

+
∑

i=j,k=ℓ
k ̸=i

+
∑

互いに異なる
i,j,k,ℓ

と表される（和計算の対象はもちろん XiXjXkXℓ）．定理 3.5.17より，相異なる i, j, k, ℓに対し

て E[X3
i Xj ] = E[XiXjXkXℓ] = 0. 従って，

E[S4
n] =

∑
i

E[X4
i ] +

∑
i ̸=j

E[X2
i ]E[X2

j ] ≤ M(n+ 3n(n− 1)) ≤ 3Mn2.

よって，マルコフの不等式を適用し，

P
(
1

n
|Sn| ≥

1

n1/8

)
= P(|Sn|4 ≥ n7/2) ≤ n−7/2E|Sn|4 ≤ 3Mn−3/2.

よって
∑∞

n=1 P(|Sn/n| ≥ n−1/8) < ∞であるからボレル・カンテリの第一補題より P(Ω0) = 1.

ただし Ω0 =
⋃

N≥1

⋂
n≥N{|Sn/n| < n−1/8}. これより Ω0 上では limn→∞ Sn/n = 0. ゆえに定

理の主張が従う．

例題 4.3.2. X1, X2, . . . , Xn を無作為抽出された標本で，共通の（未知の）分布関数 F を

持つと仮定する．このとき，経験分布関数 Fn(x) := (1/n)
∑n

i=1 1{Xi≤x}, x ∈ R, は

lim
n→∞

Fn(x) = F (x), x ∈ R, (4.3.1)

を満たす．これを確認せよ．

解答. 任意の x ∈ R に対し，確率変数列 1{Xn≤x}, n ≥ 1, は IID で，共通の期待値は F (x) =

E[1{Xn≤x}]により与えられる．よって定理 4.3.1より (4.3.1)が従う．
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章末問題

問題 4.1. 確率変数列 {Xn}∞n=0 を次のように帰納的に定義する．X0 = 1 とし，Xn+1 は区間

[−|Xn|, |Xn|] からランダムに選ばれる．すなわち，Xn+1/|Xn| は [−1, 1] 上の一様分布に従い，

X1, . . . , Xn と独立である．このとき，n−1 log |Xn|がある定数 cに概収束することを示せ．さら

に，この定数 cを求めよ．

問題 4.2. X1, . . . , Xn は確率変数 X からサンプリングされたものとする（i.e., {Xj}nj=1 は IID

で，Xj
d
= X）．このとき，

1

n− 1

n∑
j=1

(Xj −X)2

を不偏分散という．ここで，X = n−1
∑n

j=1 Xj . 条件 E|X|2 < ∞ の下，次が成り立つことを

示せ．

(1) E

 1

n− 1

n∑
j=1

(Xj −X)2

 = V[X].

(2) lim
n→∞

1

n− 1

n∑
j=1

(Xj −X)2 = V[X], a.s.
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第 5章

中心極限定理

5.1 特性関数

iを虚数単位とする（i2 = −1）．実確率変数 X に対し

φ(t) := E[eitX ] = E[cos(tX)] + iE[sin(tX)], t ∈ R,

を X の特性関数という．

• 複素数値確率変数 Z に対し，E[Z] := E[Re(Z)] + iE[Im(Z)].

• Re(a+ ib) = a, Im(a+ ib) = b.

• 複素共役: a+ ib = a− ib.

• |a+ ib| = ((a+ ib)(a+ ib))1/2 = (a2 + b2)1/2.

これからみていくように，特性関数には以下の特徴がある．

• 分布の情報を全て含む．

• 独立性の確認に役立つ．

• 確率変数の分布が一致するか，収束するかどうか確認するときに使う．

定理 5.1.1. φ(t)を X の特性関数とするとき，以下が成立する．

(1) φ(0) = 1.

(2) φ(−t) = φ(t).

(3) |φ(t)| ≤ 1.

(4) φ(t)は R上の一様連続関数である．

証明. (1)は明らか．

(2). t ∈ Rに対し，

φ(−t) = E[e−itX ] = E[cos(tX)]− iE[sin(tX)] = E[cos(tX)] + iE[sin(tX)] = φ(t).
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(3). コーシー・シュワルツの不等式より，t ∈ Rに対し，

|φ(t)|2 = E[cos(tX)]2 + E[sin(tX)]2 ≤ E[cos2(tX)] + E[sin2(tX)] = 1.

(4). 任意の s, t ∈ Rに対し，

|φ(t)− φ(s)| = |E[eitX − eisX ]| = |E[cos(tX)− cos(sX)] + iE[sin(tX)− sin(sX)]|

≤ E[(cos(tX)− cos(sX))2 + (sin(tX)− sin(sX))2]1/2

= E[2− 2 cos(tX) cos(sX)− 2 sin(tX) sin(sX)]1/2

= E[2− 2 cos((t− s)X)]1/2.

cn → 0なる任意の実数列 {cn}に対して，| cos(cnX)| ≤ 1だからルベーグの収束定理を適用し，

lim
n→∞

E[2− 2 cos(cnX)] = E
[
2− 2 lim

n→∞
cos(cnX)

]
= 0.

従って，limh→0 E[2− 2 cos(hX)] = 0. ゆえに，任意の ε > 0に対し，δ > 0が存在して，

E[2− 2 cos(uX)] ≤ ε2, |u| ≤ δ.

これより，|t− s| ≤ δ ならば，|φ(t)− φ(s)| ≤ ε. これは φの一様連続性を意味している．

例 5.1.2. X がパラメータ cのポアソン分布に従うとき，

φ(t) = exp(c(eit − 1)), t ∈ R.

実際，定義通りに計算すると，

φ(t) =

∞∑
n=0

eitn
e−ccn

n!
= e−c

∞∑
n=0

(eitc)n

n!
= exp(c(eit − 1)).

例 5.1.3. X がパラメータ λの指数分布に従うとき，

φ(t) =
λ

λ− it
.

例 5.1.4. X ∼ N(0, 1)のとき，

φ(t) = e−t2/2, t ∈ R. (5.1.1)

以下，これを確かめよう．sin関数は奇関数なので，

φ(t) =

∫ ∞

−∞
eitx

e−x2/2

√
2π

dx =

∫ ∞

−∞
cos(tx)

e−x2/2

√
2π

dx.

(∂/∂t) cos(tx) = −x sin(tx) であり，E[supt∈R | − X sin(tX)|] ≤ E|X| < ∞ であるから，命題

3.6.5より微分と期待値の交換が可能で，

φ′(t) =

∫ ∞

−∞
(−x sin(tx))

e−x2/2

√
2π

dx
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が成り立つ．部分積分により，

φ′(t) = −
∫ ∞

−∞
t cos(tx)

e−x2/2

√
2π

dx = −tφ(t).

この微分方程式を解くことで (5.1.1) を得る．実際，

d

dt

(
φ(t)et

2/2
)
= φ′(t)et

2/2 + φ(t)tet
2/2 = 0

より φ(t)et
2/2 = φ(0) = 1.

例 5.1.5. X ∼ N(m, v)のとき，

φ(t) = eimt−vt2/2, t ∈ R. (5.1.2)

これを確かめるために，Z ∼ N(0, 1)ならばX ∼ m+
√
vZ であることを思い出そう．(5.1.1)を

使えば，
φ(t) = E[eit(m+

√
vZ)] = eitme(t

√
v)2/2

であるから (5.1.2)を得る．

この節のはじめに特性関数は分布の情報を全て含むと述べた．このことは次の Lévy の反転公

式により分かる．

定理 5.1.6 (Lévyの反転公式). P(X = a) = P(X = b) = 0のとき，

P(a < X < b) = lim
T→∞

1

2π

∫ T

−T

e−ibt − e−iat

−it
E[eitX ]dt.

定理 5.1.6の証明のために補題を一つ準備する．

補題 5.1.7. 任意の T > 0に対し，∣∣∣∣∣
∫ T

0

sin t

t
dt− π

2

∣∣∣∣∣ ≤ 2

T
.

証明. まず， ∫ T

0

sin t

t
dt =

∫ T

0

sin t

∫ ∞

0

e−txdxdt =

∫ ∞

0

∫ T

0

e−tx sin tdtdx

と表されることに注目し，

JT (x) =

∫ T

0

e−tx sin tdt

とおく．部分積分により，

JT (x) =

∫ T

0

e−tx(− cos t)′dt = [e−tx(− cos t)]T0 −
∫ T

0

(−x)e−tx(− cos t)dt

= 1− e−Tx cosT − x

∫ T

0

e−tx cos tdt.
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もう一度部分積分し，∫ T

0

e−tx cos tdt = [e−tx sin t]T0 + x

∫ T

0

e−tx sin tdt = e−Tx sinT + xJT (x).

よって，

JT (x) =
1

1 + x2

(
1− e−Tx(x sinT + cosT )

)
.

x = tan θ の変換により ∫ ∞

0

dx

1 + x2
=

∫ π/2

0

dθ =
π

2

であるから，supx≥0(1 + x)/(1 + x2) ≤ 2より∣∣∣∣∣
∫ T

0

sin t

t
dt− π

2

∣∣∣∣∣ =
∣∣∣∣∫ ∞

0

e−Tx

1 + x2
(x sinT + cosT )dx

∣∣∣∣ ≤ ∫ ∞

0

e−Tx x+ 1

1 + x2
dx

≤ 2

∫ ∞

0

e−Tx =
2

T
.

定理 5.1.6の証明. a < bを定理の仮定を満たすものとする．T > 0に対し，

IT :=

∫ T

−T

e−ibt − e−iat

−it
E[eitX ]dt

を考える．被積分関数が有界なので，期待値と積分の順序交換が可能（フビニの定理．[7]や [10]

を参照）である．これより

IT =

∫ T

−T

∫ b

a

e−itxdxE[eitX ]dt =

∫ T

−T

∫ b

a

E[eit(X−x)]dxdt =

∫ T

−T

E

[∫ b

a

eit(X−x)dx

]
dt

=

∫ T

−T

{
E
[
sin(t(X − a))− sin(t(X − b))

t

]
+ iE

[
cos(t(X − a))− cos(t(X − b))

t

]}
dt

= E

[∫ T

−T

sin(t(X − a))− sin(t(X − b))

t
dt

]
+ iE

[∫ T

−T

cos(t(X − a))− cos(t(X − b))

t
dt

]

= E

[∫ T

−T

sin(t(X − a))− sin(t(X − b))

t
dt

]
.

最後の等式は tに関する積分の被積分関数が奇関数であることから従う．

次に，θ ∈ Rに対し

R(θ, T ) :=

∫ T

−T

sin(θt)

t
dt

を考える．θ > 0のときは

R(θ, T ) = 2

∫ θT

0

sin t

t
dt
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と書け，これより，一般の θ ∈ Rについては

R(θ, T ) = 2sgn(θ)

∫ |θ|T

0

sin t

t
dt

と表される．ここで，

sgn(θ) =


1 (θ > 0),

0 (θ = 0),

−1 (θ < 0).

よって，

YT = 2sgn(X − a)

∫ T |X−a|

0

sin t

t
dt− 2sgn(X − b)

∫ T |X−b|

0

sin t

t
dt

とおけば IT = E[YT ]. 補題 5.1.7より，

lim
T→∞

YT =


2π (a < X < b),

π (X = a または X = b),

0 (X < a または X > b).

さらに，supx∈R | sinx/x| ≤ 1と再び補題 5.1.7より，

|YT | ≤ 4 sup
s≥0

∣∣∣∣∫ s

0

sin t

t
dt

∣∣∣∣ ≤ 4

∫ 1

0

sin t

t
dt+ 4 sup

s≥1

∣∣∣∣∫ s

0

sin t

t
dt

∣∣∣∣ ≤ 4 + 4
(π
2
+ 2
)
.

ゆえに，ルベーグの収束定理が適用可能であり，P(X = a) = P(X = b) = 0を考慮すれば

lim
T→∞

IT = E
[
lim

T→∞
YT

]
= 2πP(a < X < b)

を得る．

X の密度関数が存在する場合，その密度は特性関数のフーリエ反転公式により与えられる．

命題 5.1.8. 確率変数 X の確率密度関数 ρ が存在すると仮定する．このとき，∫∞
−∞ |E[eitX ]|dt < ∞ならば，

ρ(x) =
1

2π

∫ ∞

−∞
e−itxE[eitX ]dt. (5.1.3)

証明. a < b なる a, b ∈ R を任意にとる．X の密度関数が存在するので，P(X = a) = P(X =

b) = 0である．a < x < bに対し，

FT (x) =

∫ T

−T

e−itxE[eitX ]dt

とおく．このとき，U を (a, b)上の一様分布に従う確率変数とすれば，∫ T

−T

∫ b

a

e−itxdxE[eitX ]dt =

∫ b

a

FT (x)dx = (b− a)E[FT (U)].
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仮定より，

|FT (U)| ≤
∫ T

−T

|E[eitX ]|dt ≤
∫ ∞

−∞
|E[eitX ]|dt < ∞.

また，

lim
T→∞

FT (U) =

∫ ∞

−∞
e−itUE[eitX ]dt

であるから，ルベーグの収束定理と Lévyの反転公式より，

P(a < X < b) = lim
T→∞

b− a

2π
E[FT (U)] =

b− a

2π
E
[∫ ∞

−∞
e−itUE[eitX ]dt

]
=

1

2π

∫ b

a

∫ ∞

−∞
e−itxE[eitX ]dt.

a, bは任意だったから，上式は密度関数 ρが (5.1.3)により与えれれることを意味する．

離散的な確率変数に適用できる反転公式は以下で与えられる．

命題 5.1.9. 任意の確率変数 X, 任意の a ∈ Rに対して，

P(X = a) = lim
T→∞

1

2π

∫ T

−T

e−itaE[eitX ]dt.

証明. 任意の T > 0に対して，∫ T

−T

e−itaE[eitX ]dt = E

[∫ T

−T

cos(t(X − a))dt

]
+ iE

[∫ T

−T

sin(t(X − a))dt

]

= E

[∫ 2T

0

cos(t(X − a))dt

]

= E
[
2T1{X=a} +

1

|X − a|
sin(2T |X − a|)1{X ̸=a}

]
.

従って，supx∈R | sinx/x| ≤ 1とルベーグの収束定理より，T → ∞の極限で，

1

2T

∫ T

−T

e−itaE[eitX ]dt = P(X = a) + E
[

1

2T |X − a|
sin(2T |X − a|)1{X ̸=a}

]
→ P(X = a).

二つの確率変数が同分布であるための必要十分条件は対応する特性関数が一致することである．

定理 5.1.10. 二つの確率変数 X,Y に対して，

X
d
= Y ⇐⇒ E[eitX ] = E[eitY ], t ∈ R.
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部分的証明. 同分布ならば特性関数が等しいのは明らか．ここでは，X と Y がともに密度関数を

もつときに逆が成り立つことを確認する．一般の場合の証明は [7]や [10]など，測度論的確率論

のテキストをみよ．この仮定の下で，任意の x ∈ Rに対して P(X = x) = P(Y = x) = 0である．

よって定理 5.1.6より，任意の a < bについて P(a < X ≤ b) = P(a < Y ≤ b). あとは定理 3.4.6

を適用すればよい．

例題 5.1.11. {Xn}∞n=1 は IIDで，P(X1 = 1) = P(X1 = −1) = 1/2を満たすとする．こ

のとき，

X :=

∞∑
n=1

Xn

2n
∼ U [−1, 1]

を示せ．

解答. t ∈ Rを任意にとる．U ∼ U [−1, 1]とすると，

E[eitU ] =
1

2

∫ 1

−t

eitxdx =
eit − e−it

2it
=

sin t

t
.

limx→0 sinx/x = 1であるから，上式は t = 0のときにも成立することに注意せよ．

他方，ルベーグの収束定理と独立性より，

E[eitX ] = E
[
lim

N→∞
eit

∑N
n=1 Xn2

−n
]
= lim

N→∞
E
[
eit

∑N
n=1 Xn2

−n
]

= lim
N→∞

N∏
n=1

E
[
eit2

−nXn

]
=

∞∏
n=1

(
1

2
eit2

−n

+
1

2
e−it2−n

)

=

∞∏
n=1

cos

(
t

2n

)
=

sin t

t
.

t ∈ Rは任意だったから，定理 5.1.10より X
d
= U .

d次元確率変数 X = (X1, . . . , Xd)に対する特性関数は

φ(t) := E[ei
∑d

i=1 tiXi ], t = (t1, . . . , td) ∈ Rd

により定義される．

Lévyの反転公式の多次元版は以下のようになる．証明は略す．

定理 5.1.12 (多次元版反転公式). P(Xk = ak) = P(Xk = bk) = 0 (k = 1, . . . , d)のとき，

P(X ∈
d∏

k=1

(ak, bk))

= lim
T→∞

1

(2π)d

∫ T

−T

· · ·
∫ T

−T

d∏
k=1

e−ibktk − e−iaktk

−itk
E[ei

∑d
k=1 tkXk ]dt1 · · · dtd.
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定理 5.1.10の多次元版は以下のようになる．こちらも証明は略す．

定理 5.1.13. d次元確率ベクトル X = (X1, . . . , Xd), Y = (Y1, . . . , Yd)に対し，

X
d
= Y ⇐⇒ E[ei

∑d
k=1 tkXk ] = E[ei

∑d
k=1 tkYk ], t1, . . . , td ∈ R.

次の結果は特性関数による独立性の特徴付けである．

定理 5.1.14. 確率変数 X1, . . . , Xn に対して以下が成り立つ．

X1, . . . , Xn が独立 ⇐⇒ E[ei
∑n

k=1 tkXk ] =

n∏
k=1

E[eitkXk ], t1, . . . , tn ∈ R.

証明. n = 2の場合の証明を与える．X = X1, Y = X2 とおく．

(⇒). 任意の s, t ∈ Rをとって固定する．このとき，独立性より

E[eitX+isY ]

= E[eitXeisY ] = E[(cos(tX) + i sin(tX))(cos(sY ) + i sin(sY ))]

= E[cos(tX) cos(sY )− sin(tX) sin(sY )] + iE[sin(tX) cos(sY ) + cos(tX) sin(sY )]

= E[cos(tX)]E[cos(sY )]− E[sin(tX)]E[sin(sY )]

+ iE[sin(tX)]E[cos(sY )] + iE[cos(tX)]E[sin(sY )]

= E[eitX ]E[eisY ].

(⇐). 確率変数 Ỹ を Y と同分布で，(X,Y )とは独立なものとする．すなわち，X,Y, Ỹ は独立

とする．上で示したことと，定理の仮定より，任意の s, t ∈ Rに対し，

E[eitX+isỸ ] = E[eitX ]E[eisỸ ] = E[eitX ]E[eisY ] = E[eitX+isY ].

よって，定理 5.1.13より (X, Ỹ )
d
= (X,Y ). ゆえに，任意のボレル集合 A,B に対し，

P(X ∈ A, Y ∈ B) = P(X ∈ A, Ỹ ∈ B) = P(X ∈ A)P(Ỹ ∈ B) = P(X ∈ A)P(Y ∈ B).

従って X と Y は独立である．

d次元確率変数 X = (X1, . . . , Xd)の分布が密度関数

ρ(x) =
1√

(2π)ddet(V )
exp

(
−1

2
(x−m)TV −1(x−m)

)
(5.1.4)

を持つとき，X は平均ベクトル m, 分散共分散行列 V の正規分布に従うといい，X ∼ N(m,V )

と書く．ここで，m ∈ Rd, V は d次元正定値対称行列，aT は aの転置である．

(5.1.4)の ρが確かに密度関数になっていること，すなわちRd上での積分が 1に等しいことを確

かめてみよう．V を対角化し，V = PDP−1 と表す．ここで P は直交行列（i.e., P−1 = PT）で，

D =


λ1

λ2 0
. . .

0 λd

 .
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λk > 0は V の固有値である．x = m+ Py と変数変換すれば |detP | = 1だから∫
Rd

ρ(x)dx =
1√

(2π)ddet(V )

∫
Rd

exp

(
−1

2
yTD−1y

)
dy

=
1√

(2π)ddet(V )

d∏
k=1

∫ ∞

−∞
e−|yk|2/(2λk)dyk =

√
det(D)√
det(V )

= 1.

多次元正規分布の特性関数は次の式で与えられる．

命題 5.1.15. X ∼ N(m,V )のとき，

E[eiz
TX ] = exp

(
imTz − 1

2
zTV z

)
, z ∈ Rd.

証明. 上と同様に V を対角化し，x = m+ Py と変数変換し，m = (mk), P = (Pℓk)と表すこと

にすれば，

E[eiz
TX ] =

1√
(2π)ddet(V )

d∏
k=1

∫ ∞

−∞
exp

(
imkzk + i

d∑
ℓ=1

zℓPℓkyk − |yk|2/(2λk)

)
dyk

=
1√

(2π)ddet(V )

d∏
k=1

exp

(
imkzk − λk(

d∑
ℓ=1

zℓPℓk)
2/2

)√
2πλk.

ここで
∑d

k=1 λk(
∑d

ℓ=1 zℓPℓk)
2/2 = zTV z だから結局，

E[eiz
TX ] =

√
det(D)√
det(V )

exp

(
imTz − 1

2
zTV z

)
= exp

(
imTz − 1

2
zTV z

)
.

例題 5.1.16. X と Y をそれぞれ標準正規分布に従う独立確率変数とする．このとき，任意

の 0 ≤ θ < 2π に対して，V := X cos θ − Y sin θ とW := X sin θ + Y cos θ も標準正規分

布に従う独立確率変数であることを示せ．

解答. s, t ∈ Rを任意にとる．定理 5.1.14と例 5.1.4より，

E[eitV+isW ] = E
[
ei(t cos θ+s sin θ)Xei(−t cos θ+s sin θ)Y

]
= E

[
ei(t cos θ+s sin θ)X

]
E
[
ei(−t cos θ+s sin θ)Y

]
= e−(t cos θ+s sin θ)2/2e−(−t sin θ+s cos θ)2/2

= e−(t2+s2)/2.

この等式で t = 0として，
E[eitV ] = e−t2/2

を得る．よって V ∼ N(0, 1). 同様にして E[eisW ] = e−s2/2. よってW ∼ N(0, 1). 以上を合わ

せて
E[eitV+isW ] = E[eitV ]E[eisW ]
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が任意の s, t ∈ Rに対して成り立つことが分かる．ゆえに定理 5.1.14より V とW は独立である．

モーメント母関数が存在する場合は，これによる同分布性や独立性による特徴付けが可能で

ある．

定理 5.1.17. X,Y を確率変数とする．ある r > 0 が存在し，任意の t ∈ (−r, r) に対し，

E[etX ] < ∞, E[etY ] < ∞を仮定する．このとき，以下が成り立つ．

(1) X
d
= Y ⇐⇒ E[etX ] = E[etY ], t ∈ (−r, r).

(2) X と Y が独立 ⇐⇒ E[euX+vY ] = E[euX ]E[evY ], u, v ∈ (−r, r).

証明. (1). (⇐). 定理 3.6.6 より，任意の n ∈ N に対し E[Xn] = E[Y n]．t ∈ (−r, r) を任意に

とって固定する．このとき，
∞∑

n=0

∣∣∣∣ (−1)n

(2n)!
(tX)2n

∣∣∣∣ ≤ etX

であり，E[etX ] < ∞. よってルベーグの収束定理より

E[cos(tX)] = E

[ ∞∑
n=0

(−1)n

(2n)!
(tX)2n

]
=

∞∑
n=0

(−1)nt2n

(2n)!
E[X2n]

=

∞∑
n=0

(−1)nt2n

(2n)!
E[Y 2n] = E

[ ∞∑
n=0

(−1)n

(2n)!
(tY )2n

]
= E[cos(tY )].

さらに，

E[e|tX|] = E[1{X>0}e
|t|X + 1{X≤0}e

−|t|X ] ≤ E[e|t|X ] + E[e−|t|X ] < ∞.

このことと
∞∑

n=0

∣∣∣∣ (−1)n

(2n+ 1)!
(tX)2n+1

∣∣∣∣ ≤ e|tX|

から，再びルベーグの収束定理を適用し，

E[sin(tX)] = E

[ ∞∑
n=0

(−1)n

(2n+ 1)!
(tX)2n+1

]
=

∞∑
n=0

(−1)nt2n+1

(2n+ 1)!
E[X2n+1]

=

∞∑
n=0

(−1)nt2n+1

(2n+ 1)!
E[Y 2n+1] = E

[ ∞∑
n=0

(−1)n

(2n+ 1)!
(tY )2n+1

]
= E[sin(tY )].

よって任意の t ∈ (−r, r)に対して E[eitX ] = E[eitY ].
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一般の t ∈ Rに対しては，t0 ∈ (−r, r), h ∈ Rを適当に選び，t = t0 + hと表す．X, Y の特性

関数をそれぞれ φX , φY と書くことにすると，

φX(t) = E

[
eit0X

∞∑
n=0

(ihX)n

n!

]
=

∞∑
n=0

hn

n!
E[(iX)neit0X ] =

∞∑
n=0

hn

n!

dnφX

dtn
(t0)

=
∞∑

n=0

hn

n!

dnφY

dtn
(t0) =

∞∑
n=0

hn

n!
E[(iY )neit0Y ] = E

[
eit0Y

∞∑
n=0

(ihY )n

n!

]
= φX(t).

ゆえに R上で φX = φY . 従って定理 5.1.13より X
d
= Y .

(2). 定理 5.1.14の証明と同じ議論を使えばよい．

5.2 法則収束

確率変数列 {Xn}∞n=1が確率変数X に法則収束するとは，P(X = x) = 0を満たす任意の x ∈ R
に対し，

lim
n→∞

P(Xn ≤ x) = P(X ≤ x)

が成り立つときにいう．

• Xn がX に法則収束することを「Xn → X in law」と書く．Xn がX に分布収束するとも

いう．

• 法則収束は「確率変数の収束」ではなく「確率変数の分布の収束」である．Xn や X の定

義される確率空間は異なっていてもよい．

条件「P(X = x) = 0」はなぜ必要か．Xn = a+ 1/n, X = aのとき，Xn は X に「収束」し

ているとみなしたいが，P(X = x) > 0なる点 xも含めて法則収束を考えると，x = aのとき，

0 = P(Xn ≤ x) ↛ P(X ≤ x) = 1

となってしまう．よって分布関数がジャンプする点を排除する方が「収束」を適切に記述できる．

離散型確率変数の場合，法則収束は各状態確率の収束と同値である．

命題 5.2.1. 確率変数 X, X1, X2, . . .が全て N-値確率変数のとき，

Xn → X in law ⇐⇒ P(Xn = k) → P(X = k), k ∈ N.

• この命題により，少数の法則（定理 3.4.20）は二項分布がポアソン分布に法則収束している

ことと言い換えることができる．

命題 5.2.1の証明. (⇒). ε ∈ (0, 1) を任意にとる．このとき，任意の k ∈ N に対し P(X =

k ± ε) = 0であるから，分布収束の定義より，

P(Xn = k) = P(Xn ≤ k + ε)− P(Xn ≤ k − ε) → P(X ≤ k + ε)− P(X ≤ k − ε) = P(X = k).



第 5章 中心極限定理 88

(⇐). 任意の x ≥ 1に対して，⌊x⌋で xを超えない最大の整数を表すことにすると，

P(Xn ≤ x) =

⌊x⌋∑
k=1

P(Xn = k) →
⌊x⌋∑
k=1

P(X = k) = P(X ≤ x).

法則収束が密度関数の収束を意味するとは限らない．一般には，法則収束は密度関数の収束よ

りも弱い．

例 5.2.2. 各 n ∈ Nに対して，関数

ρn(x) =

{
1 + cos(2πnx) (0 ≤ x ≤ 1),

0 (その他)

を考える． ∫ ∞

−∞
ρn(x)dx =

∫ 1

0

(1 + cos(2πnx))dx = 1

だから ρn は確率密度関数である．Xn を ρn を密度としてもつような確率変数とする．このとき，

x ∈ (0, 1)に対し，

P(Xn ≤ x) =

∫ x

0

ρn(y)dy = x+
sin(2πnx)

2πnx
→ x, n → ∞.

よって，Xn は (0, 1)上の一様分布に従う確率変数に法則収束する．他方，各 x ∈ (0, 1)に対し，

ρn(x)は n → ∞で振動するので収束しない．

次の結果は法則収束を特徴付ける．高度な議論が必要なので証明は略す．詳細については測度

論的確率論のテキストをみよ．

定理 5.2.3. 確率変数列 {Xn}∞n=1, 確率変数 X に対して以下は同値．

(1) Xn → X in law.

(2) E[eitXn ] → E[eitX ], t ∈ R.
(3) 任意の有界連続関数 f : Rd → Rに対して，E[f(Xn)] → E[f(X)].

5.3 中心極限定理

大数の法則は IID列の算術平均が平均値に収束することであった．中心極限定理はこの収束の

様子をもう少し精密に記述する．

• Z ∼ N(0, 1)を標準正規（ガウス）確率変数と呼ぶ．
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定理 5.3.1 (中心極限定理). {Xn}∞n=1 は IID で E|X1|2 < ∞ を満たすとする．m, v を

それぞれ共通の期待値，分散とする．すなわち，m = E[X1], v := V[X1]. このとき，
1√
n

n∑
k=1

(Xk −m)√
v

は標準正規確率変数に法則収束する．

法則収束の定義より，任意の a < bに対し，

lim
n→∞

P

(
a <

1√
n

n∑
k=1

(Xk −m)√
v

≤ b

)
=

1√
2π

∫ b

a

e−
x2

2 dx.

粗く述べると，Z ∼ N(0, 1)とするとき，十分大きな nで

1

n

n∑
k=1

Xk ≈ m+

√
v

n
Z.

定理 5.3.1の証明のために補題を一つ用意する．

補題 5.3.2. x ∈ Rに対し，

eix = 1 + ix− x2

2
+ x2

∫ 1

0

(1− s)(1− eixs)ds. (5.3.1)

証明. 微積分学の基本定理，変数変換，積分順序の変更により，

eix = 1 +

∫ x

0

ieiydy = 1 + ix

∫ 1

0

eixtdt = 1 + ix

∫ 1

0

(
1 + ix

∫ t

0

eixsds

)
dt

= 1 + ix− x2

∫ 1

0

∫ 1

s

eixsdtds = 1 + ix− x2

∫ 1

0

(1− s)eixsds

= 1 + ix− x2

2
+ x2

∫ 1

0

(1− s)(1− eixs)ds.

定理 5.3.1の証明. 一般性を失うことなく，m = 0, v = 1を仮定できる．(5.3.1)より，

eitX1/
√
n = 1 +

it√
n
X1 −

t2

2n
X2

1 +
t2

n
Wn

と書ける．ここで，

Wn = X2
1

∫ 1

0

(1− s)(1− eisX1/
√
n)ds.

各 ω に対して limn→∞ Wn(ω) = 0であり，

|Wn| ≤ |X1|2
∫ 1

0

(1− s)|1− eisX1/
√
n|ds ≤ |X1|2.

よってルベーグの収束定理を適用し，

εn := E[Wn] → 0.
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この記法と Xk たちが IIDであることから，

E[eit(X1+···+Xn)/
√
n] =

(
1− t2

2n
+

t2

n
εn

)n

=

(
1− t2

2n

)n(
1 +

t2εn/n

1− t2/(2n)

)n

.

二項定理より，2n > t2 を満たす大きな nに対し，(
1 +

t2εn/n

1− t2/(2n)

)n

= 1 +

n∑
k=1

n!

k!(n− k)!

(
2t2εn
2n− t2

)k

= 1 + n

(
2t2εn
2n− t2

) n∑
k=1

(n− 1)!

k!(n− k)!

(
2t2εn
2n− t2

)k−1

= 1 +

(
2nt2

2n− t2

)
εn

n−1∑
k=0

(n− 1)!

(k + 1)!(n− 1− k)!

(
2t2εn
2n− t2

)k

≤ 1 + 2t2εn

(
1 +

2t2εn
2n− t2

)n−1

≤ 1 + 2t2εn

(
1 +

t2εn
n− 1

)n−1

≤ 1 + 2t2εne
t2εn .

従って， ∣∣∣∣∣
(
1 +

t2εn/n

1− t2/n

)2

− 1

∣∣∣∣∣ ≤ 2t2εne
t2εn → 0, n → ∞.

ゆえに

lim
n→∞

E[eit
∑n

k=1 Xk/
√
n] = lim

n→∞

(
1− t2

2n

)n

= e−t2/2.

あとは定理 5.2.3を適用すればよい．

例題 5.3.3. コインを 10000回投げるとき，約 95%の確率で，表の出る回数は 4900回か

ら 5100回の間である．これを確かめよ．

解答. {Xn}∞n=1 を IID で，P(X1 = 0) = P(X1 = 1) = 1/2 を満たすものとする．このとき，

E[X1] = 1/2, V[X1] = 1/4であり，中心極限定理より，Sn = X1 + · · ·+Xn とおくとき，

Sn − n
2√

n
4

→ Z ∼ N(0, 1) in law.

n = 10000が十分大きいとすれば，

P(表が 4900～5100回出る) = P(Sn ∈ [4900, 5100]) = P(Sn − n/2 ∈ [−
√
n,

√
n])

= P

(∣∣∣∣∣Sn − n
2√

n
4

∣∣∣∣∣ ≤ 2

)
≈ P(|Z| ≤ 2) = 1− 2P(Z > 2).

P(Z > α)の値は正規分布表などから算出でき，P(Z > 2) ≈ 0.0228である．従って，

P(表が 4900～5100回出る) ≈ 1− 2× 0.0228 = 0.9544.
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例題 5.3.4. モンテカルロ法により
∫ 1

0
f(x)dxを計算したい．U1, . . . , Unを独立に発生させ

た [0, 1]上の一様乱数として，σ2 = V[f(U1)]とおく．近似誤差

∣∣∣∣∣ 1n
n∑

k=1

f(Uk)−
∫ 1

0

f(x)dx

∣∣∣∣∣
が 0.1σ 以下である確率を 99% 以上にするためには，何個くらいの乱数を発生させればよ

いか？

解答.

P

(∣∣∣∣∣ 1n
n∑

k=1

f(Uk)−
∫ 1

0

f(x)dx

∣∣∣∣∣ > 0.1σ

)
< 0.01 (5.3.2)

となる nを求める．nとして十分大きな数を想定して中心極限定理を適用すると，

(5.3.2)の左辺 = P

(∣∣∣∣∣ 1√
n

n∑
k=1

f(Uk)− E[f(U1)]√
V[f(X1)]

∣∣∣∣∣ >
√
n

10

)
≈ P(|Z| >

√
n/10)

= 2P(Z >
√
n/10).

ただし Z ∼ N(0, 1).

P(Z > 2.58) ≈ 0.0049 < 0.0051 ≈ P(Z > 2.57)

なので，
√
n/10 ≈ 2.58を満たす nをとればよい．これより n = 666個の乱数で十分ということ

がわかる．

例題 5.3.5. （ヨーロピアン・スタイルの）ルーレットゲームを考える．ルーレットには 37

のポケットがあり，数字は 1から 36までのうち 18個は赤，残りの 18個は黒，0は緑であ

る．ゲームの配当は 2倍である．すなわち，収益は ±1× 賭け数である．
今，毎回赤にチップを 1 枚賭けるギャンブラーを考える．1369 = 372 回ゲームするとき，

平均で 37枚チップを失うことになるが，負けない確率が約 16%あることを確かめよ．

解答. ギャンブラーの各回の収益を Xn で表すと，{Xn}∞n=1 は IID で，P(Xn = 1) = 18/37,

P(Xn = −1) = 19/37. これより，

E[Xn] =
18

37
− 19

37
= − 1

37
,

V[Xn] = 1− 1

372
≈ 0.9992 ≈ 1.

よって，n回目までの収益を Sn で表すと，E[Sn] = −n/37であり，従って，E[S1369] = −37.

一方，中心極限定理を適用し，

P(Sn ≥ 0) = P

(
Sn − nE[X1]√

V[X1]n
≥ − nE[X1]√

V[X1]n

)
≈ P(Z ≥ 1)

≈ 0.1587.
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章末問題

非負整数値確率変数 X に対して，

gX(z) := E[zX ], z ∈ C, |z| ≤ 1

を X の確率母関数という．

問題 5.1. 非負整数値確率変数列 {Xn}∞n=1 は IID で共通の確率母関数 gX(z) をもつとする．T

を非負整数値確率変数で，{Xn}と独立とする．このとき，Y :=
∑T

n=1 Xn は

gY (z) = gT (gX(z))

を満たすことを示せ．ただし，
∑0

n=1 = 0とする．

問題 5.2. X1, . . . , Xnは独立で，各 kについてXk ∼ N(mk, σ
2
k)であるとする．このとき，特性関

数を用いて，X1+· · ·+Xn ∼ N(m̄, σ̄2)を示せ．ただし，̄m = m1+· · ·+mn, σ̄ =
√
σ2
1 + · · ·+ σ2

n．

問題 5.3. m ∈ Rd, V ∈ Rd×d は正定値対称行列とし，X ∼ N(m,V ) とする. このとき，

Y := B−1(X −m) ∼ N(0, Id)であることを示せ．ここで B は正則な対称行列で B2 = V を満

たすもので，Id は d次の単位行列とする．

問題 5.4. f を [0,∞)上の有界連続関数とする．x ∈ (0,∞)を任意にとる．{Xn}∞n=1 は IIDで，

共通の分布はパラメータ xのポアソン分布であるとする．

(1) Sn := X1 + · · ·+Xn がパラメータ nxのポアソン分布に従うことを示せ．

(2) 大数の強法則とルベーグの収束定理を用いて，

f(x) = lim
n→∞

∞∑
ℓ=0

f

(
ℓ

n

)
e−nx (nx)

ℓ

ℓ!

を示せ．（ヒント: E[f(Sn/n)]を計算してみよ．）

問題 5.5. {Xn}∞n=1 は IIDで，X1 ∼ U([0, 1])とする．このとき，Yn := n ·min(X1, . . . , Xn)は

パラメータ 1の指数分布に従う確率変数に法則収束することを示せ（ヒント: P(Yn > x)を計算

する）．

問題 5.6. （偏りのない）コインを 900回投げるとする．中心極限定理を用いて，495回以上表が

出る確率の近似値を求めよ．ただし，Z ∼ N(0, 1)とするとき，P(Z ≥ 3) = 0.0013であること

を用いてもよい．

問題 5.7. 中心極限定理を用いて，

lim
n→∞

e−n
n∑

k=1

nk

k!
=

1

2
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を示せ．
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