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Preface

These lecture notes have been prepared for the course MCS.T419: Stochastic Differential Equa-
tions at the Institute of Science Tokyo. The purpose of the notes is to provide an elementary yet
rigorous introduction to stochastic differential equations (SDEs), together with the foundations
of stochastic control and modern numerical methods for nonlinear partial differential equations
(PDEs). The notes are intended to offer a systematic pathway from basic stochastic processes
to controlled diffusions, viscosity solutions, and kernel-based numerical schemes.

Chapter 1 is devoted to some preliminaries for handling continuous-time stochastic processes.
In particular, we need to introduce the notion of measurability that describes predictabilities
of random motions. This theory is often bothersome to application-oriented students, but is
indispensable for a rigorous analysis of stochastic processes. Brownian motion is introduced as
the canonical model of continuous-time randomness.

Chapters 2 and 3 develop the basic theory of stochastic calculus. Chapter 2 introduces
stochastic integrals and It6’s formula, followed by change-of-measure techniques such as the
Girsanov—Maruyama theorem and the martingale representation theorem. Chapter 3 then for-
mulates stochastic differential equations, covering existence and uniqueness, explicit solutions,
numerical approximations, statistical inference, weak solutions, and time reversal of diffusions.
The theory of time reversal provides the mathematical foundation for recent generative models
such as denoising diffusion probabilistic models (DDPMs), where the reverse time dynamics of
diffusions play a central role.

Chapters 4 and 5 introduce stochastic control theory for controlled diffusions. Chapter
4 presents a basic framework of stochastic controls, continuous-time optimization problems.
Then we give a characterization of the stochastic control problems by Hamilton—Jadobi—Bellman
(HJB) equations, through verification theorem. Further we study the stochastic control prob-
lems with terminal constraints. These terminal-constraint formulations encompass the classical
Schrodinger problem (or Schrodinger bridge problem), which can be regarded as an entropy-
regularized stochastic control problem connecting prescribed initial and terminal distributions.
Chapter 5 then develops the theory of the viscosity solutions, which are the most useful and
elegant notion for weak solutions of nonlinear elliptic and parabolic partial differential equations,
as well as open up the possibility of rigorous numerical analysis of HJB equations whose classical
solutions might not exist.

Chapter 6 turns to numerical methods for nonlinear PDEs. While classical finite-difference
methods are powerful in one dimension, their applicability is limited by the curse of dimensional-
ity and stringent regularity requirements. As an alternative, this chapter introduces kernel-based
collocation methods, which rely on reproducing kernel Hilbert spaces and have recently attracted
attention for multi-dimensional nonlinear PDEs.

Several important topics necessarily fall outside the scope of these notes, including advanced
properties of Brownian motion and diffusion processes, stochastic integration with respect to
discontinuous semimartingales, Rough paths, backward stochastic differential equations, optimal
filtering, infinite-horizon control, optimal stopping, and applications to mathematical finance.



These topics may be treated in future versions.

To the Reader: The reader of these notes is expected to have knowledge of measure-theoretic
probability theory and of functional analysis at an introductory level. Several technical parts
can be skipped on a first reading, which are explicitly indicated. In particular, the proofs of
mathematical statements with the caption “Proof*” can be skipped on a first reading.
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Convention and Notation

Convention

e Throughout these notes except for the appendix, we work on a complete probability space
(Q, F,P). In particular, all random variables appeared in Chapters 1-5 are assumed to be
defined on the measurable space (2, F).

o All stochastic processes appeared in Chapters 2-5 are assumed to be measurable.

Notation
e N={1,2,...}.
o 7 =1{0,+1,%2,...}.
e R%: d-dimensional Euclidean space.
o Z4={(z',... .29 2’ €Z, 1<i<d}.
e R™*4: the totality of real m x d-matrices.
e S% the set of all d x d real symmetric matrices.
e C: the set of complex numbers.
e |z|: the standard Euclidean norm of x € R
e lal = (>, |la;;|?)'/? for any real matrix a = (a;;).
e v =max{z,0}, z € R.
o r~ =max{—z,0}, z € R.
e a": the transposition of a real vector or matrix a.
e A¢: the complement of a set A.
e 14: the indicator function for a set A.
e E[X]: the expectation of a random variable X under P.
e V[X] =E[(X — E[X])?]: the variance of X under P.
e Eg[X]: the expectation of a random variable X under a probability measure Q on (2, F).
e I;: the identity matrix in R4*¢,

o LV =LP(Q,F,P)forpell, o]



O¢f = 0f/0€ and 8§n f = 0?f/0¢0on if the partial derivatives exist for any function f
defined on a subset of an Euclidean space.

For every multi-index o = (v, ..., aq) with |a|; := a1 + - - - + g, the differential operator
D% is defined as usual by

olah

D~ =0
f(xla ,f]fd) 8%?1 .. 8{]32%

f(l'l, ceey .%'d).

C(U): the set of all continuous functions on U C R".
Cy(U): the set of all bounded continuous functions on U C R™.
C3°(R™): the set of all infinitely differentiable functions on R™ having compact supports.

C12(]0, T]xR™): the set of all functions f : [0, T] xR™ — R such that the partial derivatives
Of, O, f, agim].f, i,j=1,...,n, exist and continuous on [0, T] x R<,

C(U;R%): the set of all R%valued continuous function on U.

B.(z) ={y e R": |y —z| <r} for z € R” and r > 0.

vi



CHAPTER 1

Preliminaries for Continuous-Time Stochastic Processes

In the theory of stochastic differential equations, martingales play a fundamental role. So we first
review the abstract notion of conditional expectation on which martingale theory is built. Next,
we discuss several kinds of measurability which are indispensable for handling unpredictable
motions of dynamical systems. Then, we deal with Brownian motions, which is a basic model
of a source of purely random fluctuations.

1.1 Conditional Expectation

For A, B € F with P(B) > 0, we call

P(AN B)

P(AIB) = 5

the conditional probablity of A given B.
Similarly, for random variable X and B € F with P(B) > 0, we call

E[X1p]
P(B)

E[X|B] :=
the conditional expectation of X given B.

The case of finite o-algebras
Definition 1.1. A sub c-algebra G in F is said to be finite if there exist Ay,..., A, € F such
that Q = UP_ Ag, AinA;j =0 (i#j) and G =0(Ay,..., Ay).

e We call {A;}}_, in Definition 1.1 a partition of Q.

e The o-algebra G in Definition 1.1 is said to be generated by the partition {Ay}.

Definition 1.2. Let X € L! and G be the o-algebra generated by the partition {Ay}7?_,. Then,

n

E[X|G] =) E[X|A]l4,
k=1

is said to be the conditional expectation of X given G. Here, we set an arbitrary value for
E[X|Ag] if P(Ag) = 0.



e Roughly speaking, E[X|F] is the expectation of X computed provided that we know in-
formation of G.

e Note that E[X|G] is also a random variable. In particular, it is a G-measurable random
variable.

e We often write E[X|G](w) to emphasize that it is a function of w € Q.

e Since {A} is a partition of Q, the quantity E[X|G](w) gives the conditional expectation
of X given the events of which w belongs to.

e For random variables X, Y, we often write E[X|Y] for E[X|o(Y)].

Problem 1.3. Let p € (0,1) and 0 < d < 1 < u. Consider the random variables S;, i = 0,1, 2,
defined by
Siv1 = D115, i=0,1,

where D1, Dy are IID with P(D; =u) =1 —P(D; = d) = p and Sj is assumed to be a positive
constant.

(i) Show that o(S7) is finite.
(ii) Prove that
E[S2|S1] = (up + d(1 — p))Si.
General definition

Next consider the case where o-filed is not necessarily finite. Then of course Definition 1.2 is
no longer available. Our idea is to derive a good implication that can be described without the
definition of finite o-fields, and to adopt it as the definition of general conditional expectations.

Proposition 1.4

Let X € L! and G a finite o-field. Then, for A € G we have E[X14] = E[E[X|G]14].

Proof. Let {By}}_, be a partition of  satisfying G = (B4, ..., By).
First notice that the proposition immediately follows if A € G is empty. Thus assume that
A € G is nonempty. Then, A = U]" | B;, for some i1,...,4, € {1,...,n}, and so

m

E[E(X|G)1a] = Y E[E[X|G]15, | = 3 E[E[X|B,, )15, |
k=1 k=1
= S E[X|B,JB(B;,) = Y E[X1p, ] = E[X14].
k=1 k=1

O]

Proposition 1.4 means that if G is finite, then Y = E[X |G] is a G-measurable random variable
such that E[X14] = E[Y'14], A € G. A random variable Y with this property exists when o-
algebra is not necessarily finite, and this existence is unique.



Theorem 1.5

Let X € L' and G a sub o-algebra in F. Then there exists a random variable Y satisfying
the following:

(i) Y is G-measurable.
(i) Y e L.
(iii) E[lAY] = E[lAX], Aeqg.

Moreover, this existence is almost surely unique, i.e., for Y with the three properties
above, we have Y =Y a.s.

Proof. We use the representation X = X —X~. For each X and X ~, we define the probability
measure QF on (Q,G) by

Xt +1
+ _
Q (A)_/AE[ i+1]dIP>, Acg,

respectively. Since QT and Q~ are both absolutely continuous with respect to P, by Radon-
Nikodym theorem (see Theorem A.38), there exist nonnegative, integrable, and G-measurable
random variables Z* such that Q*(A) = E[14Z%], A € G. Hence, the G-measurable random
variable
Y =EXt+1Z" -E[X™ +1]Z~
satisfies (ii) and (iii) in the statement of the theorem.
Next we will show the uniqueness. Suppose that Y and Y satisfy (i)-(iii) in the statement

of the theorem and P(Y" > Y) > 0. Then, since lim, ,o, P(Y >Y 4+ 1/n) = P(Y > Y), we have
P(Y >Y +1/n) > 0 for some n € N. It follows from this that

- 1 -

On the other hand, the conditions (ii) and (iii) imply that A := {Y > Y +1/n} € G and
E[Y14] = E[Y'14], which lead a contradiction. Thus ¥ <Y a.s. By a similar argument, we see
Y >Y as. HenceY =Y a.s. O

Therefore, the conditional expectations with respect to finite o-algebras are completely char-
acterized by the three properties in Theorem 1.5. Then we define the conditional expectations
with respect to general o-algebras by these properties.

Definition 1.6. For X € L' and any sub o-algebra G in F, we call the unique random variable
Y as in Theorem 1.5 the conditional expectation of X given G, and write Y = E[X|7].

e If you want to confirm that Y = E[X|F] a.s., then you only need to check that Y satisfies
the properties (i)—(iii) in Theorem 1.5.

We collect basic properties of the conditional expectations given o-algebras.



Let X,Y € L' and let G, H be o-algebras. Then the following hold:
(i) If X is G-measurable, then E[X|G] = X a.s.
(ii) E[aX + bY|G] = aE[X|G] + bE[Y|G] a.s. for a,b € R.
(iii) If X > 0 a.s., then E[X|G] > 0 a.s.
)

(iv) For a sequence {X,,}>°, of random variables such that 0 < X,, < X411 <--- as.
and X,, — X a.s., then E[X,,|G] " E[X]|]] a.s.

(v) For a sequence {X,}7° ; of random variables such that |X,| < Z (Vn) a.s. for some
nonnegative random variable Z € L' and lim,,_,oo X,, = X a.s., then

li_}m E[X,|G] = E[X|G] as.

(vi) If H C G then E[E[X|G]|H] = E[X|H] a.s.
(vii) E[E[X|G]] = E[X].

)
)
(viii) If X is G-measurable and XY € L!, then E[XY|G] = XE[Y|G] a.s.
(ix) If H is independent of o(X,G), then E[X|o(G,H)] = E[X|F] a.s.
(x) If X is independent of G, then E[X|G] = E[X] a.s.

)

(xi) For R-valued convex function g on R such that g(X) € L!, we have E[g(X)|G] >
§(E[X|G]) as.

\.

Proof. (i). The random variable X itself satisfies (i)—(iii) in Theorem 1.5. By the uniqueness,
X =E[X|G] as.
(ii). By the linearity of E[-], for A € G,

E[(aX + bY)14] = aE[X14] + bE[Y14] = aE[E[X|G]14] + bE[E[Y|G]1 4]
= E[(aE[X|G] + bE[Y|G])14].

The uniqueness of E[aX + bY|G] means E[aX + bY |G| = aE[X|G] + DE[Y|G] a.s.

(iii). It follows from X > 0 and Theorem 1.5 (iii) that E[14E[X|G]] > 0 for A € G. Hence
E[X]|G] > 0 a.s.

(iv). From (iii) the sequence {Y,} defined by Y, := E[X,,|G] is almost surely nonnegative and
nondecreasing. Thus Y (w) := limsup,,_, ., Y, (w) satisfies ¥;, /Y a.s. Then the monotone
convergence theorem for the expectation (see Theorem A.36) yields

E[YIA] = nli_)HoloE[YnlA] = nh_)rroloE[anA] = E[XIA], Aeqg.

This means that Y satisfies the conditions (i)—(iii) in Theorem 1.5.
(v). Use an argument similar to that in the proof of (iv).

(vi). Let A € H. Since A € G, we have E[E[X|G]14] = E[X14].
(vii). This follows from the property (iii) in Theorem 1.5 for A = Q.
(viii). For B € G we see

E[15E[Y|G]14] = E[E[Y|G]15na] = E[Y1pn4] = E[(15Y)14], A€G.



Thus, the claim follows for X = 1. For general X, approximate it with simple random variables
and then use a convergence theorem.

(ix). We may assume that X > 0 a.s. without loss of generality. The claim is trivial when
X =0 a.s. Thus we further assume E[X] > 0. Set Y = E[X|G]. Then we will show that the

two probability measures
ii(A) = E[X14]/E[X], pa(A) = E[VL/E[Y], AeF

coincide with each other on o(G,H).
Indeed, for A € G and B € H, since X14 and Y14 are independent of B, we find

E[X1anp] = E[X14]P(B) = E[Y 14]P(B) = E[Y 14n5].

Hence 1y = po on C := {ANB: A€ G, Be€ H}. Lemma A.44 now implies that pu; = pz on
o(G,H)=0(C).

(x). Take G = {0, 2} in (ix).

(xi). We will prove the claim in the case where G is finite, i.e., it is generated by a par-
tition {Ay}7_,. For general cases we refer to, e.g., [39]. In the present case, E[X|G] =
S r_E[X|A]14,. Then notice that E[X|A,] = E?[X], where Q is the probability measure
defined by dQ/dP = 14, /P(Ax). Thus by Jensen’s inequality (Proposition A.27),

n

g(E[X]9]) Zg (XA La, <D Elg(X)[Ar]La, = Elg(X)|G],

k=1 k=1

as required. ]

The conditional expectation E[X|G] can be interpreted as the least square estimates of X
over G-measurable random variables.

Proposition 1.8

For X € L?, the conditional expectation E[X|G] is almost surely unique G-measurable
random variable such that

E[(X — E[X|G])?] = min{E[(X —Y)?]: Y € L?, G-measurable}.

Proof. First notice that for Y € L?, Cauchy-Schwartz inequality (see Proposition A.28 (i)) yields
IE[XY]| < co. Thus (X —Y)? € L!. Next, setting Z = E[X|G] — Y, we have

(X -Y)?= (X —E[X|G] + E[X|G] - YV)? = (X — E[X|G])? + 2(X — E[X|G])Z + Z*.
If Y is G-measurable, so is Z. Thus By Proposition 1.7,

E[(X - E[X[G])Z] = E[E[(X - E[X|7])Z|G]] = E[ZE[X — E[X]|G]|F]]
=E[Z(E[X|G] — E[X|F])] = 0.
This implies
E[(X - V)% = E[(X - E[X|G])’] + E[Z?]

for any G-measurable Y € L2. Therefore E[Z?] attains the minimum 0 only when Y = E[X|J]
a.s., which leads to the claim. O



Let N be the collection of all P-null sets from F. Then, o(N) ={A € F : P(A) =1 or P(A) = 0}.
The following is a generalization of Theorem A.17:

Theorem 1.9

Let (E, &) be a measurable space, Y : © — E, and X : Q@ — R a 0(N Uo(Y))-measurable
random variable. Then, there exists an £-measurable function f : £ — R such that
X =f(Y) as.

Proof*. We may assume that X is bounded. Otherwise, it suffices to consider arctan(X). We
also assume that X > 0 a.s. and P(X > 0) > 0 without loss of generality. Then, define

X(w) = E[X|o(Y)](w), we Q.

By Theorem A.17, X (w) = f(Y (w)), w € Q, for some E-measurable f. We will show that X = X
a.s. To this end, first note that G := o(N U o (Y)) = o(c(N)No(Y)) and o(N) No(Y) is a
m-system. For any A € o(N) and B € o(Y') we have

E[X1ans] = E[X15] = E[X15] = E[X14q5]

if P(A) = 1. Otherwise, E[X14np] = 0 = E[X14np]. Thus, the two probability measures Q and
Q on (92, G) defined respectively by

Q(A) = Q(A) = Aeg,

agree with each other on o(N) N (V). Then, applying Lemma A.44, we find that E[X1,4] =
E[X14], A € G, whence .
E[XZ] =E[XZ]

for any bounded G-measurable random variable Z. Therefore, for any A € F,
E[X14] = E[XE[14|G]] = E[XE[14|G]] = E[X14].
This means X = X a.s., as wanted. O

By Theorem A.17, there exists a measurable function f such that E[X|o(Y)] = f(Y). Thus,
f(z) can be interpreted as the “conditional expectation” E[X|Y = z]. Rigorously, this quantity
has no meaning when P(Y = z) = 0. The next theorem gives a valid version of the conditional
expectation given Y = z. A proof can be found in [28].

Theorem 1.10

Suppose that € is a complete separable metric space and F = B(f2). Let S be a separable
metrizable space, and Y : 2 — S a Borel measurable map. Denote by p the law of Y.
Then, there exists a family { P, }zcg of probability measures on (S, B(S)) such that

(i) S >z~ Py(A) is Borel measurable for any A € F;
(ii) Pr(A\{Y ==z}) =0 for p-almost all = € S,

(iii) for any X € L',
Ey(w)[X] = E[X|o(Y)](w)

for almost every w € ), where F, is the expectation operator with respect to P,.




Theorem 1.10 means that for any X € L' and bounded measurable f,

B = [ S@EX]uds). (1.11)

In particular, we have the disintegration formula

P(A) :/SP:C(A)M(dy), AeF (1.1.2)

To give the interpretation of F, mentioned above, let x € S be fixed and € > 0. Assume that
y — E,[X] is bounded on the open ball B , at = with radius e . Then by (1.1.1) and the mean
value theorem for Lebesgue integral (see, e.g., [43, EH 12.5]),

BX1yen.g) = [ BXIu(dy) = (Y € Be.)

for some ¢ € [infyep, , Ey[X],supycp, , Ey[X]]. Therefore, if P(Y = z) > 0, then considering
€ = 0 we obtain
E[X|Y =z] = E;[X].

In the case of P(Y = z) = 0, by assuming the continuity of y — E,[X], we get
ImEX|Y € B, ;| = E,[X].
e—0

Thus, we conclude that E;[X] can be interpreted as the conditional expectation of X given
Y =uz.

1.2 Filtration, Measurability, and Martingales

An R%valued stochastic process is a family {X;}ser of random variables taking values in R
The index generally represents a continuous or discrete time variable.

Definition 1.11. Let T = [0, 00), [0, 7], NU{0}, or {0,1,..., N}, where T' € (0,00) and N € N.
A family F = {F,; }ser of sub o-fields of F is said to be a filtration if Fs C F; for s,t € T with
s < t.

e F; is interpreted as the information available at time t.
e The quadruplet (92, F,F,P) is said to be a filtered probability space.

Definition 1.12. Let T be as in Definition 1.11, and let F = {F}ier be a filtration. An
R valued stochastic process {X;}ier is said to be F-adapted if X; is Fi-measurable for any
teT.

e If {X;} is an adapted process, then the random variable X} is realized up to time ¢.

e For an arbitrary process {X;}iet, the family FX = {FX};cr of sub o-algebras defined by
FX =0(Xs;s €T, s <t)is said to be the natural filtration generated by {X;}ser. Here,
for a family {Z)}xea of random variables,

o(Zy;AeN):=0 (U J(Z)\)> .

AEA

e Any stochastic process is adapted w.r.t. the natural filtration generated by itself.

7



In what follows, we work on a fixed filtered probability space (2, F,F,P).

Definition 1.13. (i) A process {X;}>0 is said to be measurable if X. : [0,00) x @ — R is
B[0,00) x F-measurable.

(ii) A process {X¢}+>0 is said to be F-progressively measurable if X. : [0,t]xQ — Ris B[O, t] x F;-
measurable for every ¢ € [0, 00).

o If {X;} is measurable, then for every ¢ the random variable Y; := fg Xsds is F-measurable.

o If {X;} is progressively measurable, then {Y;} above is an adapted process.

Problem 1.14. Show that every progressively measurable process is measurable and adapted.
Hereafter, all processes appeared in these notes are assumed to be measurable.

Definition 1.15. We say that {X;};>0 is a modification of {Y:}i>0 if P(X; = Y;) = 1 for any
t > 0. Moreover, {X;} and {Y;} are said to be indistinguishable if P(X; =Y;, t > 0) = 1.

Ezample 1.16. Let 7 be a (0, 00)-valued random variable having a continuous density, say an
exponentially distributed random variable. Set X; = 1«4, ¢ > 0 and consider the left-limit
Xi— = lim, ~ Xy. Then it is straightforward to see that Y; := X; — Xy = L=y, and that
P(Y; =0) =P(r #t) = 1 for every t € [0,00). Hence, the process Z; = 0 is a modification of
{Y;}. On the other hand, we have P(Y; =0, t > 0) =P(r #t, t > 0) = P(7 ¢ [0,00)) = 0,
which implies that {Y;} and {Z;} are not indistinguishable.

Proposition 1.17

Suppose that { X} }+>0 is adapted and {Y; }+>0 is a modification of { X }. Suppose moreover
that Fy contains all P-null sets that are F-measurable, i.e., that N C Fy. Then {Y;}:>0
is also adapted.

Proof. Fix t > 0 and set N = {X; # Y;}. Then observe that for A € B(R),
{VeA}=({i e AInN)U({Y: € A}NN°) = ({Y; € A}nN)U ({X; € A} N N°).

Since Y; is F-measurable and N, N¢ € Fy, we have {Y; € A} € F and P{Y; € A} N N) = 0.
Hence {Y; € A} N N € Fy. This together with {X; € A} N N¢ € F, means {Y; € A} € ;. O

e We often assume Fy DN = {4 € F : P(A) = 0} to use the convenient property above.

e The filtration o(FX UN), t > 0, is called the augmented natural filtration generated by X.

Problem 1.18. Suppose that Fo D N. Let {Xt(n)}tz() be a sequence of adapted processes such
that Xt(n) converges to some X; almost surely for any ¢t > 0. Show that {X;}:>0 is adapted.

In general, t — X;(w), w € Q, is called a sample path of the process {X;} with respect to
w. We say that {X;} is a continuous process if every sample path of {X;} is continuous, i.e.,
t — Xi(w) is continuous for every w € Q. We also say that {X;} is a.s. continuous if ¢ — X;(w)
is continuous for almost all w € €.

Proposition 1.19

Let {X;} and {Y;} be continuous. If {X;} and {Y;} are modifications of each other,
then the two processes are indistinguishable. Moreover, if {X;} is adapted, then it is
progressively measurable.




Proof. Let w € {X; =Y, forallt € QN [0,00)}. For any t > 0 there exists {¢t,} C QN [0,00)
such that ¢, — t¢. Then, by the continuity of {X;}, we have X;(w) = lim, ,c0 X, (w) =
limy, 00 V3, (w) = Yi(w). This implies P(X; = Y}, Vt) = Nyeqno,o0)P(Xs = Ys) = 1.

To prove the second claim, we consider a piece-wise linear function [0,¢] 3 s — X () (w)
satisfying x{m (w) = Xs(w), s=0,27",...,27"|2"t|. Here, |z| denotes the greatest integer not
exceeding z € R. Then, X is B([0, t]) x Fi-measurable. This together with lim,, s X () (w) =
Xs(w) for w and s € [0, ¢] means that X, s <t, is also B([0,t]) x F;-measurable. O

The proposition above is generalized in the following sense:

Proposition 1.20

Every measurable and adapted process has a progressively measurable modification.

The proof of this result is found in [28].

Proposition 1.21

Suppose that Fy D N. Let {X;}o<i<7 be an adapted process satisfying

T
/ | X¢|dt < 00, as.
0

Then, the process
t
Yi— [ Xuds, 0<t<T.
0

is progressively measurable. In particular, {Y;} is adapted.

Proof. By Proposition 1.20, the process { X;} has a progressively measurable modification {X,}.
Then, Y; := fot Xsds, 0 <t <T,is adapted. By Fubini theorem,

T T
E/O Lix,2%,)48 :/0 Bllix.25.)ds =0.

Thus, the Lebesgue measure of {s : X; # XS} is zero almost surely, whence Y; = }N/t a.s.,
t € [0,7]. Then Proposition 1.17 and Proposition 1.19 mean that {Y;} is adapted and so is
progressively measurable due to the continuity. O

Problem 1.22. Prove that if {X;};>0 is continuous then Sup;>o Xt, inf;>0 Xy, limsup;_, o X,
and liminf; .., X; are all F-measurable random variables.

Problem 1.23. Prove that if {X};}¢>0 is continuous then
o(X;;0<t<T)=0(Xyt €T N[0,T))
for any dense subset T C [0,00) and T € [0, c0).

Definition 1.24. Let T be as in Definition 1.11, and let F = {F},c1 be a filtration. A real-valued
process {X;}ier is said to be an F-martingale if the following three conditions are satisfied:

(i) X; € L for any t € T.
(ii) {X:} is F-adapted.
(ii) E[X:|Fs] = X, for s,t € T with s < .



Ezample 1.25 (Simple random walk). Let Xy € R, and let {X,,}>2; be an IID sequence with
P(X, =1) =P(X,, = —1) =1/2, n € N. Then define {S5,}°°, by

n
Sp = Z Xk, neN.
k=0
We say that the process {S,}22 is a simple random walk starting from Xo.

Now, let F' be the natural filtration generated by {X,}. Then it is straightforward to see
from Proposition 1.7 that E[X,,|F,] = 0 for m > n. This means that {S,} is an F-martingale.
Ezample 1.26. Let X € L'. Then X; := E[X|F], t € T, gives the estimation of unrealized
variable X based on the information available at time ¢. By Proposition 1.7, the process {X;}
is a martingale.

In Example 1.26, if T = N U {0}, then one might expect that X,, — X as n — oo, which is
guaranteed by the following result:

Theorem 1.27

Let G be a sub o-field of F, and X € L? a G-measurable random variable. Suppose that
the filtration G = {G, } >0 saitisfies G = o(G,, : n > 0). Then E[X|G,] converges to X
almost surely and in L2

The proof is omitted. An interested reader may refer to [39, Ch. 14].

Definition 1.28. Let T be as in Definition 1.11, and let F = {F},c7 be a filtration. Suppose
that a real-valued process {X;}er is F-adapted and satisfies X; € L, ¢t € T. We say that {X;}

is an F-supermartingale if
E[X¢|Fs] < X5 as. t>s,

and that {X;} is an F-submartingale if
E[X|Fs] > Xs as. t>s.

o If {X;} is a supermartingale (resp. submartingale), then E[X;] is nonincreasing (resp. non-
decreasing).

Problem 1.29. Let {M,;}scT be a martingale and p > 1. Show that if E|M;|P < oo for every
t € T then the process {|M|P}ieT is a submartingale.

Definition 1.30. Let F = {F;}/c[0,c) be a filtration. We say that 7 : Q — [0, co] is F-stopping
time if it satisfies {7 <t} € F; for any ¢ € [0, 00).

e If 7y and 7 are F-stopping times, then 7 V 7o and 71 A 75 are also F-stopping times. This
follows from

{7'1\/7'2§t}:{7'1§t}ﬂ{7'2§t},
{miAm <ty ={n <t}u{n <t}

A filtration F = {F; }>0 is said to be right-continuous if Fy = Fiy 1= N>t Fs for any ¢ > 0.

Proposition 1.31

Let F be a right-continuous filtration. Then the following (i)—(iv) are equivalent:
(i) 7 is a stopping time.
(ii) {r <t} € F for any t > 0.
(iii) {r >t} € F; for any t > 0.
)

(iv) {7 >t} € F; for any t > 0.

10



Proof. If T is a stopping time, then by definition {7 < t} = U2 {7 <t —1/n} € F. Thus
the implication (i)=-(ii) follows. Conversely, assume that (ii) holds. Then for k¥ > 1 we have
{r <t} = {r <t+1/n} € Fiiqyk- This together with the right-continuity of F implies
that (i) holds. The claims (i)<>(iii) and (ii)<(iv) are trivial. Thus the proposition follows. [

Proposition 1.32

Let F be a right-continuous filtration and {X;};>0 an R?-valued continuous F-adapted
process. If A is an open or a closed subset of R?, then the random variable

Ta(w) :=1inf{t > 0: X;(w) € A}

is an F-stopping time. Here, by convention, inf ) = +oo.

o 74 is called the hitting time of {X;} to A or the first exit time of {X;} from A°.

e We say that a filtration F = {F; }+>0 satisfies the usual conditions if it is right-continuous
and Fy contains all P-null sets from F.

For a filtration G = {G; };>0 and a G-stopping time 7, we define
Gr:={A€ G : An{r <t} € G, Vt > 0}.

e Here, G, := 0 (G : t > 0).

e Roughly speaking, G, is the o-algebra generated by events occurring before 7.

e If two stopping times o and 7 satisfies o(w) < 7(w) for all w € Q, then we have F, C F;.

Proposition 1.33

Suppose that I is right-continuous. Let {X;};>¢ be an F-progressively measurable process,
and let 7 an F-stopping time with 7 < co a.s. Then X, is F,-measurable.

Proof. Fix t > 0. By the assumption, the mapping (w, s) — Xs(w) is measurable from (€ x
[0,t], F: x BJ0,t]) into (R, B(R)). Moreover, the mapping w + (w,7(w) A t) is measurable from
(Q, F) into (2 x [0,t], F¢ x B[0,¢t]). Hence X,,; is Fi-measurable. In addition, by Proposition
1.31, we have {7 < t},{r =t} € F;. Therefore, for B € B(R),

(X, eByn{r<t}={X,eBIn{r<t}U{X, e BIn{r =t}
={X;n€eBINn{r<t}u{X,eB}n{r =t} e F.

Thus the proposition follows. ]

The following inequality for continuous submartingales is frequently used.

11



Theorem 1.34: Doob’s maximal inequality

Suppose that {X;}:>0 is a nonnegative submartingale with continuous paths. Then, for
every T'> 0 and A > 0,

1
P ( sup X > A) < —E[X7].
0<t<T A

Moreover, for any p > 1, if E[X?] < oo then we have

E

P
p
sup X?| < () E[X2].
0<t<T t] p—1 [x7]

Proof. Notice that by the continuity supy<;<r X is certainly F-measurable (see Problem 1.22)
and

sup X; =sup Xy,
0<t<T n>0

where {t,}>°, = QnN[0,T] such that 0 =ty < ¢; < --- and lim, o t, = 7. Then, we find that
the event A = {supg<g<n X1, > A} is represented as A = n_ Ay with

Ay ={Xo > A A =X, > A X < A k=1,2,...,n.
0 { 0= }7 k { ty Z ’OSI?Salg(—l tl< }a 5 &y y 1

Since A,in)’s are disjoint, by Chebyshev’s inequality and the submartingale property we see

n . 1
N =Y "PA) ZE Xy 1yl ZIE Xr1 4] = TEX7140]
=0
1 1
< XE[XTl{SUPogtSTXtZ/\}] < XE[XT] (121)

Letting n — oo, we obtain the first required inequality.
To show the second inequality, put ¥ = supy<;,<p Xt and observe, for K > 0,

0o K 1
BI(Y AKP =p [ WY AK 2 NdA<p [ BN yald)
0 0

YAK P
=pE [ / )J"Qd)\XT] = ——E[(Y A K1 X7]
0

< CTLEIY AK RG]

Here, we have used (1.2.1) with limit, Fubini’s theorem, and Hélder’s inequality. Thus,

E[YP]YP = lim E[(Y A K)P]YP < —Z—E[XP]V/P,
K—o0

—1

as wanted. O

1.3 Brownian Motion

Consider the simple random walk S,, = >}, X, n > 0, starting from 0. To embed this into
the continuous time framework, we use the normalized process
1 1 1
n._ 1 g _ (n) _ * (n) .~ g ...
Wy = \/ﬁS =0, Wl/n = \/ﬁSl, W2/n = \/ESQ,

12



of S,, by v/n. Then we define the continuous time process Wt(n) by its linear interpolation, i.e.,

1

- [Sl_ntj + X|nt)41(nt — Int])], t=>0.

Wt(n) —

3

Figure 1.3.1: Sample paths of Wt(n). The cases of n = 10 (left), n = 100 (center), n = 1000
(right).

We shall consider a limit of Wt(n) as n — oo.

Proposition 1.35

Let 0 = tg < t; < t3 < -+ < t,,. Then the R™Hlvalued random variable

(Wt(on),Wt(f ),. .,Wt(:)) converges in distribution to an R™*l-valued random variable

(Wio, Weyy ..., Wy,,) having the following properties:
(i) Wi, =0 as.
(i) Wy, , Wy, — Wy, ..., Wy, — Wy, | are independent.

(iii) For each k, the random variable Wy, — W}, | has a Gaussian distribution with mean

0 and variance t; — tp_1.

Proof. We will prove the case of m = 2. The proof for the general case is similar. For simplicity

set s =t; and t = t9. We see

‘Wt(n) - \/lﬁsmtj < Ln
to obtain
VLW = (S Sp)| 0
Hence, it is sufficient to show that
1 (L tn]
7 ; Xj,;xj — (W, W;) in law. (1.3.1)

13



To this end, let 7 be the imaginary unit and «, 5 € R. Then, by the IID property of {¢;},

|sn] [tn]

Lsn] [tn)
=E |exp | i(a+ B)— ZX +15\f Z

j=|sn|+1

an
=E [exp za+,8\/ \/7

[tn] — [sn] 1 L o]

T 2

It follows from (sn— 1) /n < |sn]/n < sthat |sn]/n — s. Further, by the central limit theorem,
the distribution of
\/7

X E |exp | i8

Z an X converges to the standard normal distribution. Therefore

STZJ Lth
E |exp za— Z X+ Zﬁf Z X; — E[ei(a_B)WS]E[eiﬂ(Wtfs)]

— E[emWﬁ-iBWt]‘

Thus (1.3.1) follows. O

This suggests that a process {W,} satisfying Proposition 1.35 (i)—(iii) can be seen as a limit
of {Wt(n)}. We shall call such process {W;} as Brownian motion.

Definition 1.36. A real-valued process {W;};>¢ is said to be a Brownian motion if
(i) Wy =0 as.

(ii) Independent increments property: for 0 = tg < t; < -+ < ty,, the random variables
Wi Wiy = Wy, oo o, Wy, — Wy, are independent.

(iii) Stationary increments property: for s < ¢, the random variable W; — W is a Gaussian
random variable with mean 0 and variance ¢ — s.

It should be noted that Proposition 1.35 does not guarantee the existence of a Brownian
motion. The proposition means that if a Brownian motion exists then its distribution coincides
with the limiting distribution of {W,™}.

To discuss the existence of a Brownian motion rigorously, we consider the measurable space
(C[0,00),B(C[0,00))) defined by the totality of continuous functions on [0,00). Then, the
projection m; defined by m(w) = w(t), w € C[0,00) is a measurable function on C[0,c0). For
each w € C[0,00) we can regard {m(w)}>0 = {w(t)}+>0 as the sample paths of a process. We
call {m }+>0 as coordinate process.

Now suppose that a probability measure P on (C[0,00), B(C[0,00))) satisfies, for 0 = ¢y <
tp <o <tyand ag,...,qn, €R,

Plw:w(ty) —w(tp-1) < ag, k=1,....m)




Then, the coordinate process {7} on the probability space (C|0, 00), B(C[0,0)), P) is a Brow-
nian motion. Therefore, the existence problem of a Brownian motion is reduced to that of P.
Let P, be the distribution of C[0, c0)-valued random variable W) := {Wt(n)}. Then P, is
a probability measure on (C[0,00), B(C[0,00))). If {P,} weakly converges to some P then it
follows from Proposition 1.35 that P satisfies (1.3.2).

A general theory of weak convergence of probability measures tells us that if the two con-
ditions in the statement of Theorem A.42 hold then there exists a subsequence {P,, } that
converges weakly. Indeed, we can prove that the two conditions do hold, and so a weak limit P
satisfies (1.3.2). An interested reader may consult [21, Chapter 2] and [5, Chapter 2]. Conse-
quently, under the weak limit P, the coordinate process {m;} satisfies the conditions in Definition
1.36.

The arguments above shows the following claim:

Theorem 1.37

There exists a Brownian motion on some probability space.

P is called the Wiener measure.

e We also say that a process satisfying the requirements in Definition 1.36 is a Wiener

process.

e An R%valued process W; = (W}, ..., W), t >0, is said to be a d-dimensional Brownian
motion if each W} is a Brownian motion and W} and W} are independent of each other
for i # j.

e Let PO i =1,...,d, be d copies of the Wiener measure on (C[0,00), B(C[0,00))). Then
the product measure PV := PW x ... x P is called the d-dimensional Wiener measure
on (C([0, 00); R?), B(C([0,00);RY)), and the coordinate process Wy(w) := w(t), t > 0, is a
d-dimensional Brownian motion under PY.

e It is known that for any Brownian motion there exists a continuous modification (this
follows from Kolmogorov’s continuity theorem. See, e.g., [31, Chapter 2]). Hereafter, we
always take this modification as a Brownian motion, i.e., any Brownian motion is assumed
to be continuous.

Definition 1.38. Let F = {F;};>0 be a filtration. We call {W;};>¢ as a d-dimensional F-
Brownian motion if

(i) {Wi}eso is F-adapted and a d-dimensional Brownian motion.

(ii) For s <t the random variable W — W is independent of Fs.

e Let {W;} be a d-dimensional Brownian motion and consider the augmented natural filtra-
tion G = {G;}1>0 generated by {W;}, i.e., G, := o(F}Y UN), where N is the collection of
all P-null sets from F. Then {W;} is also a d-dimensional G-Brownian motion.

e It is known that the filtration G above satisfies the usual conditions (see, e.g., [21, Theorem
2.7.9)).

Problem 1.39. Let {W;};>¢ be a d-dimensional Brownian motion. Show that
o (FVUN) =0 ({o(Why,... . Wy,): 0<t1 <+ <t, <t, n>1}UN).

There are infinitely many Brownian motion on the same probability space, as seen in the
following problem:

15



Problem 1.40. Let {W;};>¢ be a Brownian motion. Then show that the processes defined by
the following (i)—(iii) are all Brownian motions:

(i) {=Wi}eo-

(il) {Wits — Wskizo.
(iil) {eWy/(2) >0
Here s > 0 and ¢ # 0.

Next we focus on an irregularity of the sample paths of a Brownian motion.

Theorem 1.41

Let {W;} be a Brownian motion. Then

P({w € Q: t — Wi(w) is not differentiable at s € QN [0,00)}) = 1.

Proof. Fix s > 0, put A, = {w : t — Wy(w) is differentiable at s}, and take w € As. Then the
limit limp o(Wepn(w) —Ws(w))/h exists and is finite. In particular, there exist § > 0 and hg > 0
such that |[Wsyp(w) — Ws(w)[/h < 3, 0 < Vh < hg. Hence sup,,>1 n|W,q/,(w) — Ws(w)| < oo,
and so there exists N > 1 such that for n > 1 we have n|W, 1 /,(w) — Ws(w)| < N. This implies

As C U m{n|Ws—|—1/n - Ws| < N},
N>1n>1

whence by the continuity of the probability measures

P(As) < ]\}im inf P(n|Wy i1/, — Ws| < N).

—oon>1

Take § ~ N(0,1) and use W1/, — Ws ~ N(0,1/n) to obtain

inf P(n| W1/, = Wal < N) = inf P(ny/1/nf¢] < N) = inf P(¢] < Nn~'/2) = 0.

n>1

Consequently we have P(Ag) = 0. Therefore P(Uscgno,00)4s) = 0. O

e Actually, we can show that the sample paths of a Brownian motion is not differentiable
for any time almost surely We refer to [21, Theorem 2.9.18] for a proof.

e This fact suggests an unpredictability of Brownian motion in a pathwise way.

We shall see an irregularity of Brownian motions with a different criterion. To this end, we
use the total variation of {W;} in [0,t] for each ¢t > 0, defined by

k

Vir ([0,4]) := supsup Y [Wy,,, — W],
k20 ™ o

where the second supremum is taken over the partitions 7: 0 =1ty <t < --- <ty < tgy1 =1 of
[0,¢] having k + 1 points.

The total variation of {W;} is almost surely infinite, i.e., P(Viy([0,t]) = oo, ¢ > 0) = 1.
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Proof. First notice that for each partition 7 of [0, ¢],

E> (Wi — Wi )? =) (ti —ti) =t

t,em t,em

Then write Z; = (Wy,,, — Wy,)? — (tiz1 — t;) and take £ ~ N(0,1). Clearly, {Z;} is independent
and each Z; has the same distribution as that of (¢2 — 1)(t;41 — t;). Thus

2
E (Z(Wti+1 - Wti)2 - t) =K Z Zi2 = E[(€2 - 1)2] Z(ti+1 - ti)2'

tem t,em t,em

Let 7, be a sequence of the partition such that A, := SUPt, e, |ti+1 — t;| — 0. Then the
right-hand side of the equality just above is at most tE[(¢2 — 1)?]A,,. Therefore,

Qni= Y (Wi, —W,)> =t n—oo, inL?

ti€Emn

whence there exists a subsequence @), that converges almost surely.
Now, suppose that P(Vy ([0, t]) < co) > 0. By the continuity of Brownian sample paths, we
have SUDPter,, |Wi,., — Wy,| = 0, and so the probability of the event

t < lim ( sup |W751.Jrl — Wt1’> Z ‘Wti-{-l —Wm’ =0

k—o0 .
ti€Mny, ti€mn,

is positive, which is impossible for ¢ > 0. Hence P(Vyy(]0,t]) = oo) for every ¢t > 0. Furthermore,
since Vi ([0, s]) < Vi ([0, ¢]) for any ¢ > 0 and s € Q with s < ¢, we have

1 =PV ([0,s]) =00, s € QN (0,00)) < P(Viy([0,t]) = o0, t > 0).
Thus the theorem follows. O

The proof of the theorem above implies that for each partition 0 = tp < t; < --- < t, <
tne1 = t such that A, = sup [t;41 — t;| — 0,

7

n
<W>t = lim Z(Wti+1 - Wt.)2 = t’ in LQ.

We call (W), t > 0, as the quadratic variation of {W;}.
Definition 1.43. We say that an R%valued F-adapted process {X;} is an F-Markov process if

E[f(Xe)|Fs] = E[f(X)[Xs], s <t,
for any bounded Borel function f on RY.

e {X;} is simply called a Markov process if it is Markov with respect to {FX };>0.

Theorem 1.44

Any d-dimensional F-Brownian motion is F-Markov.

Proof. Let s <t. Since Wy — W is independent of F;, we can apply Lemma 1.45 below to obtain
E[f (W) Fs] = E[f (Wi — W5 + W) | Fs] = g(Ws).

Here g(y) = E[f(W; — Wy + y)].
On the other hand, o(W;) C F; yields E[f(W)|o(Ws)] = E[E[f(W2)|Fsllo(Ws)] = g(Wy),
whence the claim follows. O
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We have used the following lemma to show Theorem 1.44.

Lemma 1.45

Let (S;,S;), i = 1,2, be measurable spaces. Suppose that an Sj-valued random variable X
is independet of a o-algebra G and that an Ss-valued random variable X5 is G-measurable.
Then for any bounded Borel function f on (S; X S2,S1 X S2) we have

E[f (X1, X2)[6] = E[f (X1, 2)]|a=x,-

Proof. Let A € G. The assumption implies that Z = (X2, 14) is independent of X;. So applying
Theorem A.36, we have

ELf(X,Y)14] = / F (). (de, dy, d€) = / f(, )€ (da)pz (dy, €),

where py denotes the distribution of V. Thus by Fubini’s theorem (Theorem A.35),

BV = [ [ [ 1t ysmdx)] €7 (dy,€) = Blg(Y)14]

Since A € G is arbitrary, we are done. O

Theorem 1.46: The strong Markov property for Brownian motions

Suppose that the filtration F is right-continuous. Let {W;};>0 be a d-dimensional F-
Brownian motion. Then, for any F-stopping time 7 and bounded Borel function f on R?,
we heve

E[l{rcooy f(Xr+6)|Fr] = E[L{rcooy f(Xr)|X7], ¢ 2>0.

Proof. First notice that for every bounded Borel measurable function f on B(R) there exists a
sequence {f,}°%, C Cy(R?) such that f,(z) — f(z), € R%. To confirm this, recall that any
Borel measurable function can be approximated by simple functions and the indicator function
on Hle(ai, b;] can be approximated by continuous functions. Thus, in view of this pointwise
approximation and the dominated convergence theorem, we can assume f € Cy(R?) without loss
of generality.

Let 7 be a stopping time and put 7, = (|n7] +1)/n, n € N. Fix A € F;. Then,

E [1{r<oopf (Wigr,)14] ZE (Wiste/n)Lan{rn=k/n}] -

Since 7 < 7, we have 7, C Fr,,. Thus AN {7, = k/n} € Fj/,. Then by Theorem 1.44,

Elf (Wisr)Lantr,=k/n}] = BIELf (Werr ) Fr/nlLangr,=k/n}]
E[E[f (Wit )W /nll angrn=k/n}]
=E[E[f(Wirk/n — Wisn + 0)lle=wy ., Lan{ra=k/n}]-

Therefore,
E [1frcooy f(Weir)1a] = E [1r <o) E[f (Wi + )] le=w, 14] -

By the continuity of f and the dominated convergence theorem, letting n — oo, we obtain

E [1{T<oo}f(Wt+‘r)1A] =K [1{T<OO}E[f(Wt + SU)”:E:W.,. 1A] . (133)
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On the other hand, by Proposition 1.19, {W;} is progressively measurable. This together
with Proposition 1.33 means that W, is F,-measurable. Thus, o(W;) C F; and (1.3.3) holds
for any event in o(W.). Consequently,

E [1{T<oo}f(Wt+7') ‘]:7'] - [1{T<00}f(Wt+7') | J(WT)] )

as required. O

Theorem 1.47

Suppose that the filtration F is right-continuous. Let {W;}>0 be a d-dimensional {Fi}t>0-
Brownian motion and 6 an F-stopping time with 8 < oo, a.s. Then, Wy := Wi 9—Wpy, t >
0, is also a d-dimensional Brownian motion with respect to {F;;¢}+>0 and is independent
of ]'-9.

Proof. As in (1.3.3), we can show that
E [eifT<Wt+e—Ws+0>1A} ) [E[eiéTWt—S]lA} . t>s, AC Fog, £CRY

where 1 = /—1. Thus

E {gsT(WHe—WM)

]-'5+9} = =92y > 5 ¢ e RY

This leads to the claims. O

Proposition 1.48

Let {W;}+>0 be an F-Brownian motion, and o € R. Then the following three processes
are F-martingales.

(i) {Wi}eo,
(ii) {W? — t}i>0,

(i) {e”We=(@*/21} 5.

.

Proof. Let s <t. (i). Since W; — Wy is independent of F,, we have
E[W,|Fs] = E[W, — Wy + Wi|Fg] = E[W, — W] + W, = W

(ii). We use the representation W2 —t = (W, — Wy +Wy)2 —t = (W — Wy)% — (t — 5) + 2W (W, —
W) + W2 — s to see

E[W2 — t|Fs] = B[(W; — Wo)?] — (t — 5) + 2WE[W; — W] + W2 — s = W2 —s.
(iii). This follows from

E[eaWt—(UQ/Q)t|fs] _ ecTWs—(02/2)3E[60(Wt—Ws)—(02/2)(t—s)] _ eaWs—(02/2)s'

Problem 1.49. Apply Doob’s maximal inequality to show that
E [exp (o’ sup |Wt|>] < 00
0<t<T
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Let {W;} be a 1-dimensional Brownian motion. For t > 0 and = € R,
W;x =+ W —-W;, s>t
is a Brownian motion starting at (¢,2). Then, the probability density function

o e~lo=yl2/2(s—1)
p(Svy’t,-f) Z:%P(Ws’ Sy):m, s>, yER

of W& is called a transition density from (¢, ) to (s,y). This satisfies second order parabolic
partial differential equations

1

Osp — §8§yp =0, (1.3.4)
1

Oip + iaizp =0,. (1.3.5)

The equation (1.3.4) is called the forward Kolmogorov equation, whereas (1.3.5) is called the
backward Kolmogorov equation.

Let f be a bounded continuous function on R. Then, by the backward Kolmogorov equation
(1.3.5), the function
u(t,x) = E[f(Wr")],  (t,x) € [0,T] xR,

satisfies )
Ou(t,x) + iﬁgxu(t, z)=0, (t,z)€0,T) xR,

and u(T,z) = f(x), x € R.

20



CHAPTER 2

Stochastic Integrals

Standard textbooks for the contents of this chapter are, e.g., [31], [49], [45], [21].

In what follows, we fix a time maturity 7' € (0,00) and work on a filtered probability space
(Q, F,{Fi}o<t<,P). For the technical reasons described in Chapter 1, we assume that F satisfies
the usual conditions.

2.1 Construction

Let {Wi}o<t<r be a one-dimensional {F;}o<;<p-standard Brownian motion on (2, F,P). As
seen in Chapter 1, Brownian motions can be a mathematical model for unpredictable motions.
One might expect that an infinitesimal analysis for Brownian motions can be available as in the
case of the classical calculus. However, by Theorem 1.41, the sample paths of Brownian motions
are not differentiable. Therefore, to say nothing of a differentiation, an integral fg fsdWy cannot

be defined via the classical change of variation formula fg fs(dWs/ds)ds. Moreover, since the

total variation of any Brownian motion diverges (Theorem 1.42), an integral fot fsdWs cannot
also be defined by the so-called Lebesgue-Stieltjes integrals.

The case of simple processes

As in the case where the definition of the expectation, we start with the case of simple integrands.

Definition 2.1. We say that {¢;}o<i<7 is a simple process if there exist a partition 0 = ¢y <
tp < -0 <ty < tyy1 = T of [0,T], Fo-measurable vy € L? and F;,-measurable p; € L%
1=20,...,n, such that

dr(w) = o(w) oy (t) + Y @i(w) g, 00 (),  (tw) €[0,T] x Q. (2.1.1)
=0

For simple processes {¢;}, we define the stochastic integral or Ité integral on [0,T] of {¢:}
with respect to {W;} by

T n
1(9) E/O G dWs = oi(Wi,,, — Wa,). (2.1.2)
=0

It should be mentioned that the values at leftmost point in [t;, t;41] are adopted for the integrals,
which differs from the arbitrariness in the case of Riemann integrals.
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Our first task is to confirm that the definition (2.1.2) is well-defined, i.e., (2.1.2) is indepen-
dent of the representation (2.1.1) of ¢, as a simple process. Suppose that {X;} is represented
as

m
bt = 1/}01{0} (t) + Z S021(51',5#1](75)

i=1
for some partition 0 = sop < s1 < -+ < Sy < Smy1 = T, and F,-measurable ¢ € L?,
1 = 1,...,m. Then, with the common partition 0 =y < up < - < uk < Ugyr = T, we
see ¢y = Yy lioy(t) + Zf 0 gog’l(u“ulﬂ]( ), where ¢ is given by ¢? = ¢; = ¢}, for appropriate j
and ¢. Since the interval (u;, u;j41] is a subdivision of (t;,¢;41] for some j, we have (t;,tj41] =
UL, (us,uiy1] for some ig < i;. Hence, 0i(Wiy —Wy,) = Zl:m (W, — Wy,). A similar

=10

relation is obtained for the representation of ¢, (Ws,,, — Ws,). Therefore,
n m
= Z @j(Wth - Wt] Z SD Wiy — W) = Z 902(W55+1 - WS@)'
j=0 £=0

This shows that (2.1.2) is well-defined.
Now, we shall define the It6 integrals for general integrands by extending the definition
(2.1.2) in a natural way. To this end, we focus on the following fact:

Proposition 2.2

If {¢;} is a simple process, then
T
=E U ¢§ds} : (2.1.3)
0

([ o)

Proof. Suppose that ¢; is represented as in (2.1.1). Then,

T 2
(/0 ¢tth> = Z @i@j(WtHl - Wtz‘)(Wtj+1 - Wtj)

( j
= Z 901 + 2 Z PiPj Wtz+1 - Wti)(Wtj+1 - Wtj)‘
7>t
By the independent increments property of {W,}, for j > i we have

Elpioj Wiy — Wi, ) Wi,y — Wiy)] = Eloi(Wh oy — Wi )@ BEIW,, ., — Wy | F ]l =0

J+1

T 2
(/0 ¢tth>] ZE tz+1—tz = / ¢tdt

e The property (2.1.3) is called as the isometry of the Ito integrals.

whence

e Proposition 2.2 means that for two simple processes {¢;} and {¢}

T
E[(I(6) — I($))] = E /0 (60 — v)2dt

Thus, the L?-error between I(¢) and I(v)) is equal to the mean squared error E fOT(qSt -
y)2dt of the two stochastic processes {¢;} and {1 }.
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The case of square integrable processes

The preceding argument suggests that for a general process {¢;} having approximate sequence
{¢§")} of simple processes, the L2-limit of I(¢(™) is meaningful and can be defined as an integral

of {¢¢}.

We consider the class

T
Lo = {{gbt}ggtST : F-adapted, IE/ qb?dt < oo} .
0

Then we have the following:

For any {¢;} € Lo, there exists a sequence {qﬁgn)}, n > 1, of simple processes such that

T
lim E U b — ¢§”)|2dt] —0.
n—ro0 0

Proof*. First, consider the case where ¢;(w) is continuous for any w € €2 and uniformly bounded,
L.e., SUP(¢ w)eo,1)xq |¢t(w)| < 0o. Then, the sequence

O = prgngp te k2T (k+1)27"T), k=0,...,2"—1, n=12,...

of simple processes converges to ¢y(w) for any (¢t,w). Further, it follows that |¢E") — ¢y <

2supy , [¢s(w)| < oo, whence, by the dominated convergence theorem, EfOT |¢§n) — ¢y|2dt — 0.
Second, consider the case where {¢;} is adapted and uniformly bounded. Then, by Propo-

sition 1.21, the process

1 t

¢ == | aods, 0<t<T

€ Jt—e
is adapted, uniformly bounded, and continuous. By [43, & 19.3], we have (bga) — ¢ as
e — 0 for almost every t. Moreover, there exists a sequence {¢§n,5)} of simple processes that
approximate {d),gs)} for every € > 0. Therefore, applying the dominated convergence theorem,
we obtain

T
lim lim IE/ 16" — ¢y |2dt = 0.
0

e—0n—o00

Thus we have E fOT |¢§n’€") — ¢¢|2dt — 0 for some subsequence &, — 0.
Third, consider the case where {¢;} is adapted and is not necessarily bounded. Then, the

process <Z>§N) = ¢tl{g,)<ny 0 <t < T, is adapted and bounded, and satisfies

T T
: (V) 270 1 2 —
]\}IE)IIOOE/O |¢t - ¢t’ dt = ]\}gnooE/O (gbt) 1{|¢t|>N}dt =0. (2.1.4)

Hence, there exists a sequence {¢§”’N)} of simple processes that approximate {gzﬁgN)} for every

N > 1. This together with (2.1.4) implies that E fOT |¢>§n’N") — ¢¢|2dt — 0 for some subsequence
N,, — oo. ]

By Proposition 2.2 and Lemma 2.3, for any {¢;} € Lo there exists a sequence {q&ﬁ”)}ogtg
of simple processes such that

T
E|I(¢™) — I(¢™)* = E /0 6" — o™ Pdt, m,n €N,
T
lim IE/ 6 — o™ |2dt = 0.
n—oo 0
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This shows that {I(4(™)}°2 | is a Cauchy sequence in L?, whence there exists a limit I(¢) € L.
Moreover, I(¢) does not depend on the choice of approximating simple processes {¢§")}. Indeed,
if {%En)}ogth, n € N, are another simple processes such that EfOT |pr — wgn)|2dt — 0, then

EI1(6) — I(6™)[2 < 2B[1(6™) — I(™)[2 + 2E|1(6™) — I(6)]?
T
E / 16— g™ P + 2| 1($™) — ()] — 0.
0

The arguments above justify the following definition:

Definition 2.4. Let {¢;} € L2 and {qﬁgn)} be as in Lemma 2.3. Then we define the It6 integral
1(¢) = [i ¢1dW; of {¢} by the L*-limit of I(¢(™).

Ezample 2.5. Let us compute fOT W;dW;. In this case,

2n_1
Z jo-nrlijo-nT (je12-n) (), 0<E<T, n=12,...

is an approximate sequence of {W;}. Indeed,

T (n) 281 e(j+1)27nT
E[/( " Wt)th] Z/ (Wi — Wig—nr)?dt
0

=0 /32T
—1 e(G+)2mT 271
:Z/ (t — j27"T)dt = 221 (j+1)27"T — j27"T)% = 0.
2—nT

Thus,
on—1

/ Wtth = hm Z j2- "T j+1)2_”T — Wj2—nT) in L2.

Using 2y(z —y) = 22 —y? — (v — y)2, we see

an 1 an 1
2 Z Wig-np(Wjs1)2-nr — Wig-ng) = Wi — Z (Wiis1y2-nT — Wia—np)?.
— =

Further, the second term of the right-hand side in the equality just above converges to 1" in L2
Therefore,

T
1., T
/OWtth—2WT—2.

Ito integral as stochastic processes

We shall define the stochastic integrals on [0,t] for each ¢t € [0,7], and then construct the
processes of the integrals. For the simple process {¢;} with representation (2.1.1),

/ PsdW -—/ Pslis<pydWs = Z@k Wieint = Wiat), 0<t <T.
k=0

That is, for t € (ti,tiva], I(d) = S k(Wi o, — W) + @i(Wy — Wy,). The sample paths of
{I;(¢)} is clearly continuous almost surely.
Next, we introduce the class

My = {{M;}o<t<T : a.s. continuous, F-martingales, My = 0, E]MT|2 < o0}
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of processes. Then we have the following fundamental result:

Proposition 2.6

For any simple process {¢:}o<t<7, the process {I;(¢)}o<i<r is an F-martingale, i.e.,

{I:(¢)} € M.

Proof. Let {¢:} be given by (2.1.1). Then, for ¢ > s,

E[I($)Fs) = D orBWopant = Woend Fsl + D B [0kE Wiy ar — Wit Fi, )| Fs]

kit <s kitp>s
= Z Sok(Wthrl/\S - Wtk/\s) - Is(¢)
kit <s

O]

For t € [0,T] and for {¢s}o<s<t € L2, we define I;(¢) by the L2-limit of the stochastic

integrals It(¢(”)) of an approximating simple processes {¢§”)}0§ s<t- Then we have the following:

Theorem 2.7

For any {¢:}o<t<r € L2 there exists a modification process {J;} € My of {I;(¢)}o<i<r-
Namely, {.J;} is a continuous F-martingale and satisfies P(J; = Ii(¢)) = 1 for t € [0, T].

Proof*. By Doob’s maximal inequality (Theorem 1.34), for any fixed £ > 0,

P( sup |(6) — 16| > ) < ZE [ (e™) - IT<¢<m>>|2]
0<t<T IS
- 1 / 16" — o™ 2dt — 0

as m,n — oo. Hence there exists a subsequence ng * oo such that

P ( sup |I;(¢p" 1)) — I,(¢™))| > 2'@) <27k
o<t<T

Then we apply Borel-Cantelli lemma (Lemma A.12) to obtain
PLUN { sup |I,("+1)) — ()] > r’f} = 1.
K315k (OSt<T

From this, for almost every w € Q there exists ko(w) such that

sup [1(¢" ) (w) — L(¢"H) (w)| <27, k> ko(w).
0<t<T

This implies that for almost every w the sequence I;(¢(™))(w) of functions converges to some
Ji(w) uniformly on [0, T]. We set J;(w) = 0 for w such that the limit I;(¢("))(w) does not exist.
Then {J;} is continuous almost surely and a modification of {I;(¢)}. Indeed, by Fatou’s lemma,

E[(J: — 1:(9))’] = E[ lim (1:(6™)) — 11(¢))*] < liminf E[(1(6™)) — 11(¢))*] = 0
whence J; = I;(¢) a.s.
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Next we will show that {.J;} is a martingale. It is clear that J; € L' for every ¢. By Problem
1.18 and Proposition 1.17, {I;(¢)} and {J;} are adapted. Moreover, for s < ¢, the inequality
(a+ b)? < 2(a® +b?) for a,b € R and Jensen’s inequality for conditional expectations yield

EBHIF] - LI < 28 [ELAIF) — B+ 28|10 - |
<2 <E ’It(”) - Jtr YE|I™ - g, 2)
— 0,
whence E[J;|Fs] = Js. Therefore we have {J;} € M. O

e In what follows, the process I;(¢) = fg ¢sdWs, 0 < t < T, denotes the continuous modifi-
cation {J;}o<i<¢ in Theorem 2.7.

e The processes of the stochastic integrals can be seen as a linear map from Lo into Mo.
Namely, for {¢:}, {¢1} € L2 and «, € R we have I;(ap + 1) = ali(p) + LI (V).

o We define, for s < t,
t t s
s 0 0

Then it follows that for A € Fy

t t
/ Ladul (ocu dW, = 1A/ Pud Wy, (2.1.5)

which can be verified by the approximation argument with simple processes.

Next, we consider the stopped process .5 (¢) defined for an F-stopping time 7 (see Chapter
1). The following proposition gives a representation for Ija,(¢):

Proposition 2.8

For any {¢;} € L, and F-stopping 7,

AT t
GsdWy = / Pslis<r1dWs, 0<t<T, as.
0 0

Proof. 1t suffices to show the proposition in the case that 7 is [0, t]-valued for some fixed t € [0, 7).

First assume that 7 is represented as 7 = 2?21 tila,, where 0 <ty <---<t, =tand 4; €
Fi; such that {A;} is disjoint. From {s > 7} = Uj_ {s > t;} N A;, the fact that s > 14, 1155410
is adapted and the linearity of the stochastic integrals we obtain

t n t
/0 1{s>‘r}¢des = Z/O 1A¢1{s>t¢}¢des-
=1

Applying (2.1.5) to the right-hand side in the equality just above, we find

t n t t
/(; 1{S>T}¢SdWS = Z 1Ai /t ¢des = / ¢deS~
i=1 ¢ T

For a general [0, t]-valued stopping time 7, we consider an approximation of 7 with

on

Tn = Z(Z + 1)27 "t fip-ni<re(iv1)2-n1) -
i=0
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Since 7, — 7 a.s. and s — fos ¢ dW,, is continuous almost surely, the sequence of the random
variables [ ¢sdW converges to [ ¢sdW; almost surely.
On the other hand, by the dominated convergence theorem, as n — oo,

2 t
= E/ 1{T<8§Tn}¢gd8 — 0.
0

t t
E'/O 1{5<T}¢des_/0 1{S§Tn}¢sdws

Therefore, fg 1{5§Tnk}¢SdWS — fot lis<7}¢sdWs a.s. for some subsequence ny * co. Thus the
proposition follows. O

Ito integrals for general integrands

We shall define the stochastic integrals for the class

T
L2 10c = {{gbt}ggtST : F-adapted, / gbfdt < 00 a.s.}
0

that is larger than L£5. To this end, we introduce local martingales.

Definition 2.9. We say that {M;}:>0 is an F-local martingale if there exists an increasing
sequence {7 }n>1 of stopping times such that lim, , 7, = oo and that {M/™};>0 is an F-
martingale.

Denote by M, the collection of all F-local martingales M = {M; }o<t<7 with almost surely
continuous paths and My = 0. For {¢} € L210c, we consider the random variable

Tn :inf{s € (0,7 :/ gbiduzn}.
0

Here inf() = oo by convention. Then, since {7, < t} = {fg ¢%ds > n} and f(f 2ds is Fi-
measurable by Proposition 1.21, each 7, is a stopping time.
Now, define the process {qbin)} by
gn) = ¢t1{t§7n}'

Then {¢§”)} € Lo. By definition, we obtain

t t

/ P AW, = / Lis<ry @AW,
0 0

Moreover, by Proposition 2.8,

t tATh
/ oM AW, = / oD aw,.
0 0

Therefore, on the event {t < 7,} = {féf $%ds < n} we have fg pMdW, = fg o aw,. Also,

since . .
U {/0 ¢§ds<n}:{/0 ¢3du<+oo},

n>0

we can consistently define {.J(¢);} by
. t
J(6), = / SMdW,, 0<t < AT
0

Then {J(¢):} € Mioc and J(¢); = [y dsdW; for any {¢¢} € Lo. We write J(8); = [ ¢sdWs,
0 <t <T,and call it the Ito integral or stochastic integral of {¢+} € L2 o
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Multidimensional cases

We shall define the It6 integrals for multidimensional Brownian motions. Let W, = (W}, ..., W/™),
t > 0, be an m-dimensional F-Brownian motion.

Definition 2.10. Let 6, = (0},...,0™), 0 < t < T, be an R™-valued process such that
{01} oci<T € Lo1oc for each ¢ = 1,...,m. Then, we define the It6 integral of {6,} with re-

spect to {W;} by
t mo ot
/ 0] dW, =) / 0L AW,
0 = Jo

Similarly, for R4*™-valued process o; = (at ) 0 <t <T, such that {at }0<t<T € Lo for
each i, j, we define the It6 integral of {o,} with respect to {W;} by

mo st
/ade Z/ wag,---,Z/ o U dW?
j=1"0

T

Pathwise construction

Assume here that m = 1, and let (¢¢):>0 be a continuous adapted process. For each n € N, we
define the sequence {7;'}7° of the stopping times by

70 =0
T = nf{t > 7' ¢ — | 2 27"}, i€ NU{0},

Further, for every n € N, we define the process (Y;"):>0 by

t—Zqﬁ n ) F b (W= Win),  t€ 7, 7iq), ke NU{0},

with convention Zl ; = 0. Then the process (Y;") converges to the corresponding Ito integral
almost surely.

Theorem 2.11

For T € (0,00), we have

lim sup

s| =0, as.
=0 0<t<T

/thbs

Proof. Note that Y;" can be written as Y;* = fot ¢ydWs where ¢ = ¢n for t € [, 77!, ;). Then,
by definition, |} — ¢¢| < 27". Thus, using Doob’s maximal inequality, we see

t
- / DsdW
0

This together with Cauchy-Schwartz inequality yields

E sup

2 T
< 4E/ |7 — ¢ |*ds < 4T27%",
0<t<T 0

0o + 00
E)  sup /qbs ZE sup t"—/ ¢sdW;| <y 2VT27" < oo,
1 Ot<T 1 O<t<T 0 ot

whence
o t
Z sup —/ ¢sdWs| < 00 a.s.
1 0<t<T 0

Thus the theorem follows. O
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2.2 Ito Formula

Recall that if the function f(t,2(t)) is smooth, then the chain rule

d(t.a(t) _of O, ooy (D)
LT = S ta(®) + 5 (talt)

holds. By the fundamental theorem in calculus, this can be written in the integral form

ft,z(t)) :f(0’$(0))+/0 g‘i(s,x(s))ds—l—/o g‘;(s,x(s))dx(s).

In this section, we shall derive its stochastic version, i.e., a chain rule for f(t, X;) when X, is a
stochastic process.

In what follows, we fix an m-dimensional F-Brownian motion W; = (W}l,... . W/m), 0 <t <
T.

Ito6 processes

Definition 2.12. A d-dimensional process X; = (X},..., X{), 0 < t < T, is called an [t6
process if each component is written as

t moot
X} :X3+/ K;derZ/ HIdWi, 0<t<T, i=1,....d, (2.2.1)
0 — Jo
7j=1
where X{ is Fy-measurable, {K!} and {H,’} are adapted with fOT |K}|dt < oo, fOT(Htij)th < 00,
as,t=1,...,d,7=1,...,m.

e Propositions 1.17 and 1.21 means that the processes f(f Kids, i = 1,...,d, are adapted
and so is {X;}.

It should be noted that the representation of an It6 process is uniquely determined. To see
this, assume m = d = 1 for simplicity and that {X;} has representations

t t t t
Xt=X0+/ sts—i—/ HSdW5:X0+/ K;ds+/ HdW,.
0 0 0 0

Then,
t t
Ay = / (Ks — K.)ds = / (Hs — H.)dwWs, 0<t<T
0 0

is a local martingale, whence, by Lemma 2.13 below, we necessarily have A; = 0 a.e. This yileds
K; = K, dt x P-a.e., and so Hy = H,, dt x P-a.e.

If the It6 process Y; = f(f bsds, 0 <t < T, is a local martingale, then by = 0, dt x P-a.e.

Proof*. Let {7,}22, be a sequence of the stopping times such that 7, * +oo and {Y,™ }o<i<r
is a martingale. Then since

t
Y7 = Yins, = / b du,
0
where B&") = byl{y<r,}, the martingale property implies

t~
E/ bWdu=0, 0<s<t<T.
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Therefore,
A= {A e B([0,T]) : IE/ b du, = 0}
A

forms a o-algebra that contains {(s,¢] : 0 < s <t¢ < T}. This means that A =0((s,t]: 0<s <
t <T)=B([0,T]). Consequently, we have

E/Bg”)du_o, A e B([0,T)),
A

whence Bgn) =0, dt x P-a.e. Letting n — oo in this equality, we obtain the lemma. O

Chain rule

The following theorem gives a chain rule for It6 processes:

Theorem 2.14: It6 formula

Let X; = (X},..., X)), 0<t < T, be an Itd process with representation
. . t . m t .. .
X} =X3+/ K;ds+2/ HIdwi, i=1,....d.
0 — Jo

Suppose that f € C%2([0, T] xR%). Then {f(t, X;)}o<¢<r is an It process and represented
as

Ft, Xy) = £(0, Xo) +ZZ/ O f (5, Xo)HI AW

=1 j=1

/t{f)f(sX +28&st K+ ZZ 2 f(s,X,) szﬂﬂk}d
0

i,=1 k=1

It is useful to state the Ito formula in the case of m =d = 1.

Corollary 2.15

Assume m = d = 1. Let {X;} be an It6 process with representation
t t
X: = X +/ sts—i—/ H,dW;. (2.2.2)
0 0
Suppose that f € C%2([0,T] x R). Then we have
t
£(6.X0) = 50.X0) + [ 0uf(s, X)H.aW.
0

+ / t{asf(s,xswaxf(s,x VK, + 8§xf<s,Xs>H§}ds-
0 2

e The representation (2.2.2) of an Itd process is often written as the differential form
dXy = Kidt + HdWs.

Notice that this is only a formal expression and a simplified way of representing the integral
form (2.2.2). Further, for any adapted process {o;} such that

T
|t + 1Pt < e, s,
0
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we define

t t t
/ osd X, :/ Ussts—l—/ o HdWs.
0 0 0

With this definition, we can write
O'tht = O’t(tht + thWt)
Multidimensional cases are treated in a similar way.

Writing down the It6 formula in one dimension with the differential form, we have

1
df (t, X¢) = O f(t, Xp)dt + Ou f (t, X;)d Xy + =02

9 xxf(t7Xt)(Ht)2dt- (223)

Now suppose that f(¢,z(t)) is smooth. Then the Taylor expansion up to 2nd terms gives

ft+ At x(t + At)) — f(t,2(t) = Opf(t, x(t)) At + 0, f(t, 2(t))x' (1) At
+ %8@1’(75, z(t)) (A1) + 02 f(t, x(t)) At (t) At + %Oixf(t, z(t))z" (t)(At)? + o((At)?).

Formally, this can be written as
df (t,z(t)) = Ouf (t,x(t))dt + Oy f (¢, x(t))dx(t) + %a,?tf(t, x(t))dtdt
+ 02, f(t, x(t))dtdx(t) + %8290]’(75, x(t))dx(t)dz(t).

Comparing each term in the equality just above with one in (2.2.3), we obtain

dtdt =0,
dtdX, = Kdtdt + HidWidt = 0,
dXdX; = KEdtdt + 2K HydtdW; + H2dW . dW, = HZdt,

from which the It6’s rule:
dtdt =0, dtdWy, =0, dW dW,=dt
is derived. In multidimensional cases, similarly we have
dtdWi =0, dWidW; = §;;dt

where §;; is the Kronecker delta. Consequently, the chain rule of f(t,X;) can be derived by
expanding it up to 2nd terms as follows:

1
df (t, Xi) = Ouf (L, Xe)dt + Op f (¢, X¢)d Xy + 5aftf(t, X,)dtdt
OB T Xt X+ L02, (1, XXXy

and then by applying the Itd’s rule to the expansion.

Proof of Theorem 2.14. We will show the claim in the case where
m=d=1, fdonotdependont, f'(z)and f’(z)are bounded, {H;} = {H/} € Ls.

For the general case we refer to the references given in the last part of these notes.
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First, assume that {K;} = {K}} and {H;} are simple processes. Taylor’s theorem gives

f(x) = f(xo) + f(x0)(x — 20) + %f”(:vo)(a: —20)2 + (z — z0)%r(z, 20), (2.2.4)

where r(z,z¢) is a bounded function such that lim,_,,, 7(x,z9) = 0. We may assume that K;
and H; have a common partition 0 =ty < t; < --- <ty < tyy1 =t without loss of generality.
Then we use the representation

N
F(X1) = f(Xo)+ Y Afi
k=0

with Afy == f(Xy,,,) — f(Xy,). Furthermore, we divide A fy, as follows:

2m
Afy =Y (f(Xem) = f(Xsm ),
j=1
where s7' =t + 727 "(tg+1 — tg). Since Ky and H; are constant on [ty,tr11), we have

Xs;." - Xs;."_l = Ky, 27"t — ) + Htk(W A Ws;"_1>-

Applying (2.2.4) to f(st,n) — f(Xs;’Ll), we obtain

Afy = Zf an VK 27 ™ (b — te) + Hy, (Wam — Wen ) (2.2.5)

j—1

+ Z f” STy YK, 27" (tep1 — te) + Hy, (W /A WS}"—l))z

+ Z Ky 27" (b — ti) + Hy, (W — Ws;'il))zr(Xs;”aXsyLl)'

By the boundedness of f/(z), the first term of the right-hand side in (2.2.5) converges to

tet1 , tet1 ,
Ktk / f (XS)dS + Htk / f (Xs)dWs

tg Ly

in L? as m — oo.
Next, the second term of the right-hand side in (2.2.5) is written as I; + Iy + I3 with

2m
1 _
L= 27"t — )’ Kp > [ (Xem )27,

7=1
o
I = 27 ™ (tgpr — te) K Hy, Y (X ) (W = Wim ),
om ~
7Ht2k Z f// m = Ws;",l)2'

Since f”(x) is bounded, as m — oo, the random variable Z?ml (X sm )27 converges to
j;;:““ 1" (Xs)ds almost surely, and 2521 f"(Xsgm ) (Wem —Wm ) converges to ftk“ "(Xs)dw,
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in L2, from which I; + I converges to 0 in L?. To see a limiting behavior of I3, observe

2
tr41
E Z F" (X YWe; = W )2 /t f(X)ds
k

2
2m
<2E Z f”<Xs;-"_1)((WS§” - Ws;-"_l)z —27")

2”7L 2

// —m tk+1 1
+2E Zf f(Xs)ds

tg

By the boundedness of f”(x) and the argument in the proof of Theorem 1.42, there exist positive
constants C7 and Cs such that the right-hand side in the inequality just above is at most

2m
C1E Z((ngn — WS;_n_1>2 — 27m)2 < (27 ™
j=1

Therefore, I3 converges to (1/2)H7, ft’““ f"(Xs)ds in L? as m — oo.
Moreover, the 3rd term of the rlght hand Slde in (2.2.5) is at most

2m
2 2 2 2
2 Sljp ‘T(XS;-H’7XS§.”‘_1)‘ Ktk (tk-+1 - tk) + Htk Z(WS;W, — WS;n,_l)
=1
The term Z] 1( m _Ws}'LI)Q converges to ty1—t in L%, and sup; |r(XS§n, Xs;’il)| is a bounded
random variable that converges to 0 almost surely. Hence the 3rd term of the right-hand side

in (2.2.5) converges to 0 almost surely along with some subsequence.
Consequently, taking an a.s. convergent subsequence, we obtain

kg1 (1 1 [te+1
Afy = / F(X) K ds +/ f(Xo)HdW, + 2/ f"(X)HYds,
tr t tg

from which the It6 formula follows by summing up the both side in the equality just above from
k =0 to n.
In general cases where {K;} and {H;} are not necessarily simple, choose approximating

simple processes {Kt(n)} and {Ht(n)} such that
T T
/ |Ks — KM|ds — 0, as., E/ |H, — H™2ds — 0,
0 0

apply the derived It6 formula for simple process, and take limits. We are done. O

Ezample 2.16. Let m = 1. Recall that in Example 2.5 we compute f(;f WidW; directly from the
definition of the It6 integrals. Here we shall compute it using It6 formula. Applying Corollary
2.15 with f(z) = 2%/2, we have
1 1
df(Wt) = f’(Wt)th + if”(Wt)dt = WidW; + th,

whence

1 1 T
Wi dW; = Wi — —.
/0 T 2
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We obtain the following the product formula by Theorem 2.14 with f(x,y) = zy.

Proposition 2.17: Product formula

For one dimensional Ité processes {X;} and {Y;}, we have

d(X1Y) = X4dY; + YVid Xy + dX,dY;.

Example 2.18. Let us compute fg sdWs. Use the product formula with X; =t and Y; = W; and
dtdW; = 0 to see
d(tWy) = tdWy + Widt.

t t
/ sdWy = tW; — / Wds.
0 0

Ezample 2.19. Let {W;} is a scalar Brownian motion. Suppose that an R-valued process {X;}
satisfies the stochastic differential equation

Thus,

dX; = bXdt + odWr, (226)

where b € R and o > 0.
Applying the product formula for e =% and X;, we observe

d(e—tht) — —be_thtdt + e_bt(bXtdt + O'th) = O'e_btth~

Hence, the solution of (2.2.6) is given by
t
)Q::ewi%—+ol/ =D,
0

which is called an Ornstein- Uhlenbeck process.

2.3 Girsanov-Maruyama Theorem

In this section, we will see that a Brownian motion with drift bt 4+ W; turns out to be a Brownian
motion under a probability measure different from P.
We start with two examples of changing drifts.

Ezample 2.20. Let X be a standard Gaussian random variable on (2, F,P), i.e.,

e—a72/2
/MQD:MXeAﬁiAAﬁmd% A€ B[).

Then, for any a € R, the random variable Y := X + a of course follows a normal distribution
with mean a and variance 1 under P. Namely,

o~ (a—a)?/2

MY(A):P(YEA):/A\/%

Since the probability measures px and py are equivalent and

dz, A e B(R).

/ e—a:2/2+(1‘—a)2/2—(x—a)2/2
A

NX(A) = m

dx:Aex2/2+(xa)2/2duy(x),

we have J
X () = Y2 2 e
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Therefore, the probability measure Q on (2, F) defined by

@ _ e—aY+a2/2 _ e—aX—a2/2

dP
satisfies, for A € B(R),

QY € A) = Bl yeaye ™ /%] = / e 2y (o)

A
= d,U/iX X X)) = = 6_12/2 xXr
- [ @) = ) = [ i

Thus, Y ~ N(0,1) under Q.

Ezample 2.21. Consider the symmetric random walk S, = >""" ; X; starting from 0. Then {S,}
is a martingale with respect to the filtration {G,} given by G, = o(X; : i < n). Let {6,} be a
process such that 6, is G, _1-measurable and satisfies |6,,| < 1 for each n. Then

n
L, = H(l + (QZXZ), Lyp:=1
=1

is a positive martingale.
Define the probability measure Q on (£2,Gn) by dQ/dP = Ly, and consider the process

S, :Sn—fjei, Sy = 0.
=1

Then the Bayes formula 3 )
EQ[SnJrl’gn] = Lrle[anLlSnJrﬂgn]

and E[(1 + 011 Xn11)(Xnt1 — 0nt1)|Gn] = 0 lead to Eg[S,11|Gn] = S, whence {S,}_, is a
@Q-martingale.

Now we consider the change of drifts of Brownian motions. To this end, we show some
preliminary results.

Let {M;}o<t<7 be a nonnegative local martingale. Then {M;} is a supermartingale.
Moreover if E[My] = E[My] then {M;} is a martingale.

Proof. Let {7,}52, be a sequence of stopping times such that 7, /oo and M; is a martingale.
By Fatou’s lemma, we have

E[Mt] = E[nh—ggo Mt/\Tn] é hnl’Il)gf]E[Mt/\Tn] = E[MO] < o0,

whence M; € L' for any t. Then Fatou’s lemma for the conditional expectations yields, for
s <t,
E[M|Fs] < liminf E[Ma-|Fs| = liminf Mgp,, = M,
n—oo n—oo

from which {M;} is a supermartingale. In particular, E[My] < E[M;] < E[M,] < E[Mjy] for
s < t. Thus, if E[Mr] = E[My], then Z := M, — E[M;|F;] satisfies Z > 0 a.s. and E[Z] = 0.
This means Z =0 a.s. O
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Now, Let {W;}o<t<r be a d-dimensional F-Brownian motion, and 6, = (6},...,64), 0 <t <
T, a d-dimensional process such that {0} € L9210c, © =1,...,d. Then consider the process

t 1 t
Zy=exp|— | 0Taw, — = [ 6%ds), 0<t<T, (2.3.1)
0o 2Jo °

which is a local martingale (take 7, = inf{t > 0 : fg Z4|0s|?ds > n} as a localizing sequence).
By the previous lemma, {Z;} is a nonnegative supermartingale. Moreover, under the condition
E[Zr] = 1, it is a martingale, and we can define the probability measure Q on (£, Fr) by
dQ/dP = Zp.

Theorem 2.23: Girsanov—Maruyama Theorem

Let {Z:}o<i<T be given by (2.3.1). Then the process
t
X, ::Wt+/ 0.ds, 0<t<T,
0

is a d-dimensional F-Brownian motion under Q.

Proof. We will prove the theorem under the boundedness of {6;}. We refer to [21, Chapter 3]
for a proof for general cases.

It is clear that Xy = 0. Thus it suffices to show that for every s < ¢ and bounded F;s-
measurable random variable Y the increments X; — X is independent of Y and follows N (0, (t —
s)1). To this end, let o € R? and 3 € R. Then,

Eq [eiaT(Xt—Xs)-i—iﬂY] _ EP[ZTeiaT(Xt—XS)—i-zﬂY] _ EP[Zteich(Xt—Xs)-i-iﬁY]
— Ep [Z ef:(iafGS)TquJrfst(iaféu/Q)Téudu+iBY}
- S
_ e—\a|2(t—s)/2EP [Zsef;(m—eu)Tqu—%f: \ia—@u\zdu—l—i,BY] ’

where ¢ = v/—1 denotes the imaginary unit.
Now, by the It6 formula, the process

t 1 [t
tom o[ [ 07aw, -2 ['ia- 0], o<ier
0 0
satisfies ;
Mt =1 + / Mu(ZOé - Qu)Tqu,
0

and so is a local martingale under P. This and the boundedness of {6;} mean that it is indeed

iafau)Tquf% f: |ia79u|2du|f ]
s

a martingale under P. Thus, Ep [efst( = 1. Consequently,

EQ[eiaT(Xt—Xs)—H‘BZ] _ e"o“z(t_s)/ZE]p [Zse’ﬂz} _ e—\a|2(t—s)/2EQ[eiﬁZ]’

from which the theorem follows. O

We give a sufficient condition for which {Z;} in (2.3.1) satisfies E[Z7] = 1, without a proof,
which is known as the Nowikov’s condition.
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Theorem 2.24: Novikov

Let 6; = (0},...,0%), 0 <t < T, be a d-dimensional process such that each component
belongs to L2 10c. Suppose that

1 T
E [exp (5/ |9t|2dt>} < oo.
0

Then {Z;}o<i<7 given by (2.3.1) is a martingale.

2.4 Martingale Representation Theorem

As seen in Section 2.1, for {X;} € Ly the process {I(X);} of Ito integrals is L2-martingale.
In this section, conversely, we will show that any L?-martingale is represented as a process of
It6 integrals. In doing so, we will see that any random variable in L? is represented as an It6
integral.

Let {W;}o<i<T be a a d-dimensional Brownian motion. Recall that for any C'-function f the
fundamental theorem of calculus tells us that f(t) = f(0) 4+ fg f'(s)ds. In stochastic analysis,
however, Ito formula tells us that the analogous result f(W}) = f(0) + fot fI(WHdWw} does not
hold in general.

Throughout this section, we assume that F = {F; }o<;<7 is given by the augmented natural
filtration generated by {W;}, i.e., assume that

Fi=o(FYUN), 0<t<T.

The following is the martingale representation theorem:

Theorem 2.25: Martingale representation theorem

Let {M;}o<t<7 be an F-martingale with My € L?. Then there exists a unique R%valued
process { ¢t fo<t<7 with each component belonging to L5 such that

t
M, = M, +/ pIdW,, as., 0<t<T.
0

e The uniqueness here means that two processes coincides with each other up to null sets
with respect to the measure dt x P. Namely, if

t t
M, = M, +/ praw, = My +/ plaw,, as., 0<t<T,
0 0

for {¢i}, {¥i} € Lo, i=1,...,d, then ¢}(w) = }(w) holds for almost all (t,w) € [0,7] x Q
for any 1.

Theorem 2.25 is a corollary of the following result:

Theorem 2.26: It6 representation theorem

Let X be an Fp-measurable random variable in L?. Then, there exists a unique R%valued
process {¢;} with each component belonging to L2 such that

T
X:E[X]+/ of AWy, aus. (2.4.1)
0

Here, the uniqueness is understood as in above.
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Proof. The uniqueness follows from the It6 isometry. We prove the existence. First we prove
that it suffices to show the representation (2.4.1) holds for X = f(Wy,,...,W,,) with bounded
Borel functions f on (RY)" and 0 < #; < --- < t,, < T. To this end, consider

X = {X € L*(Fr) : the representation (2.4.1) holds for some {¢;} € Lo} .

Notice that X is a closed subspace in L?(Fr). Suppose that X contains all random variables
of the form X = 14(W;,,...,W;,) where A € B(RH)") and 0 < t; < --- < t, < T. Then, for
Y € X+, A and t;’s as above,

EY14(Wy,..., W, )] =0

or

EY T 1AWy, ..., Wi )] = E[Y " 14(Wyy, ..., W, )]

This means that two probability measures defined by Y™ and Y~ as their Radon-Nikodym
derivatives coincide with each other on the m-system C := {(W;,,..., W, ) € A: 0 =1ty <t} <
o<ty =T, Ac (RY)", n > 1}. This together with o(C) = Fr and Lemma A.44 yields
Y+ =Y~ as., whence X+ = {0}.

Next we show that the martingale representation holds for X = f(W,,...,W;, ) with f and
t;’s as above. Define the function vy, : [tp_1,tx] x (R)* = R, k = 1,...,n, inductively by

'Un(t,fﬂl, cee 71.71) = ]E[f(xlv ey In—1,Tn—1 + th—t)]7 tn—l S t S tny
and fork=n—-1,n—-2,...,1,
vt 1, ., xk) = Blogg (B, 1, - g, 2 + Wiy —t)], teor St <ty

Then by Chapter 2, the function (t;_1,%x) x R? > (¢, z) +— vp(t,x1,...,23) is O and satisfies
1
Orvy + gAmkvk =0,

where A,, is the Laplacian with respect to the variable x;. Thus It6 formula yields

Uk(tv Wt17 ceey Wtk) - /Uk(tk—lu Wt17 ceey Wtk_17Wtk_1)
t
+ Dmkvk(tk‘flv Wtk_la sy Wtk_la WS)TdWS7 tk*l <t< tk7

tk—1

where D,, is the gradient with respect to the variable xj, from which we obtain

Oty Wiy ooy Wiy ) = 1 (b1, Wayy oo, Way ) + bl dW,
te—1
with ¢s = Dy vgp(te—1, Wi, 1y s Wi 1, Ws), s € [tr—1,tg]. Notice that ¢ € Ly since f is
bounded. Consequently,

f(th, ey th) = ’Un(tn, th, ey th)
tn
— Unfl(tnfla tha ceey th71) + ¢:9rdWS
th—1
tn
— Un72(tn727 th ceey thfg) + ¢;rdWS

tn—2
Repeating this argument, we deduce

tn
F(Wey, .o, We,)) = 01(0,0) + pldwy,
0

as required. O
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We state a more general martingale representation theorem. For a proof we refer to the
references on stochastic analysis.

Theorem 2.27

For every local F-martingale {M;}, there exists a unique R%valued process {¢;} with each
component belonging to L j,. such that

@
M, = M, +/ pldW,, as., 0<t<T.
0

2.5 Stochastic Integrals for Continuous Local Martingales

This section is devoted to a brief introduction to stochastic integration theory for general con-
tinuous local martingales. As an application, we will prove Lévy’s theorem, providing a sufficient
condition for which a given continuous local martingale is a Brownian motion. Let (2, F,P) be
a (complete) probability space equipped with a filtration F = {F;}o<t<7 satisfying the usual
conditions. Recall from §2.1 that M, is the set of all continuous F-local martingale starting
from zero.

We shall start with the following theorem:

Theorem 2.28

Let M = {M;}o<t<r € Mio.. Then there exists a unique continuous, adapted, and
monotonically nondecreasing process (M) = {(M):}o<i<7 such that (M), = 0, M? —
<M> € Mloca and

n—1
sup <M>t - Z(Mti+1/\t - Mti/\t)2 — 07 (251)
0<t<T i—0

in probability as max;(t;+1 — t;) — 0, where 0 =tg < t; < --- <t, =T.

Proof. We will prove the existence of (M) as in the statement in the case where M is given by

M; = fg ¢sdWy for some one dimensional F-Brownian motion W and bounded adapted process

{¢t}o<t<r. For a proof of the general existence we refer to e.g. [49] and [21, Chapter 1].
Define (M) by

t
<M>t:/g[>§ds, 0<t<T.
0

Then (M) is continuous, adapted, and monotonically nondecreasing with (M)y = 0. By Itd
formula, we have

dAM? = 2M; ¢ dW, + $2dt,
whence M? — (M) € M. Further, for any {t;}", with 0=ty <t; <--- <t, =T,

n—1 n—1 tip1 A tip1/At
Z(MtHl/\t — Mti/\t)2 = Z [2/ (Mg — My ne)psdWs + / Qﬁds}
t

i=0 i=0 N tint
t
= 2/ KMo dW, + (M),
0

where
n—1

K,gn) = Z(MS - Mti/\t>1(ti/\t,ti+1/\t](s)'
=0

39



The continuity of M yields that K§”) — 0, a.s., as A := max;(t;+1 —t;) — 0, for any s. Further,
]Kgn)| < 2maxo<t<7 |M¢| and by Doob’s maximal inequality (Theorem 1.34)

t
E max |M;|? < 4EM?Z = 4IE/ |pe|2dt.
0<t<T 0

Thus the dominated convergence theorem and the boundedness of ¢ lead to

T T
E/ |K™ g |2ds < CE/ |K™|2ds — 0, as A — 0.
0 0
Again by Doob’s maximal inequality, for any € > 0,
P > < ! E
su € —
ogté)T ~ g2

as A — 0, whence (M) satisfies (2.5.1).
Next we will prove the uniqueness. Let A = {A4;}o<i<7 satisfy (2.5.1). Then, for any ¢ > 0,

2 2
ds — 0,

T 1 T
| wWoaw| = 5E [ [k,
0 € 0

t
/ K™ ¢ dW,
0

n—1
5
P ( sup [(M)y — A¢| > €> <P ( sup ((M); — > (M, p0 — Mipe)?| > 2)
0<t<T 0<t<T i=0
n—1 e
+P < sup |A; — Z(Mmmt — My pe)?| > 2)
0<t<T P
— 0,
as A — 0. This means supy<;<r [(M); — A¢| = 0, a.s. O

e (M) is called the quadratic variation of M. Recall that in the case where M is a Brownian
motion, the fact that (M); =t is derived in §1.3.

Theorem 2.29

Let M, N € Mj,. Then there exists a unique continuous adapted process (M, N) =
{(M, N)+}o<t<r with finite total variation such that (M, N)o =0, MN — (M, N) € M.,

and
n—1
sup [(M,N); — Z(Mtiﬂ/\t - MtiAt)(Nti+1At - Nt,-/\t) — 0,
0<t<T =0

in probability as max;(ti+1 — t;) — 0, where 0 =tg < t; < --- <t, =T.

Proof. The process

(M,N) := - ((M + N)— (M - N))

|

satisfies the required properties. Indeed,

MN — (M, N) :i((M—i—N)Z— (M + N)) —%((M—N)Q— (M — N)) € My

Proofs of the other statements are left to the reader. O

e The process (M, N) is called the quadratic covariation or quadratic cross variation of M
and N.
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e Let M and N be given by M; = fo fsdWs and Ny = fo gsdW for some f, g € L3 joc, where
{W;} is a one-dimensional F-Brownian motion. Then, the product Ité formula yields

t
<M7N>t:/0 fsgsds-

Thus we can write

AM;N; = M;dN; + NydM, + d(M, N),.

Now introduce the class
t

MY = {M € My : (M), = / asds for some nonnegative and adapted process {at}} .
0

Let M € MY. We shall first define the It6 integral with respect to M. To this end, define the
class £ of the integrands by

T
Ly = {¢ = {¢t}o<t<r : adapted, E/o |e|2dt (M) < OO} ,

As in the case of Brownian motions, for any simple process ¢ of the form

¢t 01{0} + Z SDZ t1 t7,+1]

the It6 integral fOT ¢¢dM; is defined by

T n
| ot =Y i, M),
0 i=0

The following result is an analog to Proposition 2.2:

Proposition 2.30

Let M € MY. For every simple process ¢, we have

T T
E /0 budMy| —E /0 (Ge2d(M),.

2

A proof of this proposition is left to the reader.
The class of simple processes is also dense in £} in the following sense:

Let M € /\/lg. For any ¢ € [,é\/[ , there exists a sequence (q&("))fj’:l of simple processes such
that

’ (n)
lim IEJ/ |ps — ¢y |2d(M); = 0.
0

n—oo

Proof*. Since M € MY, there exists a nonnegative and adapted process {a;} such that (M), =
fg asds and EfOT apdt < 00.
First we will prove the lemma in the case where |¢:] < K on [0,7] x Q for some constant

K > 0. Since ¢ € Lo, by Lemma 2.3, there exists a sequence (¢(")) of simple processes such
that

T
lim IE/ e — o™ 2dt = 0

0

n—oo
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This means that there exists a subsequence (¢(")) such that

lim ¢\ = ¢, dt x dP-a.e.

Jj—00

We can take gbgnj ) 50 that |¢Enj )| < K as in the proof of Lemma 2.3. Thus, by the dominated
convergence theorem,

T .
lim E/ 60 — " 2aydt = 0.
0

Jj—0o0

To prove the lemma for general ¢ € Eé\/[ , consider the truncated process qﬁEN) = Orlfig <Ny
and follow the arguments as in the proof of Lemma 2.3. O

Definition 2.32. Let {¢;} € £}, and let (¢(™) be a sequence of simple processes as in Lemma
2.31. Then we define the It6 integral fOT dedMy of {¢} by

T T
/ dedM; = lim / o™ dM, in L2,
0 n—oo 0
Asin Theorem 2.7, there exists a continuous modification J; of fot ¢sdMyg = fOT ®sloq (s)dMs.

Thus we shall call {J;} as the process of stochastic integral of ¢; and write J; = fg PsdMs by
abuse of notation.

Definition 2.33. Let ¢ € £3!. The process fg ¢sdMg, 0 < t < T, is a unique element in Mo
such that for any sequence (¢(”));’°:1 of simple processes satisfying

T
lim E/ lps — ¢ 2d(M), =0,
0

n—00
t t 2
/ psd My — / oMdM,| | =o0.
0 0

Next, we shall extend the definition of It integral to the case where M belongs to the class

we have

lim E | sup

t
MY = {M € Mipe : (M) = / asds for some nonnegative and adapted process {as}} .
0

loc

The procedure for doing this is completely parallel to the Brownian case. Let M € M?OC.
Consider the space Eé\/[l oc Of the integrands defined by

T
E%OC = {¢ = {¢t}o<i<T : adapted, / d2d(M); < oo, a.s.} .
0
Then, for any ¢ € E%Oc, the process

qbgn) = d)tl{’rngt}v 0<t<T,
is in £, where
¢
Tn:inf{OgtST:/ G2d(M), Zn}.
0
The It6 integral fot ¢sdM, is now defined as

t t
/ bsd My = / PMdM,, 0<t <7, AT.
0 0
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Problem 2.34. Let M € MY and ¢ be a left-continuous and adapted process. Show that the

loc

It6 integral fg ¢sdMy is well-defined and satisfies

t n—1
dMg = li (M, ,, — M,
/0 Os s A{I}o;%( tit1 tl)
in probability, where {t;} is any sequence such that 0 = ¢ty < t; < -+- < t, = ¢t and A =
max; (t,;+1 — ti).

e In the case where M is in Mj,. but not in ./\/l?oc, the It6 integral fg ¢sdMy is well-defined

and is in M, if ¢ is F-progressively measurable with fOT ¢?d{M); < oo, a.s. We refer to
e.g. [21], [18], [49] for details.

e In particular, if ¢ is continuous and adapted, then by Proposition 1.19, it is progressively
measurable and satisfies

t n—1
/0 ¢deS = iigl[); ¢ti(Mti+1 - Mti)
in probability, where {t;} is any sequence such that 0 = ¢ty < t; < -+ < t, = t and
A= max; (tiJr]_ — ti).

We say that a one-dimensional process X = {X;}o<i<7 is a semimartingale if it is represented
as

Xy =Xo+ /t bsds + My, 0<t<T, (2.5.2)
where ’
e Xy is Fg-measurable.
o M € Mg

e {b} is an adapted process with fOT |be|dt < o0, a.s.

Let X be a semimartingale represented as in (2.5.2). For every continuous and adapted process
¢, the It6 integral fg ¢sdXs with respect to X is defined by

t t t
/ bsd X :/ ¢Sbsds+/ GsdM,, 0<t<T.
0 0 0

Definition 2.35. Let X and Y be semimartingales. The quadratic variation (X) = {(X)¢}o<i<T
of X is defined by

t
(X>t_Xt?—2/ X dXs, 0<t<T.
0

The quadratic covariation (X,Y) = {(X,Y):}o<t<r of X and Y is defined by
t t
(XY ) = XYy — / XY, - / VX, 0<t<T.
0 0

Theorem 2.36

Let X and Y be semimartingales. Then,

n—1

(X,Y)y = XoYp + gglOZ(Xtm — X4,)(Yy,,, — Yi;), in prob.,
=0

where the limit is taken with respect to any sequence {t;}!" , with 0 =ty < t; < --- <
t, =t and A = max;(tit+1 — t;).
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Proof. Using X;Y; = XoYo + 3.0 (X411, Yiryy — X4, Vi) we observe

n—1
XiYy — Z Xi; (Y;fi+1 - Ytz) - Z Y, (Xti+1 - Xti)
1=0 ]
n—1
= XOYO + Z (Xti+1Ytz‘+1 - Xtiyti - Xti (Yti+1 - Y;fz) - Ytz (th‘+1 - th))
1=0
n—1
= XoYp + Z(XtiJrl - Xti)(Y;fiH - Kfz)
=0
From this and Problem 2.34 the theorem follows. OJ

By this theorem, we can confirm that the quadratic covariation (M, N) of M, N € M,
coincides with the one in Definition 2.35.
Here is a generalized [t6 formula for semimartingales.

Theorem 2.37

Let {X;} be a semimartingale of the form
t t
X = X0+/ bsds—i-/ osdMs;.
0 0
Let f € CY2([0,T] x R%). Then

41 (t, X0) = Ouf (1, Xt + Ou (1, X)dXo + 502,11, Xp)oFd(M)..

e A generalized It6 rule is given by

(dMy)? = d(M);, dtdM; = 0.

e Applying Theorem 2.37 with f(x) = 22, we find

(X)e = X2+ /Ot o2d(M)s.

Thus formally
(dX3)? = d(X); = o2d(M)y,

and df (t, X;) is described by

df (t, X¢) = Ou f (L, X¢)dt + 0p f (T, X¢)d Xy + %agxf(ta Xp)d(X)¢.

The multidimensional It6 formula is as follows:

Theorem 2.38

Let X = (X',..., X% a d-dimensional process such that X? is a semimartingale for each
i. Let f € C2. Then,

df (t, X¢) = O f (¢, X¢ dt+28&f (t, Xo)dX; + Z 2, (6 Xo)d(XT, X7
=1 ’.7 1
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e We call d-dimensional process with each component being semimartingale a d-dimensional
semimartingale.

e When X is represented as dX} = bidt + > ;| oikd M}, then formally
dXidX] = Z okl dMidM] = Z okt d(M?, M7),.
k=1 k=1
Moreover, we can prove that

<Xz"X- t—XOXJ+ Z/ z[d Mz MJ>
kl=1

To emphasize the remarks above, we shall state the product It6 formula as a corollary of
Theorem 2.37.

Corollary 2.39

Let M € M? loe- et X and Y be semimartingales with representation
t ¢
X = Xo+ bsds +/ osdMs,
0 0

t t
Yi =Yy + fsds + / gsd M.
0 0

Then,
t
<X7 Y)t = XoYo + / Usgsd<M>s'
0

Recall that by definition of the quadratic covariation, for semimartingales X and Y,
t t
XY = XoYo +/ Ysd X, +/ XodYs + (X, Y ).
0 0

The existence of the correction term (X,Y) makes the It6 calculus different from the ordinary
calculus. The Stratonovich integral provides a useful means of developing stochastic analysis as
in ordinary calculus.

Definition 2.40. Let X and Y be one-dimensional semimartingales. The Stratonovich integral
fg Y, 0dX, of Y with respect to X is defined as

t t
1
/ Y;0dX, := / YidXs+ —(X,Y);.
0 0 2
e By definition, for semimartingales X and Y,
t t
XY= Xo¥o+ [ YoodX.+ [ X,oav.
0 0

e If X; and Y; are represented as

dXt = btdt + O'tht,
dYy = fidt + gidM;

for some M € ./\/l?oc, respectively, then

t t 1 [t
/ Y. 0dX, = / Y (bsds + osdMs) + 2/ 0s9s(M)s.
0 0 0
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The following chain rule holds for the Stratonovich integral under more smoothness condition
than that in the It6 formula:

Proposition 2.41

Let X = (X',..., X% be a d-dimensional semimartingale, and f € C3(R?). Then

d
df (Xe) =D 0, f(Xy) 0 dX].

=1

Proof. For simplicity we shall assume that d = 1 and X} is represented as dX; = bsdt + odM;
with (M); = a¢dt. Theorem 2.37 yields

4F(X) = F(X)dX0 + 3 f/(X)d{X),
= f/(Xt)dXt + %f”(Xt)O'tQCLtdt,
as well as

4F(X0) = F(X)dX0 + 5 7 (Xd(X),

= f,/(Xt) <bt + ;f’”(Xt)afat> dt + f”(Xt)O'tht.

Thus, by definition of the Stratonovich integral, we have
1 1
(X)) odXy = f/(X)dX; + §df/(Xt)dXt = f(Xy)dX; + 3 " (Xy)olagdt
= df(Xt)7

as required. ]

Proposition 2.42

Let X and Y are one-dimensional semimartingales. Then,

t n—1 1 1
/o Y,0dX, = giglo (5 b+ §Y}i+1> (Xt,,, — Xt;), in prob.,
=0

where the limit is taken with respect to any sequence {t;}I'( with 0 =ty < t; < --- <
tn =tand A = maxi(t,url — ti).

Proof. From this and (Y, , +Y;,)/2 = (Y3,,, — Y4,)/2+ Yy, we find

n—1 1 1 n—1 1 n—1
Z (2}/;5#1 + QY;%) = Z Yi, (Xt¢+1 - Xy,) + B} Z(Y;fiﬂ - Yti)(th‘H - Xu)
i=0 i=0 i=1
¢ 1
5 / YdX. 4 (X Y),
0
in probability as A — 0. Thus the proposition follows. 0

The notion of the backward Ité integral will be used in the analysis of the reverse-time
diffusions (see Section 3.8).
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Definition 2.43. Let X = {X;}o<i<7 and Y = {Y;}o<i<7 be continuous processes. If there
exists a limit of

n—1
Z Ki-{—l (Xti+1 - Xti)
=0

in probability as A — 0, where the limit is taken with respect to any sequence {t;}? , with
0=ty <ty <---<t,=tand A =max;(t;+1 —t;), then we write fg Y, dX; for this limit and
call it the backward Ité integral.

Proposition 2.44

Let X and Y be one-dimensional semimartingales. Then,

t t
/ stXt:/ Ysd X + (Y, X):.
0 0

Proof. Use the relation Y;,, (X, , — Xy,) = Vi, ( Xy, — Xo) + (Ve — Y3,) (X4, — Xy,) and
apply the results from Problem 2.34 and Theorem 2.36. ]

We close this section by showing Lévy’s theorem as announced in the beginning.

Theorem 2.45: Lévy’s characterization of Brownian motions

Let M = (M?',--- M%) be such that M*® € M, for each i, and (M?, M7); = 6;;t, where
d;; is the Kronecker’s delta. Then, M is a d-dimensional F-Brownian motion.

Proof. We will show this theorem in the case where d = 1 and M = M' € MY . For a proof of

loc*
general cases we refer to, e.g., [49] and [21]. Let {7,,}7%, be a sequence of stopping times such

that {Miar, Yo<i<T is a martingale. Since M? — (M) € M., we find
E[M?,,,) = E{(M)irr,) = E[t A7) <t
Applying Fatou’s lemma, we have

E[MP) =E [ lim M2, | <lminfE[MZ, ]<t,

n—o0

whence M € M§.
By It6 formula and (M), = t,

2
de* M = jgeMeqng, — %eiﬁMtdt

for ¢ € R%, where i = /—1 is the imaginary unit. Since |e®M¢| = 1, the complex valued process
fg e“Msd M, is a martingale. Thus, for any A € F, and t > s,

E [eiﬂMt*MshA} — P(A) — g;/tE [eiﬂMr*Ms)lA] dr.

Solving this ODE, we obtain
. €2 &2
E [elf(Mt*MshA} =P(A)e 2" =E {62(’58)1,4] :

Since A € F; is arbitrary, we deduce

. ¢
E [ezg(Mt—Ms) }-5} = 6—7('5—5), t > s,

from which the theorem follows. O
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CHAPTER 3

Stochastic Differential Equations

3.1 Introduction

Ordinary differential equations with white noise

We are concerned with ordinary differential equations (ODEs) with random noises. For example,
such ODEs can be of the form

4,

a = b(t,Xt) —|—0’(t,Xt)§t, (311)

where {&} is a stochastic process providing random disturbance to the system process {X;}.
In science and engineering, a natural candidate for the disturbance processes is a Gaussian
white noise, i.e., it is natural to assume that & is a Gaussian process with mean zero and
covariance E[&&s] = 6(t — s), t,s € R, where (-) is the delta function. Unfortunately, this
natural formulation for nonlinear ODEs (3.1.1) comes up against an obstacle since the delta
function is not a usual function but a distribution rigorously. Indeed, {&; }+cr is not a stochastic
process in the usual sense but a random distribution (see Itd [20]).

Changing the approach to (3.1.1), we use the fact that & is given by the time derivative, in
the sense of the distribution, of a one-dimensional Brownian motion W; (see again [20]). Then,
replacing & with dW;/dt in (3.1.1), we get

dXt th
— =b(t, X t, X¢y)——
dt (7 t)+o-(a t) dt ’

whence, by a formal integration,
t t
X = Xo +/ b(s,Xs)ds—i—/ o(s, Xs)dWs. (3.1.2)
0 0

The integral equation (3.1.2) is equivalent to (3.1.1) formally, as well as can be defined rigorously
since the term fot o(s, Xs)dWs is understood as the It6 integral. Then, we write

dXt = b(t, Xt)dt + O'(?‘J7 Xt)th (313)

for (3.1.2). This is a modern approach to stochastic differential equations (SDEs), which is
originated by It6 [42] (see also It6 [19]) and has achieved remarkable successes.
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In this chapter, we present some basic results on SDEs. We refer to [31], [49], [45], [21] for
more detailed accounts. Before presenting examples of SDEs, we give a formal characterization
of the coefficients b and ¢ in (3.1.3). By (3.1.2), we have

t+At t+At
Xerar = X +/ b(s, Xs)ds +/ o (s, Xs)dWs.
t t

Under the assumption that {o(t, X;)} € Lo (recall from Chapter 2), it follows that at least
formally,

. 1
b(t,x) = Al}fI{}O EE[XH-At - Xi| Xy = 7], L)

. 1
o(t,z)? = AI}SIQO EV[XHAt — Xy| Xy = zl.

The functions b and o are called the drift and diffusion coefficients, respectively.

Black—Scholes model for stock prices

Let us consider a stock with price S; at time ¢ > 0. Then the return rate R;;4a; of this stock
between t and t + At is given by Ry ¢yat = (St4at — St)/S. Using the normalization I; ;4 ¢ of

Rypyne, 1e, Lgpne = (Rt,t+At - E[Rt,tJrAt])/\/ V(Rt,t+At)a we have

Riiar = B[Ry ae] + \/ V(R e ae) Ity e
2

Now, assume that the expected return rate b = E[R;+a¢]/At per time and the variance o° =
V(R¢t+a¢)/At of the return rate per time are constant with respect to t. Then,

Sitat — St

S = bAt + oV At[t,t-‘rAt-
t

Thus,

) 1
Alirilo EE[SH-At — Si| St = s] = bs,

. 1
Alir\r,lo EV[SHN — 4|8t = 5] = 022

So, assuming that {S;} is described by an SDE and then using (3.1.4), we obtain

dSt = St(bdt + O'th). (315)
This SDE is called the Black—Scholes model. As remarked in the above, this equation should be
interpreted as the following integral form:

t t
Sy = So + b/ Spdr + o/ SpdW,.
0 0

Now suppose temporarily that there exists a solution S; to the equation (3.1.5). Then,
applying It formula for log(.S;), formally we have

d(lOgSt)—?t—@StU dt—bdt+0th—§U dt.

Thus the solution S; of the Black—Scholes model is explicitly given by

Sy = Spexp((b— %/2)t + aWy).
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Figure 3.1.1: A sample path of Black—Scholes model in the case of b = 0.5 and ¢ = 0.2.

Predator-prey model

Consider a biological system consisting of two species where one is a predator and the other is a
prey, whose populations at time ¢ are denoted by X} and X?, respectively. We assume that in a
small time interval [t, ¢ + At], the probability of the predator being given a single birth without
death and the population of the prey remaining unchanged is

PAX}! =1,AX? = 0| X} = x1, X} = x2) = biw1 At + o(At).
Similarly, we assume
P(AX! =0,AX? = 1| X} = x1, X} = 22) = baxa At + o(At),
P(AX} = —1,AX? = 0| X} = x1, X} = 23) = dyz1 At + o(At),
P(AX}! = 0,AX? = —1| X} = 21, X} = ) = doxo At + o(At).
In view of the predator-prey relation, we further assume that bo, d; are positive constants and

that
by = c1x2, do = coxq,

with some positive constants ¢, co. Moreover, the probabilities of multiple births or deaths are
assumed to be o(At). Then, it is straightforward to see

1
lim —E[AXMX) =21, X? = a9] = —
AmA AX} Xy =21, X{ = 23] = (c122 — dy)21,

1 1yl _ 2_ .1
Alirilo EE[AXt | X; = x1, Xi = x2] = (by — comy) o,

. 1
AllltI{‘lo EV[AXﬂth =21, X7 = 2] = (c19 + dy) 1,

1
lim —

ANO At

. 1
Alir\l"lo ECOV[AX%, AX?’th =1, Xt2 = 332] = 0.

V[AXE|X,51 = l‘l,XtQ = .'EQ] = (b2 + 621'1){[:2,
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By a multidimensional analog of (3.1.4), we derive the SDE

dX} = (e X? —d) X} dt +\/(a X? + dy) X} dw}},

dX? = (by — o X ) XPdt + 1/ (by + co X} ) X2AW

for the predator-prey system, where (W}, W2) is a 2-dimensional Brownian motion.
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Figure 3.1.2: A sample path of the predator-prey model in the case of dy = 0.01, by = 0.05,
c1 = co = 0.005, and X& = Xg = 100. Generated by the Euler-Maruyama method (see Section

3.4).

3.2 Existence and Uniqueness

In what follows, (2, F,P) is a complete probability space equipped with filtration F satisfying
the usual conditions, and {W,} is an m-dimensional F-Brownian motion on (2, F,P). We fix a

time horizon T € (0, c0).

Definition 3.1. Let b: [0,7] x R — R? and o : [0, 7] x R? — R¥™ he Borel measurable, and
let £ be an Fy-measurable random variable. We say that an R%-valued process {X¢}o<t<7 is a

solution of the stochastic differential equation (SDE)
dX: = b(t, Xy)dt + o(t, X¢)dW;
with initial condition Xy = £ if the following conditions are satisfied:
(i) {X:} is a.s. continuous and F-adapted.
(i) fi |b(s, Xs)|ds + [ |o(s, Xs)[2ds < oo, aus.

(i) {X:} is represented as
t t
X =¢ +/ b(s, Xs)ds +/ o(s, Xs)dWs, as., 0<t<T.
0 0

The following is the fundamental existence and uniqueness result for SDEs:
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Theorem 3.2

Suppose that the functions b, o and the random variable £ in Definition 3.1 satisfy

(i) Lipschitz continuity: there exists Ky > 0 such that

|b(tv$) - b(tvy)| + ‘U(t7w) - U(t7y)‘ < K0|l‘ - y|7 (t’ l‘), (t7y) € [OvT] X Rd,

(ii) Linearly growth condition: there exists K7 > 0 such that
b(t,z)| + |o(t,z)| < K1(1+ |z]), (t,z) € [0,T] x R<.
(iii) ¢ € L2
Then, the stochastic differential equation
dX; = b(t, Xy)dt + o(t, Xy)dW, (3.2.1)
with initial condition X¢ = £ has a solution { X };c(o,7) satisfying E [supg<i<r | Xt[?] < 0.

Moreover, the existence of the solution is unique in the sense of the indistinguishability,
i.e., for any other solution {Y;} we have X; =Y}, 0 <t < T, as.

We prove Theorem 3.2 with arguments similar to those in the existence proof for ordinary
differential equations. Recall that Gronwall lemma plays an important role in that case.

Lemma 3.3: Gronwall lemma

Suppose that a nonnegative, bounded and Borel function v : [0,7] — R satisfies
t
v(t)SC—i—A/ v(s)ds, 0<t<T
0

for some positive constants C, A. Then,

o(t) < Ce, 0<t<T.

Proof. By an iterative application of the condition on v, we obtain

t s
v(t) < C + CAt + AQ/ / v(r)dr
0 JO

A2t2 Antn t S1 Sn
<C+CAt+ 02 4+ 4 ¢ —l—A"H/ / / V(Snt1)dspy1dsy - - - dsy
0 JO 0

n!

for n > 1. The last term is at most supg<;<7 v(£)(At)"/(n 4 1)! and goes to zero as n — co.
Thus the lemma follows. O

Proof of Theorem 3.2. First we show the uniqueness. Let {X;} and {Y;} be two solution, and put
as = b(t, Xt) — b(t, Y;g), Yt = U(t, Xt) — J(t, Y%) Then, from E[maXOStST ‘Xt — Y;’Z] < 0o and the
Lipschitz continuity, we have {~;} € L5. This together with the inequality |x+y[? < 2(|z|?+|y|?)
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yields

2
<2E

2
+2E

t 2

YsdW
0

t
/ asds
0

t t
H&—Efzﬂ/aﬂ&ﬂ/%ﬁ%
0 0

t t
< 2tE/ a52ds+2E/ Ivs|*ds
0 0
t
< 2(1+t)K§/ E| X, — Ys|?ds.
0

Hence the function v(t) := E|X;—Y;|? satisfies v(t) < 2(1+T) K2 fo s)ds. Gronwall lemma now
implies that v(¢) = 0, which means that X; and Y; are modifications of each other. Moreover,
since these two are continuous, by Proposition 1.19, X, and Y; are indistinguishable.

Next we prove the existence. Put Y;(O) = X, and then define Yt(k), k=1,2,..., recursively
by

t t
YO =X+ [ bs Y+ [ ol Y)W, (3:2.2)
0 0

Then by Xo € L? and the linearly growth condition for o, we find {o(s, Y )} € L5. From
this and Doob’s maximal inequality it follows that E[maxo<i<r \Y;f( )\ ] < oo. Applying this

argument recursively, we deduce that E[maxo<;<7 |Yt(k) 1] < oo for every k > 0. Then, as in the
case of the uniqueness proof, for k > 1,

E max [V — v(012 < (24 8T) K, IEJ/ Y F) — vy k=124, (3.2.3)

0<s<t

Here, we can use Doob’s maximal inequality to estimate Emaxg<s<; | f(f 'yudst. Hence, by
repeating the estimation (3.2.3) recursively, we obtain

KTk
E max [V —yPP2 < g, 2830
0<t<T k!

k>0,

where
Ky =E max [VY - V912 < o0
0<t<T

and K3 = (2 + 8T)KZ. Chebyshev’s inequality then leads to

4K3T)*
P( max |Y, (k+1) —Yt(k)| >27F) < Kgi( 3T) .
0<t<T k!
The series for the sequence in the right-hand side of the inequality just above converges, whence
by Borel-Cantelli lemma, there exists Qo € Fpr with P(Qy) = 1 such that

R PR (O PN RSN
mae [V @) — @) <278 k2 now), we .

for some ng(w) defined for each w € y. From this Zzino(w) maxo<;<7T |Yt(k+l)(w) — Yt(k) (w)] <
oo and so Yt(k) (w) converges uniformly on [0,7]. Therefore, there exists a limiting function
Xi(w) such that supOStST]Y;(k)(w) — X¢(w)] — 0 (see, e.g., [47, ¥ 13.4]). Since a uni-
formly converging limit of continuous functions is also continuous, we deduce that {X;}o<i<r

is adapted and a.s. continuous. Further, by Fatou’s lemma, E[maxo<i<r |X:|?] < co. Hence
in particular, {X;} satisfies the conditions (i) and (ii) in Definition 3.1. Moreover, since

fOT |a (t Y(k)) — o(t, Xt)|2dt — 0, a.s. and there exists some subsequence k, / oo such that
fo s, YF)dW, — fo s, X,)dW, a.s. On the other hand, we have Y™ — X, as. and

fo (5,YFn)ds — fo (s, Xs)ds, a.s. Thus, letting k = ky,, n — oo in (3.2.2), we deduce that
{X}} satisfies the condition (iii) in Definition 3.1. O
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3.3 Explicit Solutions

We describe classes of SDEs having explicit solutions.

Linear cases

First assume that m = 1, i.e., consider the case of a scalar Brownian motion. It follows from
Example 2.19 and Theorem 3.2 that the unique solution of the SDE

dX; = bXidt + odWy
is given by
X, =X+ / t =) aw.
Then let us consider the more general SDE ’

dX, = [a(t) + b(t) X, ]dt + o (£)dW;, (3.3.1)

where a,b,0 : [0,7] — R are bounded and Borel measurable. As in Example 2.19, using the
product It6 formula, we observe

@ (e Io¥BX, ) = e Do MO a(t)dt + o (£)aW).

Thus, the unique solution of (3.3.1) is given by

t t t
X, = el s x4 / els M (q(s)ds + o (s)dW).
0

Problem 3.4. Here consider general cases m > 1 and the scalar SDE
dX; = [a(t) + b(t) Xg)dt + [ Xy (t) + o(t)]TdW3, (3.3.2)
where a,b : [0,7] — R and 7,0 : [0,7] — R™ are bounded and Borel measurable. Show that

the unique solution of (3.3.2) is

Xo= 2 [Xo+ [ 270l =26 oteds + [ 270t Taw]

7 = exp [/Ot (b(s) _ ;7(s)|2) ds + /Ot'y(s)TdWS] |

Problem 3.5. Consider the d-dimensional SDE
dX: = (a(t) + b(t) Xy)dt + o (t)dWs, (3.3.3)

where a : [0,T] — R, b : [0,7] — R™4 and o : [0,7] — R¥™ are bounded and Borel
measurable. Assume that Xy has a d-variate normal distribution with mean vector p and
covariance matrix p. Then, show that {X;};>¢ is a Gaussian process with the representation

where

X; = ®(t) (Xo + /Ot ®!(s)a(s)ds + /Ot @1(8)0(8)dWs> )

and that the mean vector p(t) = E[X;] and the covariance matrix p(s,t) = E[(Xs —m(s))(X; —
m(t))7], s,t > 0, are given respectively by

) = 00 [+ [ @7 Gpalo)as]
p(s,1) = B(s) [p + /0 o <I>1(r)a(r)(<1>1(r)a(r))Tdr} o(1)T.
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Here, a process is said to be Gaussian if any finite dimensional distribution is jointly normal,
and ®(¢) is the unique solution of the matrix ODE

Problem 3.6. Solve 2-dimensional SDE

0 -1 0
dX; = (1 ; )Xtdt+ <02> AW,

where {W;};>0 is one-dimensional.

Reducible cases
Here assume m = 1. Consider the one-dimensional SDE

1
dXt = §U(Xt)O'I(Xt)dt + O'(Xt)th, (334)

where o(-) > 0. To obtain the solution, we use the function

|
g(x):/o @df, (3.3.5)

defined for x in a possible state space of {X;}. Then, since

(g7 (@) =0(g (), (g )"(x)=0(g" (z))d' (g7 (z)),

the process X; := g Y(W; + g(Xy)) satisfies (¢71)(W; + 9(Xo)) = o(X;) and (¢~ 1)"(W; +
9(X0)) = o(Xt)o'(X¢). Thus, by Ito formula, we find that X is a solution to (3.3.4).

1
dX; = 5a2Xtdt +ay/1+ XZdW,.

1 2/ /a
dX, = ia(a—l)th 290t + ax} AW,

Problem 3.7. Solve

Problem 3.8. Solve

Next consider the SDE of the form

X, = (aa(Xt) + ;U(Xt)al(Xt)> dt + o(X,)dW,, (3.3.6)

As in the previous case, we observe the process X; := g~ (at + W; + g(Xo)) satisfies (3.3.6),
where g is given by (3.3.5).

Problem 3.9. Solve

1
dX; = <2Xt+\/1+Xt2> dt + /14 X2dW,.

Problem 3.10. Solve

dXy = —(a+ B2X)(1 — X)dt + B(1 — X2)dW;.
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Generalizing these results, we have the following. The proof is left to the reader.

Proposition 3.11

Suppose that b is Lipschitz continuous on R and ¢ is of class C?(R) with bounded first
and second derivatives. Then the unique solution {X;};>¢ of the one-dimensional SDE

dX; = [b(Xt) + %U(Xt)a'(Xt)} dt + o(Xy)dW, (3.3.7)

is represented as X; = u(W;,Y;), where u : R? — R is the solution of the ODE
u(z,y) = o(u(z,y)), u(0,y) =y,
and the process {Y;}1>0 is the solution of the ODE
dY; = (Wi, Y)dt, Yo=Xo

with

e =esp (= [ o (uz )iz ) ute. )

3.4 Numerical Solutions

When explicit solutions of SDEs are unavailable, we need to approximate the equations to
generate the sample paths in computer simulations or to compute the expectation of quantities
involving the solutions. Here we present the Euler-Maruyama method, which is a most popular
one for the time discretization, and can be seen as a stochastic version of the Euler method in
ODEs.

Consider the SDE (3.2.1) with the drift coefficient b and the diffusion coefficient o. We
impose the following conditions on b and o:

There exists a positive constant Cy such that

’b(ta$) - b(s,y)| -+ ’U(tam') - O'(S,y)’ < CO(’t - 3’1/2 + |x - y‘)a t,s € [0>T]? T,y € RY.

Assumption 3.12 means the conditions in Theorem 3.2. Thus, under Assumption 3.12, there
exists a unique solution {X;} of (3.2.1).
First, set ty = kT /n, k =0,...,n. We start with the representation

2 23
X, = Xt,_, +/ b(s, Xs)ds +/ o(s, Xs)dWs.
th—1 tr—1
Since {X.;} has continuous sample paths, the approximation X, ~ X;, ,, s € [tg_1,t], is

reasonable for sufficiently large n. Applying this approximation, we have

1k ti
th ~ th,1 +/ b(tk_l,thil)dS +/ o-(tk—letkfl)dW.%

te—1 te—1

which is equivalent to

Xt = Xy + 01, Xop )tk — te1) + o (te—1, Xoy ) (Wey, — Wy ).
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The random variable W;, — W;, | follows the normal distribution with mean vector 0 and
covariance matrix (7/N)I4, which can be generated by pseudo random numbers. Therefore, the
sequence {Yj}7_, defined by

Vi1 = Y + b(te, Yi) (tp1 — te) + o (te, Yi) Wi — W) (3.4.1)

with Yy = X is a candidate of an implementable numerical solution for (3.2.1).
Hereafter, we discuss a rate of convergence of {Y}} to {X;}.

Suppose that Assumption 3.12 hold. Let {X;}o<t<7 be as above. Then, there exists a
positive constant C' such that

E|X; — X,?<C(t—s), 0<s<t<T.

Proof. Using the inequality (a + b)? < 2(a® + b?), we see

2

t t
/b(T‘,Xr)dT +2E /O‘(’F,Xr)dWT

E|X; — X,|> <2E [

2
] . (3.4.2)

By the linear growth condition, the 1st term of the right-hand side in (3.4.2) is at most

2

¢
2K / b(r, X, )dr

0<r<T

t
< 2(t — s)/ E|b(r, X,)|?dr < C' (1 +E

sup \XTPD (t—s),

where C' is a positive constant. A similar estimation works for the 2nd term of the right-hand
side in (3.4.2). ]

Roughly speaking, the approximation error for the Euler-Maruyama methods is O(n_l/ 2).

Theorem 3.14

Suppose that Assumption 3.12 hold. Let {X;}o<;<7 be as above and let {Y;}}_,, n € N,
be the sequences defined by (3.4.1). Then, there exists a positive constant C such that
Ch

max [E|X;, — Yk\z < —.
k=0,1,....,n n

Proof. By C we denote positive constants that do not depend on n and £k =0,1,...,n and that
may vary from line to line.

First notice that Yj, is F;,-measurable and in L? for each k = 0,1,...,n. To confirm the
latter property, assume that Y, € L? for some k and observe

[Vir1]? < 3|Ye|? + 3|b(te, Yi) |2 (A1)? + 3|o(tg, Yi) AW 1|2, (3.4.3)

where At = T'/n and AWy 1 = Wy, — Wy, From (3.4.3), the linearly growth conditions on
b,o, and E|Y;|2|AWi 1]? = E|Y3|*E|AW,41|? it follows that E|Yj41|? < CE|Y;|? < .
Next, observe

trt+1 tr4+1
thH — Yk+1 = th -Y. + / Abgds + / AO‘des,
tr tr
where
Aby :b(S,XS) —b(tk,Yk), Aoy :O'(S,XS) —O'(tk,Yk), S € [tk,tk+1).
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Furthermore we have

Xt — Yara |
2
+

2 tet+1

+2(Xy, — Vi)' / Abgds
tg

9 tr4+1
=Xy, — Vi]? + / Ao dW,

tr41
/ Abds
tr tr

tet1 et T rtea
+2(Xy, — Yi)T / AcsdWs + 2 ( / Absds> / Ao dWs.
123

tk ti

By Cauchy-Schwartz inequality, the Lipschitz continuity of b, and Lemma 3.13,

Tt 2
E / Abgds
tg

tet1
< At/ E|Abg|?ds

ty

tpi1
< CAt/ E{S - tk + |Xs - th|2 + |th - Yk‘Q]d‘s
tg

< O(AL)? 4 C(AY’E| Xy, — Y|

Using It6 isometry, similarly we have

tr41 2
/ AogdW,| < C(At)? + CALE|X,, — Yil?,
tr
lkt1
/ Ao gdW

tht Tt tit1
2E </ Absd3> / Ao, dWs <E / Abgds
tr tr tr tE

< C(A)? + CALE| Xy, — Yil*.

E

whence
2

+E

2

tkt1 1 2

Using Young’s inequality ab < ca?/2 + b/(2c¢) for a,b € R and ¢ > 0, we find
te+1
2E(Xy, — Yi)T / Abgds < AtE|X;, — Yil* + / Abgds
t At 1y,

< O(At)? 4+ CALE| Xy, — Yil?.

E

As for the remaining term, we have

bt let1
E(th - YR)T/ Ao, dWs =E {(th — Yk)TE |:/ Ao dW

173 123

SR
Collecting the estimates above, we deduce
E|Xy,,, — Yes1]> < (1 + CAYE[X,, — Vi[> + C(AY?, k=0,...,n— L.
From this the theorem easily follows. O
Ezample 3.15. Let us examine the Euler-Maruyama approximation for the SDE
dX, = X,(0.5dt +0.2dW;), 0<t<I,

with Xy = 1. The time grids are set to be t; = i/n, i = 0,1,...,n. We execute the simulation
M =10 times and compute the resulting mean squared error

M
1
2 _ (k) v (k)\2
L*-error = max o kE_l(Xti Y,)7

where {Xt(ik)} and {Y;Ek)} denotes the k-th sample paths of the true and approximate solutions,
respectively. See Figure 3.4.1 below.

Problem 3.16. As in Example 3.15, evaluate the performance of the Euler-Maruyama method
for the SDE in Problem 3.7.
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Figure 3.4.1: Sample paths of the true and approximate solutions in the case of n = 2% (left)
and plotting L2-errors for n = 23,24 25 26 27 28 (right).

3.5 Fundamental Properties

We write {Xﬁ’x}tgng for the solution of the SDE with initial condition X; = z, i.e.,
S S
Xbe = x—i—/ b(r, Xﬁ"”)dr—k/ o(r, X5 dW,. (3.5.1)
t t

Notice that we can ensure the existence and uniqueness of this SDE by considering the SDE on
[0, T] with coefficients b(s, z) = b(s, x)1 1 (r) and o(r,x) = o(r,z)1y 7 (r), provided that b and
o satisfy the conditions (i) and (ii) imposed in Theorem 3.2.

In what follows, we often drop the superscripts ¢,  in (X2*) and write E“*[Z] for E[Z] when
Z depends on (X%"). Using It6 formula, we observe

1
b(t,z) = lim —EH*[X - X
(t0) = Jimy a1 Xeeae = Xl

1,
o(t,x)o’ (t, ) = Aim EEt’ [(Xerar — X)) (Xipar — Xo)T].

(3.5.2)

Here, the expectations are taken to be component-wise. In general, the coefficients b(¢, z) and
o(t,z) of the SDE are called the drift term and the diffusion term, respectively.

Problem 3.17. Prove (3.5.2).

Markov property

We begin with Markov property.
Theorem 3.18

Suppose that b, o, and & satisfy the assumptions in Theorem 3.2. Then the unique solution
{Xt}o<t<r of the SDE (3.2.1) is an F-Markov process.

Proof. We will give a proof in the case where b and o satisfy Assumption 3.12. We refer to
standard textbooks on the stochastic analysis such as [31] for a proof of the general claim.
Fix t € [0,7] and s € [0,T — ¢t]. Then {X,} satisfies.

Xirs = Xy +/ b(r, Xr)dr—i—/ o(r, X, )dW,..
t t
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Let t, = ks/n+t, k=0,...,n, n € N, and {Y;, }}_, the Euler-Maruyama approximation of
{Xr}t§r§t+57 i-e-7

}/tk = )/;fk—l + b(tkflv %k_l)(tk - tk*l) + U(tkfb }/;fk_l)(Wtk - Wtk_1)7 k= 17 sy 1Y

with Y;, = X;. Theorem 3.14 then yields X;,¢ = lim,,, Y}, a.s. possibly along subsequence.
Since Wi, — Wy, = Wig/ngr — Wi — (W(k—1)s/nt+ — Wt), by induction, we observe that Y, is
o(X¢, Wyyr — Wi 2 0 < r < s)-measurable, whence so is limsup,,_, o Y;,. Therefore, by Theorem
1.9, Xiys = Fiys(Xe, (Wit — Wi)o<r<s) a.s. for some Borel function Fiys on R? x C([0, s]; RY)
for 0 < s < T —t. Since (W4t — Wi)o<r<s is independent of F;, using Lemma 1.45, we have,
for every bounded Borel function f,

E[f(Xt+s)|]:t] = E[f(FtJrs(Xta (Wt+7“ - Wt)r§8)|ft] = E[f(FtJrs(fEa (Wt+7“ - Wt)TSS)”w:Xt
= E[f(Xt+s)|Xt]v

as required. ]

By arguments similar to that In the proof of Theorem 3.18, we have the following result:

Corollary 3.19

Let b, o, and {X;} be as above. Then,

E[f (Xe4s)|Fi] = Bf (X7 T la=x,, a.s.

for any ¢,s € [0,7] with 0 <t + s < T and any bounded Borel measurable function f.

\.

Proof. Let f be a bounded Lipschitz continuous function. As in the proof the previous theorem,
there exists a sequence G, of B(RY) x C([0, s]; R%)-measurable functions such that

nlggoE|Xffs - Gn(.’B, (WT-H - Wt)OSTSS)P =0, z¢€ Rd7

lim E|Xf’+)§t — Gn( X, Wyt — Wt)0§r§8)|2 =0,

n—o0

t,X .
and X7 = Xy, a.s. This means

lim E[f(Gn(z, (Wrss — Wo)o<r<s)] = EIf (X)), 2 €RY,

n—o0

and
lim E[f(Gn(Xt, Wyrpr — Wi)o<r<s)| Xe] = E[f(Xffgt)\Xt]

n—oo

in L2, whence

lim E[f(Gn(z, Wy — Wt)OSTSS)”x:Xt = E[f(Xffs)”szw

n—oo
and
lim E[f (G (Xe, (Wyst — Weor<s)| Xe) = E[f (X700 Xe],  as.,

k—o0

for some subsequence {ny}. Combining these observations and Theorem 3.18, we obtain
E[f(Xers)|Fi] = E[f(XE5IXe] = E[f (Xl (3.5.3)

Using Lemma below, we can show that (3.5.3) holds true for any bounded Borel measurable
function f. O
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Lemma 3.20

Let X,Y be R?%valued random variables, and G a sub o-algebra. Suppose that
E[f(X)|0] = E[f(Y)[g], as. (3.5.4)

for any bounded Lipschitz continuous function f. Then (3.5.4) holds for any bounded
Borel function f.

\.

Proof*. Step (i). Let A C R? be closed. Then
gn(2) == (1 —ny(z, A)F, zeRY

where y(z, A) = inf,c 4 |x—yl, is bounded and Lipschitz continuous. Indeed, for e > 0 take z € A
such that [y — 2| <7(y, A) + . Then g, (z) — gn(y) < nlz — 2| =y — z[ +¢) < n(lz —y| +¢),
from which we find |gn(z) — gn(y)| < nlr —y|. Further, 14(z) < gn(x) < 141/m(z), where
AV = {z:y(x, A) < 1/n}. Thus,

E[14(X)|9] < E[gn(X)|G] = Elgn(Y)|G] < E[141/2(Y)|G].

Letting n — oo, we obtain E[14(X)|G] < E[14(Y)|G]. Changing the role of X and Y, we have
the converse inequality, whence the equality.

Step (ii). Let A € B(R?). We will use the fact that for each n there exists a closed set F},
such that F;, C A and Leb(A\ F},,) < 1/2", where Leb denotes the Lebesgue measure on R? (see,
e.g., [43, Theorem 7.6] or [5, Theorem 1.1]). Then, we inductively define the sequence {A,}
of closed sets by A,+1 = A, U F,,. By this construction, 14, is monotone nondecreasing and
converges to 14, Leb-a.e. Applying the monotone convergence theorem, we obtain (3.5.4) for
f=1a.

Step (iii). Any bounded Borel function can be represented as the difference of bounded non-
negative Borel functions, and each part can be approximated by a monotonically nondecreasing
sequence of step functions. Thus the lemma follows. O

Next consider the homogeneous case, i.e., the SDE of the form
dX; = b(Xt)dt + O'(Xt)th, Xo==x. (355)

Here, b : R — R and 0 : R — R¥™™ are assumed to be Lipschitz continuous. Then, by
Theorem 3.2, the SDE (3.5.5) has a unique solution {X;};>0. Then we have the following strong
Markov property for {X;}:

Theorem 3.21

Let b, 0, and {X;} be as above. Further, let § be a stopping time with § < oo, a.s. Then,
for any bounded Borel measurable function f on R?, we have

E[f(Xe10)|Fo] = E[f (Xt10)[Xo],  aus.

Proof. Fix t > 0. Let ty =0 +tk/n, k=0,...,n, n € N. Then consider the Euler-Maruyama
approximation {Y3}}_, of {Xs}e<s<o++, defined by

Yig1 = Y +b(Ye)(teg1 — tr) + o(Yi) Wy, — We,), Yo = Xo.

Then, we see that Y, is o(Xg, (Wsrs — Wy)o<s<t)-measurable and X9 = lim, oo Yn, a.s.
possibly along subsequence. Thus, there exists a Borel measurable map F; from R% x C([0, s]; RY)
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into R? such that X;,9 = Fi(Xp, (Wsio — Wo)o<s<t) a.s. Since (W49 — Wp)o<s<t is independent
of Fy by Theorem 1.46, we have

E[f(Xiv0)Fo] = E[f (Fi(Xo, (Wsro — Wo)s<i)|Fol = E[f (Fi(y, Wero — Wa)s<t)lly=x,
- E[f(Xt+9)’X9]a

whence the claim. O

e In the theory of Markov processes, a strong Markov process with continuous sample paths
is called a diffusion process.

Feynman-Kac formula

Let {X:} be the unique solution of the SDE (3.2.1) with nonrandom initial condition. With the
coefficients b and o, we consider the differential operator

d

d m
(Atf)(x) = Z bz(t7x)axzf(w) + % Z Zgik(ta .%')ij(t,m)agixjf(x), f € Cz(Rd)'

i=1 ij=1k=1

We write (A:f)(t,z) = (A f(t,-))(z) when f also depends on the time variable t. Notice that
the term A, f appears in applying It6 formula to f(t, X¢).
Now, suppose that the partial differential equation (PDE)

u+ Ayu=0, on [0,T) x R,

3.5.6
U(Ta ) =g, on Rd ( )

has a solution u(t,x) of C*? class. Then by Ito formula,

9(Xr) = u(T, Xr)

T d m .
= u(0, Xo) + / (Opu+ Apu)(t, Xp)dt + > > / O u(t, Xy)oap(t, Xy )dWE.
0 0

i=1 k=1

Since wu satisfies the PDE (3.5.6), the “dt term” turns out to be zero. Moreover, if the term of
the stochastic integral is a martingale, which is the case of the integrand belongs to Lo, then by

taking the expectation, we get
Elg(X7)] = u(0, Xo).

Let us generalize the argument above. Consider continuous functions g : R* — R, f :
[0, 7] x RT = R, £:[0,T] x R — R such that for any ¢ € [0,7] and = € R?

lg(x)| + | f(t,@)| < Co(1 + |z[?),

3.5.7
t,z) >0 ( )
for some constant Cy > 0. Further, consider the PDE
ou+ A+ f—Clu=0, on [0,T) xR
; u+ f [0,T) (3.5.5)

u(T,-) =g, on RY
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Theorem 3.22: Feynman-Kac

Suppose that b, o, and ¢ satisfies the conditions in Theorem 3.2. Let {X;}o<i<7 be the
unique solution of (3.2.1). Suppose moreover that (3.5.7) holds and the PDE (3.5.8) has a
classical solution u(t, z) of C1%-class. Further, assume that there exists a constant M > 0
such that

max |u(t,z)| < M1+ |z]?), zeR%L

0<t<T

Then,
T
u(t,m) — Eb= |:9(XT)€_ fth(r,XT)dT +/ f(s,XS)e_ I Z(T,Xr)drds] )
t

e This result and Corollary 3.19 imply

T
. [g(XT)e_ T 0, X ) dr +/ F(s, X )= i nXndr g
t

J—'t] = u(t, Xy).

e The condition (3.5.7) and the growth condition on u can be weakened. We refer to [21,
Chpater 5] for details on this point and for a sufficient condition for which the PDE (3.5.8)
has a classical solution.

Proof of Theorem 3.22. Consider the stopping times 7, = inf{s > t : |X§x
Applying Ité formula to e~ J¢ Z(T’Xi’x)dru(s, X5"), we find

fT/\-,-n , e J i TATn fs Z( xt® d t
el (r,X7") TU(T/\Tme/\Tn) — u(t,:n) _/ e Ji H\har ) Tf(s,XSaEC)dS
t

d m TNy
+Y > / Op.u(s, X0%) o (s, X0¥)dWE.

=1 k=1

Since ]X§x| < n for s <T ATy, the process 0,,u(s, Xﬁ’x)aik(s, Xﬁ’x)l{sgm}, t < s < T, belongs
to Lo. Therefore,

_ — [T e X T Y tx S Ji er X ")dr te
u(t,x) =E |e )t w(T N 7oy Xy ) + e Ji f(s, X5%)ds
t

By (3.5.8), the growth condition on u, and maxg<s<r | Xs|? € L?, we can use the dominated
convergence theorem to obtain the required result by letting n — oo. O

Transition density

Suppose that b, o, and & satisfies the conditions in Theorem 3.2. Let {X;}o<t<7 be the unique
solution of (3.2.1). By definition, the sample paths of X is almost surely continuous. In other
words, P(X € W) = 1, where W? = C([0,7]; R?) is a Banach space with sup norm. Thus, X
induces the measure

px(B) =P(X € B), BeB(WY),

on (W9, B(W9)), which is the law of the solution {X;} of the SDE as Wevalued random variable.
Let C be the totality of sets of the form

B={weW: (wty),...,w(t,))€E}, 0<t; <---<t,<T, EeBR"Y, n>1.

An element of C is called a cylinder set. Since the mapping W¢ > w > (w(t1),...,w(t,))
is continuous, we have C C B(W?). We say the family Pyt 0 < 81 < -0 <t < T,
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n > 1, of probability measures defined by s, 4. (E) = P(X4,,...,Xy,) € E), E € R™ the
finite dimensional distributions of {X;}. Thus, the finite dimensional distributions of {X;} are
described by the values of px on cylinder sets.

Proposition 3.23

The law of X is uniquely determined by its finite dimensional distributions.

Proof*. First note that there exists a countable base for the topology of W, consisting of sets
of the form {w : maxg<;<r |w(t) — wo(t)| < 6}, wo € W, § > 0. Observe

{w: [max lw(t) —wo(t)| <0} = U {w P max. lw(t) —wo(t)| <6 — le}
<t< et <t<

o0

= N {wzlw(q>—wo(q)\ sa—i} € a(0),

n=14eQnI0,T]

from which we have B(W¢) C ¢(C). Therefore B(W?) = o(C).
Suppose that ux = v on C for some probability measure v on (W%, B(W?)). Then, since C

is a m-system, we can apply m-system lemma (see Lemma A.44) to deduce ux = v on o(C) =
B(W?), O

A nonnegative Borel function p(t,z;s,y),0 <t <s<T, x,y € R?, said to be the transition
probability density of { X} if it satisfies

P(X17 ¢ A) = / p(t,ass,y)dy, A€ BRY.
A

Now suppose that {X;} has the transition density p(¢,x; s,y). Then we will represent the finite
dimensional distribution of {X;} by p. To this end, choose 0 < ¢; < ty < t3 < T and a bounded
Borel function f on R% Then, by the Markov property (Corollary 3.19,

E[f(Xt3)|]:t2] = g(th)’

where
g(xz2) = B[f(X{2"2)] = » f(x3)p(ta, xo;t3, v3)d2s.

Hence, by the definition of the conditional expectation,

E[f(Xt3)1{XoeBo. X, €B1.X1,eB2}) = El9(Xt2) 1 x0€B0.X,, €B1.X1, B2}

whence
E[Q(XtQ)l{XQGBo,th EBl,X}2 GBQ}] = ]E[h(th ) 1{X0€Bo,Xt1 €B1}] .

Here,
h(l’l) = E[g(Xg’xl)l{XtQEBQ}] = / g(ﬂ?g)p(tl,l’l;tz,$2)d$2.

By

Consequently we obtain
E[f(Xt3)1{XoeBo,x:, €B1 . X1,eB}) = El(Xt1)1{xoeBo. s, €81} = /B i h(z1)p(0, xo; t1, x1)dz1p10(do)
0 1

—/ / / f(x3)p(ta, 253, x3)p(t1, x1; t2, 22)p(0, zo; t1, 1) po(dwo)da1daades,
re JB, /B, J B,
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where pg denotes the distribution of pg. Repeating this argument, we find that for 0 < t; <
-+ < tp, < T the joint distribution of (Xg, X;,,..., Xy, ) is given by

n
P(Xo € Bo, X¢;, € B1,..., X4, € Bp) = / / / Hp(ti_l,:ri_l;ti,xz-)ug(dxg)dxl- dxy,
n B1 J B

04=1

for By, B1,...,B, € B(Rd)

Remark 3.24. A set of conditions sufficient for which {X;} has a transition density is, in addition
to the Lipschitz continuity of b and o,

(i) the uniform ellipticity: there exists a positive constant ¢ such that

lo(t,2)TEP > clél?, € eRY, (t2) € [0,T] x RY;

(ii) the boundedness: the functions b and o are bounded on [0, 7] x R%.

In general, the transition probability density p of {X;} can be seen as the fundamental solution
of the corresponding PDE. Indeed, under suitable conditions,

ut.a)= [t Tpedy. te0.T) 2 eRe

turns out to be a classical solution of the PDE (3.5.6). We refer to [21, Chpater 5] for details.

3.6 Statistical Inference

In this section, we discuss estimation methods for the drift and diffusion coefficients in SDEs
with observed data. We refer to Prakasa Rao [33], Tacus [16] and the references therein for more
details.

Maximum Likelihood Estimation

Consider the following parametrized SDE:
dX; = b(Xt,Q)dt—i-O'(Xt,H)th, Xo = xg, (361)

where {W; }4>0 is a one-dimensional Brownian motion and zg is a given constant. § € RP denotes
some parameters of this system, and 6 belongs to some parameter space ©® C RP. We assume
that (3.6.1) admits a unique solution and do not impose explicit conditions on the coefficients
b:Rx0O — Rando:RxO — (0,00). Moreover, we assume here that there exists the transition
density py(t,y;s,x) of {X:}.

Suppose that sample X; is observed at time t; = iA, i = 1,...,n, where A = A, v =T/n.
Denote by 6y a true parameter of the system to be estimated. The mazimum likelihood estima-
tion (MLE) is an estimation method based on the hypothesis “most likely data are observed”.
Namely, MLE adopts parameters that maximize some likelihood function. In general, for the
sample Y71, ..., Y,, the likelihood function is defined by the joint density of Y7,...,Y, as a func-
tion of #. For example, let Y a random variable with density p(z, 6y), and consider the estimation
problem of the parameter 6y from an IID sample Y7,...,Y,. Then, by the independence, the
joint density is given by the products of p’s. More precisely, the likelihood function L(#) here is
given by

n

L(0) = [ o33, 0).

i=1
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As an estimated parameter, we adopt a local maximizer of the logarithm of the likelihood
function, i.e., a solution 6 of the equation

0
2 log L(#) =0

is adopted as an estimator.
In case of SDEs, as seen in Section 3.3, the finite dimensional distribution can be described
by the transition density. Thus we adopt it as the likelihood function and a maximizer 6 of

j=1
as an estimator of 6.

Ezample 3.25. Consider the following Ornstein-Uhlenbeck process
dXt = —bXtdt + O'th.

Recall from Example 2.19 that the unique solution with initial condition X; = x is given by
S
Xb = ety 4 0/ e T aw,.
t

Since X* follows a Gaussian distribution with mean m(s — t,z) = ze "~ and variance

v(s —t,x) := 02(1 — e~ 2(5=1)) /(2b), the transition probability ps with 8 = (b, o) is given by

exp (—(y —m(s —t,2))%/(2v(s — t, .CC)))
2v(s — t,x) '

pg(t,:r; 57?J) =

Hence

n
log L(0) = Zlogpg(tj,Xj;tj—hXj—l)
j—l

= Z |: on AA)(J‘XJI)l)) — ilog(27r’u(A,Xj_1)):| .

Therefore, the maximum likelihood estimator b for b is approximately given by
b~ —log M .
Z] 1

Note that this quantity can be defined only when Z?Zl X;-1X; > 0. Under this condition, it is
straightforward to see that the maximum likelihood estimator & for ¢ is given by

2b - ;
o= | —mM8M X _X._le—bA 2
oy 2% = Xy

Ezxample 3.26. Consider the geometric Brownian motion
dXt = bXtdt + O'Xtth,
where b € R and ¢ > 0. As seen in Section 3.1 in Chapter 3, we have

X;’w:xexp((b—0'2/2)(8—t)+0'(ws_Wt))7 82t7 ‘T>07
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Figure 3.6.1: The difference of the stock prices of Tokyu Corp. and Keikyu Corp. from 2016/1/4
to 2018/9/4 (blue line), and a sample path of the Ornstein-Uhlenbeck process with estimated
parameter b = 0.2111 and & = 372.6866 (red line).
whence

P(XffA <y) =P((b—0?/2)A +cWa < logy — logz).

Thus the transition density pg is given by

po(t+ Ayt x) =

1 . 1 (logy—logx—(b—aQ/Q)A>2
———exp| —= .
oyV2rA P 2 oV A

Hence,

= og X; —log X; 1 — (b—o0? 2
log L(0) = —Z{; <1 g X~ 1 g)fj\/lﬁ (b /2)A> —log(an\/QWA)}.

Unfortunately, the transition probability density for diffusion processes are rarely available.
One of approximation methods for the likelihood functions is to apply the Euler-Maruyama
approximation

j=1

Xipn — X = b(Xy, 0)A + 0(Xy, 0)(Wipn — Wi)

to (3.6.1). The right-hand side in the equation just above follows a (conditional) Gaussian
distribution with mean b(Xy, #)A and o (X, #)2. Thus, the transition density py is approximated

with | ) {1(y—x—b(w,0)A)2}
V21 Ac?(z,0) P '

2 Ac?(z,0)
Now, we will present a consistency result for the pseudo-likelihood methods. To this end,
we restrict ourselves to the case where the SDEs are described by

p~9(t + A)?/a ta :E) =

dX; = b(Xt, Q)dt + odWr, (362)
where 6 € © is as in above and ¢ > 0 is also a unknown parameter independent of . Then, the

maximization of L(0) is equivalent to the least-squares problem

n

Li(0) = D (Xj — Xjo1 = b(Xj-1,0)A)*.
j=1
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We denote by 6 its estimator, i.e.,

0 = arg min L1 (0).
0cO

With this 6, we adopt
. 1 ¢ 5
0'2 = m Z(X] — Xj—l — b(Xj_l, Q)A)Q
j=1

as an estimator for 2.

To prove the consistency of the estimators above, we assume that

/ exp {—2/ b(z)dz} dy — oo, asx — to0,
0 9= Jo

o0 2 x
c::/ exp{(ﬂ/o b(z)dz}dx<oo.

Then, it is known that {X;}+>0 is ergodic with invariant measure v defined by

dv 1 2 [*
T Cexp{gz/o b(z)dz}

for 0 = 0y, i.e., for any Borel measurable function h on R that is integrable with respect to v,

(3.6.3)

lim ;/OT h(Xy)dt = /00 h(z)v(dz), a.s.

T—o0 oo

Moreover, we assume that the following conditions are satisfied:

Assumption 3.27

(i) There exists a unique solution {X;};>0 of (3.6.2) satisfying sup,> E|X;[P < oo for
every p > 1.

(ii) There exist a positive constant Cjy and ¢ such that for any z € R and 0 € ©,
[b(z, 0)] < Co(1 + [z]?),
|b(x,0) = b(y, 0)| < Colz —yl.
(iii) The function b(z,-) € C?(O) for any = € R and
100,b(3,60)| + 108.0,b(z,0)] < Ca(1 +|al"), = R,

for some constants C1,q; > 0.

(iv) The function
/R b0, 2) {b(eo, ) — ;b(@,x)} o(dz)
has a unique maximum at § = 6, in ©.

(v) The functions b and 0y,b, i = 1,...,p, are smooth in = and their derivatives are of
polynomial growth in x uniformly in 6 € ©.

(vi) The matrix

P = / Dgb(0o, ) T Dgb(8y, z)v(dx)
R

is positive definite.
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Under the complicated conditions in Assumption 3.27, we can show the consistency of 6 and
0. More precisely, we have the following result:

Theorem 3.28

Suppose that (3.6.3) and Assumption 3.27 holds. Then,
(Vn(6 — 00), VT(0 — 6p)) — N(0, H)

in distribution, provided that n,T — oo, A, 7 — 0, and (A, 7)3n = o(1), where

2
_ (o5 O
H_(O 1).

For a proof we refer to Yoshida [41] (see also Section 3.4 in [33]).

Nonparametric estimation

Let D be a domain in R?. Here we consider a nonparametric estimation for the D-valued SDE

Namely, we consider the problem of estimating the functions b and o from observed data.
Accordingly, we assume that b and o are Lipschitz continuous so that (3.6.4) has a unique
solution {X;};>0. Moreover, assume that we observe X; at time ¢; = iA, ¢ = 1,...,n, where
A= An,T = T/TL

Put a(x) = o(x)o(z)T, x € D. By (3.5.2), the functions b and a can be represented as

E[X; s, — 2] = Atb(z) + o(At),

E[(X;7as — 2)(X[0ar — 2) 7] = Ata(t) + o(Ab).

(3.6.5)

By (3.6.5), formally we have

1
b(x) ~ ZE[XHA —z|X; = z],

a(r) = AE[(Xpra —2)(Xeea — )T X0 = 2]

Thus, by kernel regression, the functions

ba) = 2oimt K(Xi —2)/h)(Xir1 = Xi)
A K(Xi—a)/h)
o) = it K (X — @) /h) (X1 — Xi) (X1 — X)T
A iy K((Xi —x)/h)

are adopted as estimators for b(x) and a(x), respectively. Here, K is a nonnegative function on
R?, called a kernel, and a parameter h = hyn, 7 > 0 determines the smoothness of the estimators.
For examples, the function K can be

e the naive kernel: K(z) = 1y4<1y;
e the quadratic kernel: K(x) = (1 — |z|?)4;
e the Gaussian kernel: K (z) = e~ I#I”.

We refer to, e.g., Gyorfi et.al [13] for the theory of nonparametric estimation of the conditional
expectations.
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Figure 3.6.2: The stock prices of Tokyu Corp. from 2016/1/4 to 2018/9/4 (blue line), and a
sample path of the SDE estimated by the kernel regression (red line). The quadratic kernel
K(z) = (1 —|z*)4 with h = 0.8 is used.

Problem 3.29. Perform the kernel-based estimation above using simulated paths from a geo-
metric Brownian motion as the sample data. Observe how different the original model and the
estimated one are.

Now let us see the theoretical side. To guarantee the consistency of the estimators, we impose
the following conditions on the coefficients of the SDE to be estimated:

Assumption 3.30

(i) There exists a positive constant Cy such that
lb(z) = b(y)| + |o(z) —o(y)| < Colz —yl, z,yeD.

(ii) For every open and bounded set A C D,

min a;;(x) > 0
€A

for some i € {1,...,d}, where A is the closure of A.

(iii) There exists a function ¢ : R%\ {0} — R of the class C? such that
1
b(z)T Dp(z) + étr(a(x)ngo(x)) <0, zeR?\{0},

and that the function r +— min,—, ¢(z) is strictly increasing and diverges to infinity
as r — oo.

It is known that, under Assumption 3.30, there exists a o-finite measure v on (D, B(D))
such that

V(A) = /D P(X>* € A)v(dz), Aec B(D). (3.6.6)

We restrict ourselves to the case where the kernel K is of the form K(z) = H;‘i=1 p(x;) for
x = (z1,..., :cd)T € R?. Moreover, we make the following conditions on p:
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Assumption 3.31

(i) The function p is nonnegative, bounded, continuous, symmetric function on R with
Jrp(s)ds =1, [ p*(s)ds < 0o, and [ s*p(s)ds < oo.

(ii) There exists a nonnegative function H on R x (0, c0) such that
[K () = K(§)] < H(E €)|z —¢]

for z, & € R? satisfying |z — £| < € and that

lim | H( ¢e)dE < oo, / H(& e)v(dE) < oo
D

e—0 Rd

for any € > 0.

Further, we introduce the quantity

n
Lng(T,2) =AY Kp(Xia—1), z€D,
=1

and impose the following conditions on this and the other parameters:

Assumption 3.32

When n,T — oo, we have A, 7 — 0, h, 7 — 0, and
Lnr(T,2) =0, (Anrlog(1/Anr)/?hyG =0, as,

for any = € D.

Under the assumptions above, we have the following consistency results:

Theorem 3.33

Suppose that Assumptions 3.30-3.32 hold. Then, for any x € D, we have
bo1(z) = b(x), Gnr(z) — a(z), as.,

as n, T — oo.

For a proof of this theorem we refer to Bandi and Moloche [1], where the asymptotic normality
of the estimators are also obtained under additional conditions.

3.7 Weak Solutions

Here we introduce the notion of weak solutions of SDEs, which differ from solutions of SDEs
appeared in previous sections in that a filtered probability space and a Brownian motion are
parts of the solution.

Let b:[0,7] x R = R?% and o : [0,T] x R? — R¥*™ be Borel measurable.

Definition 3.34. A 6-tuple (2, F,F,P, W, X) is said to be a weak solution of (3.1.3) if

(i) (2, F,P) is a complete probability space with filtration F = {F; }o<¢<7 satisfying the usual
conditions;

(ii) W = {Wi}to<t<r is an m-dimensional F-Brownian motion and X = {X;}o<i<7 is a d-
dimensional process defined on (92, F,P);
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(iii) X is a solution of (3.1.3) in the sense of Definition 3.1, where W is the given Brownian
motion.

Solution of SDEs where a filtered probability space (€2, F,F) and a Brownian motion W are
fixed a priori, i.e., solutions introduced in Section 3.2, are actually called strong solutions for
SDEs. By definition, a strong solution of (3.1.3) is a weak solution of (3.1.3). The notion of
weak solutions is often natural in application since in many cases of modeling we cannot specify
a probability space and Brownian motion a priori, and is even useful in theory since we can
show the existence of solutions under weaker conditions on the drift term b(¢, x).

We say that the weak solution of (3.1.3) is unique in the sense of probability law if any two
weak solutions (€, F,F,P, W, X) and (Q, F,F,P,W, X) of (3.1.3) with

P(Xo € A) =P(Xp € 4), A€ B(R?),

we have

P(X e)=P(X eT), T eB(WY).
Thus, by Proposition 3.23, the uniqueness in this sense holds if two solutions have the same

finite dimensional distributions.

Ezample 3.35. Consider the one-dimensional SDE
dXt = sgn(Xt)th, X() = 0, (371)

where sgn(z) = 1 for x > 0 and = —1 for < 0. Let us see that this SDE has a weak solution
but does not admit a strong solution. Let {X;} be a one dimensional Brownian motion on a
given (2, F,P). Then,

t
W, ;:/ sgn(X;)dXs
0

is a martingale with respect to F = {¥;}, the augmented natural filtration generated by {X;}.
Since {W;} is an It6 process,

t ¢
/ sgn(Xs)dWs = / sgn(X,)2dX, = X;.
0 0

Thus {X;} and {W;} satisfy (3.7.1). Observe dW;dW; = dt and so by It6’s formula,

2 t
EefWe=Wa)| 7] =1~ % / E[e*Wu=Wo)| £,]du,

s

for 0 < s <t < T and £ € R, where ¢ denotes the imaginary unit. Solving this equation, we
obtain
E[eWe=Ws)| ] = & (t=5)/2

)

whence {W;} is a {F;}-Brownian motion. Therefore (Q, F,F,P, W, X) is a weak solution of
(3.7.1).

On the other hand, suppose that {X;} satisfies (3.7.1) on a given filtered space (2, F,F,P)
and for a given F-Brownian motion {W;}. This means in particular that

0(Xs:0<s<t)Co(c(Ws:0<s<t)UN) (3.7.2)

where N denotes the P-null sets from F. Then, the above arguments shows that {X;} is
necessarily a Brownian motion and

t
Wt:/ sgn(Xy)dXs.
0
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Applying Tanaka’s formula (see, e.g., [31, Chapter 4]) for the right-hand side, we have
1
Wy =Xy —lim —Leb(0 < s<t:|X4|<e), 0<t<T, P-ags.,
e\ 2¢

where Leb denotes the Lebesgue measure on [0, 7). This leads to
o(Ws:0<s<t)Co(o(|Xs] : 0<s<t)UN) Co(0(Xs:0<s<t)UN),

contradicting to (3.7.2).

Using Girsanov’s theorem (see Section 2.3), we can obtain the existence and uniqueness of
weak solutions for SDEs with measurable drift. Namely, we can remove the continuity condition
for the drift coefficients in the framework of weak solutions.

Suppose that o is an R¥*%-valued function on [0, 7] x R? satisfying the following condition:
the inverse o1 (¢, z) exists for all (¢,z) € [0,T] x R% ¢~ is bounded on [0, T] x R?; the Lipschitz
continuity condition imposed in Theorem 3.2 holds. Further, let {W;} be a d-dimensional
F = {F:}-Brownian motion on a given (€2, F,P). Then there exists a unique strong solution
{Xt}OStST of the SDE

dXt = O'(t, Xt)th, XO = f

for a given & € L%(Q, Fo,P). Let b: [0,7] x R? — R? be bounded and Borel mesurable. Then,
by Girsanov’s theorem (Theorem 2.23),

t
B, =W, — / (07'b)(s, Xs)ds, 0<t<T,
0

is a d-dimensional Brownian motion under the probability measure Q on (€2, F) defined by

d T I
% - UO (o710)(t, Xp)dWy — 5 /0 (0 0) (¢, Xo)[Pdt | -

Since {W;} and {B;} are Ito-processes under both P and Q, we have
t t ¢
/ o(Xs)dBs = / o(Xs)dWy —/ b(s, Xs)ds, 0<t<T, Pand Q-as.
0 0 0

Thus, (Q,F,F,Q,{B:},{X:}) is a weak solution of (3.1.3).

Theorem 3.36

Let b: [0,7] x R? — R? be bounded and Borel measurable, and o : [0,7] x R? — R4xd
satisfies the following condition: the inverse o~1(t,z) exists for all (t,x) € [0,T] x R%
o~ ! is bounded on [0, 7] x R%; the Lipschitz continuity condition imposed in Theorem 3.2
holds. Then (3.1.3) admits a weak solution that is unique in the sense of probability law.

Proof*. The existence is proved by the argument above. To show the uniqueness, let (Q, F,F, P, W, X)
be a weak solution (3.1.3) with initial distribution

po(A) :==P(Xg € A), Ae BRY),

Define the probability measures Q on (2, F) by

T T
o | [ e xgar. - [l e xopal
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Then,
t
B, =W, -|-/ (07'0) (s, Xs)ds, 0<t<T,
0

is an F-Brownian motion under Q. The process {X;} is a unique strong solution of
dXt = O’(t, Xt)dBt

under Q, whence o(X;s:0<s<t)C G :=0(Xo,{Bs}s<t,N), where N denotes the collections
of Q-null sets. Thus, {(c71b)(¢, X;)} is a {G; }-progressively measurable and so is {W;}. Since the
integral fot (071b) (s, X5)dWy is an L2-limit of some G;-measurable random variables. Therefore,
X = F(Xo,{Bt}o<t<r) and dQ/dP = G(Xo,{Bs}o<s<r) a.s. for some measurable function F
and G on (R% x C([0, T]; R?), B(R?) x B(W9)), respectively. This means that for I' € B(W¢9)

P(X el') =Eq {1{F(XO7{Bt}0StST)€F}G(X07{BS}OSSST)} = /{F o G, &)po(dz) pw (dE),
S

where puy denotes the Wiener measure. It is clear that F' and G do not depend on a particular
choice of weak solution, whence the uniqueness in the sense of probability law follows. ]

3.8 Time Reversal
Consider a solution {X;} of the SDE

dX; = b(t, Xy)dt + o(t, X¢)dWy, (3.8.1)
and the process X; := X7_;. Our aim here is to find a reverse-time SDFE

dX; = b(t, Xy)dt +7(t, X1)dW;

for X;. More precisely, we aim to prove that {X;} is a weak solution of the SDE above for
appropriate b and @. Of course we want to give explicit representations for these functions.

In this section, we assume that {W;}o<¢<7 is a d-dimensional F-Brownian motion. Let £ be
an R%valued Fy-measurable random variable such that

El¢? < oo.

Let F = {F;}o<t<r be the augmented natural filtration generated by X, i.e., Ft = o(c(Xs; s <
HHUN),0<t<T.

Assumption 3.37

The functions b and o satisfy the following:
(i) The inverse matrix o~!(¢, z) exists for any ¢ € [0,7] and x € R

(ii) There exists a positive constant C' such that for ¢ = b',0% (0719 i,j =1,...,d,
te0,T), z,y € RY,

lo(t, z) — ¢(t,y)| < Clz -yl
6°(t, z)| < O(L + |a).

(iii) o € C12([0,T] x RY).

Under Assumption 3.37, by Theorem 3.2 there exists a unique strong solution X = {X; }o<¢<r
of (3.8.1) with Xy = ¢&.
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Assumption 3.38

The distribution of £ has a continuous density pg. Moreover, There exists a transition
density p(t,x,s,y) of X that is everywhere positive such that the following hold:

(i) for any y € R? the function (t,z) +— p(t,x,T,y) is in C2([0,T) x R%);

(ii) for any ¢t < T and =z € RY the functions Op(t,x,T,y), Oup(t,x,T,y),
8§ixjp(t,:£,T, y), i, =1,...,d, are all continuous in y on R%;

Under Assumption 3.38, the density p(t, x) of X; exists and is given by
pt.0)= [ b0yt om)dy, 0<t<T, aeR
R4

Put a = (a¥)1<i j<qa = oo . We further make the following assumption:

Assumption 3.39

For any t < T the function p(t,-) is C*(R?%) and satisfies

T
| [ outetmne.idyit <o, ig=1.....d

Introduce another drift function b = (b',--- ,b%) defined by

d
Zaﬂ% ”tm (ta:))

J:1

bi(t,x) = bi(t, z)

Further, define b(t,z) = (51 (t,x),- - ,Bd(t,m)) and 7 (t,x) = (G (t,x))1<ij<a by
b (t,x) = b (T —t,x) +

—tx

a —t,(L’)p(T—t,IIZ')),
j:l

o(t,z) =0o(T —t,x)

fori=1,...,d and (t,z) € [0,T] x R% Notice that by Assumption 3.39,
/ IE‘ . (@) (r, X, |d7“—/ / L (@ p)( rw|dazdr<oo
0

T
/ |b(r, X,.)|dr < co, a.s.
0

This means

Here is a main result in this section.
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Theorem 3.40

Suppose that Assumptions 3.37-3.39 hold. Then there exists a d-dimensional F-Brownian
motion W = {W;}o<¢<r such that

t t
X, =X, +/ B(s, X o)ds +/ (5, Xo)dWW .
0 0
Moreover, the process {X;} is represented as

i 7 -
Xr=X; + / b(s, Xs)ds + / o(s,Xs) dBs,
¢ ¢

where B; = (B}, ..., BY) is given by

) . t 1 d .
BZ:WZ+/ O0r. (0Y(s, Xs)p(s,Xs))ds, i=1,...,d
t t 0 p(S,Xs)j; ]( ( )p( ))

and is a d-dimensional Brownian motion such that B, — By is independent of o (X,;u > t)
for any t > s.

Remark 3.41. Actually, the assumptions imposed in Theorem 3.40 can be slightly weakened.
More general analysis can be found in Haussmann and Pardoux [15].

The rest of this section is devoted to a proof of Theorem 3.40. From now on, we suppose
Assumptions 3.37-3.39 always hold. For simplicity we shall assume that T'=1 and d = 1. Thus
we suppress the superscript that used for d-dimensional vectors and d x d-matrices. E.g., we
write b(t,z) for bl (t, x).

We start by proving the Markovian property of X.

Proposition 3.42

The process {X¢}o<t<1 is Markov.

Proof. Let t > s. As a generalization of the Markov property of {X,}, we actually have
E[G(X-v(lfs))’fl—S] = ]E[G(X-v(l—s)|X1—5] = Q(XI—S)

for any bounded Borel measurable function G on W?. See, e.g. [31, Chapter 7]. Thus, for any
bounded Borel function f on R,

E[f(X1-)G(Xva-s)] = E[f (X1-t)9(X1-5)] = E[E[f(X1-¢)[X1-s]g(X1-5)]
— B (B () X1 G (X )]

This leads to
E[f(ft)lA] = E[E[f(yt)\fs]u], Aco(Xyu>1—s),

whence the proposition follows. O

The following is a key result:
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Lemma 3.43

Let f € C°(R). For t > s we have

where

Proof. Let t > s be fixed. Observe
(X)) = f(Xs) = =(f(X1=s) = [(X1-0))
1-s 1-s
_ [ LX)+ [ (o) X )aw,

1-t —t

where L, f(z) = b(r,x)f'(z) + (1/2)0%(r,z) f"(z). Let ¢ € C(R) be arbitrary. Consider the
function V (r,y) := E[¢(X]?,)] defined for 0 <r <1 —s and y € R. By Assumption 3.38, the
function V' is represented as

Vo= [ omtoant 530

and in C12([0,1 — s) x R). Since X is F-Markov,
Vi = V(’I", XT) = E[¢(les)|]:r]
and so {V, }o<r<i—s is an F-martingale.
Choose € > 0 so that 1 —t <1 — s —e. It6 formula yields
l—s—¢

(O + L)V (r, X, )dr + / 0.V o) (r, X,)dW,.
1

—t

l1—s—¢
Vl—s—a - Vl—t +/
1—t

Applying Lemma 2.13, we get (0, + £,)V (r, X,) = 0, a.e., whence
Vi=Viy +/ (0:Vo)(u, Xy)dWy,, 0<r<1l-s-—e.
1—t

The product It6 formula gives
df (X = Vo(Lof (X )dr + (o f')(r, X,)dW,) + £(X,)dV, + (0.V a2 f) (r, X, )dr-.

Since f € C°(R), the It6 integral in the equality just above is a martingale. Thus,

l1—s—e

E[f(lesfg)Vlfsfs] = E[f(let)Vlft] + /1 E [V;Erf(Xr) + (axvojf’)(r’ Xr)] dr.

—t

The integration-by-parts formula yields
[(8‘/0’2]" r, Xr) / V(r,z)0.((c*pf)(r, x))dx

_ _/_ V(r,z) (0:(0%p) f + o?pf") (r,z)dz

= —E[(Vp~'0:(0”p)f)(r, X)) = E[(Vo® ") (r, X,)],

77



whence
l—s—¢

E[f(X1-s—e)Vi-s—] = E[f(X1-1)V1-4] — /1_t E [ViLi, f(X,)] dr.

Letting ¢ — 0 and using the martingale property of V', we obtain

1-s

Bl (o000 = | (£ = [ TG ) e

1t
Since ¢ is arbitrary, the lemma follows. O

Proof of Theorem 3.40. Step (i). Define the process {M;} by

t
Mt:Xt—Xo—/b(r,Xr)dr, 0<t<1.
0

For N > 1, take fy,gn € C2°(R) such that fy(z) = x and gy (z) = 22 for |x| < N. Consider
the stopping time 7y = inf{t > 0;|X;| > N}. By Proposition 3.42 and Lemma 3.43, for t > s
and ¢ = fn, gn,

whence {p(X¢)} is a continuous ?—martingiﬂe. Since fn(Xinry) = Xinry and L, fy(X,) =
b(r, X,) for r < 7y, the process {M;} is an F-local martingale.
Similarly, with the function gy, by Proposition 3.42 and Lemma 3.43, we see that

t
M; = Y? - YS o / (2b(3>YS)Ys +E2(37Y8)) ds
0

is an F-local martingale.
By the definition of the quadratic variation (Definition 2.35),

t t
Ny +2 / Bs, X o) Xods = X2 — X2 — / (s, X )ds
0 0
t t
—2/ XSdXS+(M>t—/ (s, X,)ds
0 0
t;, - tgﬁ t
:2/ b(s,XS)XSds+2/ XSdMS+(M>t—/ 7 (s, X, )ds.
0 0 0

From this,
t t
(M)t—/ aQ(S,Xs)ds:Mt—Q/ X.dM,.
0 0

The right-hand side in the equality just above is a local martingale. So by the uniqueness of
(M) (Theorem 2.28),

(M>t:/0 72(s, X 4 )ds.

By Assumption 3.37, the process
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is in My, and satisfies
t t
1, = 2 1, o W\2—,
(W), = / (775, X)) d(M)s = | (7(5, X)) 5(s, Xs)2ds = 1.
0 0
So we can apply Lévy’s theorem (Theorem 2.45) to deduce that W is an F-Brownian motion.
With this W, we have the representation

t t
X — X — / B(s, Xo)ds = M, / (s, X o) dTVs.
0 0

Step (ii). Define the process B = {B;} by B; = W1y — W1. It is straightforward to see
that B is a Brownian motion. Let ¢ > s. It follows from B; — By = —(W;1_5 — W1_4) and
Fi1-t D o(X,;r >t) that By — By is independent of o(X,;r > t).

For a fixed t >, take an arbitrary partition {¢;}", of [I —¢,1] such that 1 —t =t5 < --- <
t, = 1. Using the result from Problem 2.34, we find

1 n—1
/ 5_1(T,XT)dXT: lim E_l(ti;Xti)(Xti_‘_l_Xti)
1—¢t A—0 i—0
n—1
: —1
== ilino - o (1- ti7X1_ti)(X1_ti - Xl—ti+1)
1=

in probability, where A = max;(t;41 — ¢;). Put s =1 —t,—;. Then 0 =5y < --- < s, =1—1
and A = max;(s;+1 — s;). The observation just above means that the limit

n

lim J_l(Smei)(Xsi - Xsi—l)
A—0 P

exists in probability, whence by Definition 2.43

1 . t —
/ 7 (r, X,)dX, = —/ o Nr, X,) dX,.
1 0

—t

Since we have assumed that ¢ is positive and a Ch2-function, we see
1
do™1(t, X,) = <6ta_1 + b0t + 20283x0—1> (t, Xy)dt + (8,0~ (t, Xy))o(t, X;)dW;

and so
o™, X)), X)) = (0p0 L (t, X1)) o2 (t, X3 )dt = —Dpo(t, X;)dt.
Therefore by Proposition 2.44,
t t t
/ o Y, XT)FXT :/ o r, X)) dX, + (07 (- X)), X ) = Wt+/ (07 — 0,0)(r, X, )dr.
0 0 0

So,

= — 1*717“7 X, —b(r, X, )dr) = taflr q — tafrr T
Bi=— [ 7 XWX, — 5 X)) = [ X0 DX [ )X )a

W, + /0 (010, (o)) (r, X, )dr-

In particular, B is an F-semimartingale. Again by Proposition 2.44,
1

1 1 1
/ta(an)(EBT:/t U(T,XT)dBT+<O'(-,X.),B>t:/t U(TjX,n)dWr—f—/t (p_lﬁx(UQp))(r,Xr)dr.

From this we obtain
1 1 1 1
X, = Xt+/ b(r, Xr)dr—k/ o(r, X, )dW, = Xt+/ (b—p~ 10, (c?p))(r, Xr)dr—k/ o(r, XT)UBT,
t t t t

as wanted. O
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CHAPTER 4

Stochastic Controls

The term stochastic controls generally refers to the optimization problems defined for stochastic
dynamical systems with control inputs. Here we present a basic approach to stochastic controls
in the framework of SDEs. We refer to @Oksendal [31], Fleming and Rishel [10], Bensoussan [4],
Fleming and Soner [11], Pham [32], Yong and Zhou [40], and to the lecture notes Touzi [36] and
van Handel [37] for more quick overviews and for more detailed accounts.

Throughout this chapter, T" € (0,00) is a fixed constant representing a time maturity, and
we assume that {W;}o<t<7 is an m-dimensional Brownian motion unless stated otherwise.

4.1 Optimization Problems

We consider the stochastic dynamical systems with control input through the SDEs with exoge-
nous variables. Namely, we consider the controlled stochastic differential equations, described in
the form

dXs =b(s, X5, a5)ds + o(s, X5, ag)dWs. (4.1.1)
We call {a;} a control process. Suppose that our objective is to optimize a performance of
the controlled SDEs with suitable criterion over control processes. This leads to the following
optimization problem: .

min E [/ f(s, Xs,a5)ds + g(X7)| . (4.1.2)

{at}o<i<r 0
The function g evaluates the terminal value of the SDE and f indicates a running cost. The
problem (4.1.2) is generally called a stochastic control problem.

Before discussing the stochastic control problems rigorously, we shall present a few examples.
Ezample 4.1 (Merton Problem [26], [27]). Let S; be the price of a stock at time ¢, and By the
price of a riskless bond at time ¢. Suppose that we are in a position to invest our wealth into
these two assets by dynamically changing the fraction of the wealth to the stock. Denote by X,
our wealth at time ¢. If we have ¢; shares of the stock at time ¢, then the resulting fraction «y
to the stock is

_ &S

Qg = X,
whence ¢, = 4 X;/S;. The remaining fraction 1 — a4 is invested into the riskless bond, and so
the number of shares invested into the riskless bond at time ¢ is (1 — o) X/ B;. Thus, assuming
there is neither income nor consumption in the period [¢,t + At], we obtain
atXt (1 — Oét)Xt

St By

Xigar — Xy = (Styar — Se) + (Biyar — By).
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This leads to the SDE
AX, _ dS. |, dB.
X, 'S Y'B,

for the wealth process. In the simplest case, the price dynamics of the two assets are assumed
to be described respectively by

(4.1.3)

dSt = St(bdt + O'th),
dBt = TBtdt,

where m = 1, and b, o, r are constants with o > 0 and » > 0. Then (4.1.3) turns out to be
dX; = Xy[r + (b — r)oy)dt + Xy dWy. (4.1.4)
The investor’s problem here is to maximize the expected utility of the wealth
E[U(X7)] (4.1.5)

over all portfolio proportion processes {a;}. Here U : (0,00) — R satisfies U’ > 0 and U” < 0,
which is called a wutility function.

Ezample 4.2 (Aircraft trajectory planning [25]). Consider an aircraft’s motion in the 2-dimensional
horizontal plane. We assume that the local navigation frame is described by the 2-dimensional
FEuclidean plane where x-axis points the east and y-axis points the north. Then, the state X,
of the aircraft is described by a vector in R2. We further assume that the current heading of
the aircraft is determined by the control variable ay € A = [0, 27). With these assumptions, the
dynamic of X; can be described by

dX; = (Cf’s(o‘t)) vedt + dY;.
sin(ay)

where v, is the aircraft’s cruise speed, assumed to be constant, and Y; = Y;(x) describes the
wind disturbance at the position z. A simple model for the wind disturbance is

dYy(z) = y(t,x)dt + o(t, z)dWs.

Here y(t,z) describes a mean behavior of the wind, which is a deterministic vector field, and
o(t,z) is a magnitude of random fluctuations at (¢,x), both of which are estimated by weather
charts. Further, W; is a 2-dimensional Brownian motion. Thus, the controlled process X; is
given by
cos(ay)
X = X X .

dX; [(sin(o@) ve +y(t, t)} dt + o(t, X¢)dW;
The objective of the trajectory planning here is to control the movement of the airplane so as
to enter a given area Sy at the terminal time T while avoiding a forbidden area S;. Then the
problem is

T
?nr]}E [d(XT,So) +A / eV‘“Xt»Sl)dt} :
ot 0

where A,y > 0 and d(z, S1) denotes a distance between a point = € R? and a set S C R2.

We turn to the rigorous formulation. In what follows, we fix an Fg-measurable random
variable Xo € L? and a closed subset A of R%. We assume that the evaluation functions g on
R? and f on [0,T] x R? x A are Borel measurable. Denote by A the collection of all processes
a = {o }o<t<7 such that

(i) «ais A-valued and F-adapted;
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(ii) the SDE (4.1.1) has a unique solution {Xj*}o<¢<7 with initial condition X§ = Xo;

(iii) The criterion is finite, i.e.,

E {/OT (s, X2 as)ds + g(X%)]

is finite.

We call elements in A control processes. Then, given a subset Ac A, our stochastic control
problem is describe by

T
mﬂE{/ f@,X&a@ds+gL¥%}. (4.1.6)
acA 0

e We say that (4.1.6) is a finite time horizon problem.
e The stochastic control problem
TC!
inf E [ / f<s,xs,as>ds+g<X$a>] |
acA 0
where 7¢ is the first exit time of {X 0 PN from a given set S C R?, is called an indefinite

time horizon problem, and the one

oo
inij/ e M f(s, X2, a)ds,
acA 0

where A > 0, is called an infinite time horizon problem. The both problems have many
important applications. However, we omit to deal with them for simplicity of the presen-
tation.

e Suppose that { X/ }o<¢<7 is a unique solution of
dX[ =b(t, X, a(t, X]))dt + o(t, X[, a(t, X]))dW;

for some Borel function a and that o = a(t, X;), 0 <t < T, is in A. Then, by the
uniqueness, X = X;. We call such a* a Markov control.

e Of course oy := a(t, maxpo<s<t X2), 0 <t < T, is not a Markov control. Thus, in general,
the controlled SDEs (4.1.1) differ from those considered in Chapter 3 in that the former
depends on possibly non-Markovian processes.

To discuss the existence and uniqueness of (4.1.1), we assume here that b : [0, 7] x RY x A —
RY and o : [0, T] x R?x A — R¥*™ continuous functions and that there exists a positive constant
Co such that for (¢,z,y,a) € [0,T] x R x R% x A,

|b(t7$’a) - b(t¢y7 (I)| + |U(ta x,a) - G(t7y)a)| < Cv(]|3j - y|> (417)

and that -
E/ (1b(¢,0, ) 2 + 0 (2,0, a0)|?) dt < o (4.1.8)
0

for a given A-valued and adapted process a.
We can apply the same argument as in the proof of Theorem 3.2 to obtain the following;:

Theorem 4.3

Suppose that the conditions (4.1.7) and (4.1.8) hold. Then, there exists a unique solution
{X?}o<t<r of (4.1.1) with initial condition X§ = Xp.
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Actually, Theorem 4.3 is a corollary of the following result:

Theorem 4.4

Let ¢t € [0,T]. Consider the equation
Xs=¢ +/ b(s, Xs)ds +/ (s, Xs)dWs, t<s<T, (4.1.9)
t t

where €, b: Q x [t,T] x R? and & : Q x [t, T] x R¥*™ satisfy
(i) ¢ is an R%valued and F;-measurable random variable with E|£|? < oco.
(ii) b(s,x) and &(s,z) are adapted for each (s,z) € [t,T] x R%.

(iii) There exists a positive constant C such that

]l_)(s,l‘)—l_)(s,y)\ §01|.%'—y|, s € [taT]? xvyERd-
(iv) The processes {b(s,0)} and {7(s,0)} are in £, i.e.,

T
E/t ([5(s, )% + o (s, 0)[?) dt < oc.

Then, there exists a unique solution { X, };<s<r of (4.1.9) satisfying E sup,< p | Xs|* < oo.

e As in Chapter 3, we write {Xﬁ’g’o‘}tgng for the unique solution of (4.1.1) with initial

condition X5 = ¢.

4.2 Verification Theorem

Consider the following nonlinear second order PDE, called the Hamilton-Jacobi-Bellman (HJB)
equation:

OV (t,x) + in}f4 H%(t,z, DV (t,x),D*V(t,z)) =0, (t,z)€[0,T) x R,
a€ (4.2.1)
V(T,z) =g(z), zeR%

A central tool for solving stochastic control problems is the HJB equation, which character-
izes the value function of the stochastic control problems. Once a candidate value function is
identified, one needs to verify that it indeed represents the optimal cost. The purpose of this
section is to provide a rigorous formulation of this verification step. The verification theorem
establishes sufficient conditions under which a suitably smooth solution of the HJB equation
coincides with the value function and yields an optimal control.
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Theorem 4.5: Verification theorem

Suppose that there exists a C'2-function V on [0,7] x R? that is a solution of (4.2.1).
Suppose moreover that the following are satisfied:

(i) For every o € A,

E

T
sup !V(t,Xt“)H/ !f(t,Xi’,at)\dt] < 00.
0<t<T 0

(ii) There exists a Borel function a* on [0,T] x R? such that

inf H%t,z, DV (t,x), D*V (t,x)) = H* &) (¢, z, DV (t,z), D*V (t,z)), (t,z) € [0, T]xR%.
ac

(iii) There exists a unique solution {X; }o<¢<7 of the SDE

dX{ =b(t, X, a"(t, X]))dt + o(t, X[, a*(t, X]))dW:, X5 = Xo.

(iv) The process af := a*(t, X;), 0 < t < T, belongs to A.

Then o is optimal for the problem (4.1.6).

Proof. For a € A and n € N define the stopping time 7 by
8 =inf{t € [0,T]: | X;| >n} AT.

Then, using 1t6 formula and (4.2.1), we have

B[ [ a0 + Vi X5 | 2 EIV(0.0)
0

Then, by the dominated convergence theorem,

T
E [ | 7t xzas + g(X%>] > E[V(0, Xo),
0
whence

e[ C (s, X0 0)ds + ox3)| 2 BV (0, X))

On the other hand, by the uniqueness, X§ = X}, 0 <t < T, a.s. Thus, using the conditions
in Theorem 4.5 and the localizing argument as in above,

E [/OT Fls, X2 al)ds + g(X%*)} = E[V(0, Xo)]

T
< infE[/ f(s, XS as)ds + g(XT)| .
aeA 0

Since a* € A, we deduce that o is optimal. O

o [t is straightforward to see that V' coincides with the value function

T
olte) = it B[ [ (s, X0 s (X)L (ra) € 0.7] xR,
acA t

84



¢ . . .
where { X" }i<s<7 is a unique solution of

AX" = b(s, XI5, a)ds + o(s, X072, )W,

with initial condition Xtt % — g. That is, we have

o(t,z) =V(t,z), (t,z)el0,T] xR,
provided that v is well-defined and the conditions in Theorem 4.5 hold.

Ezample 4.6 (Linear regulator problem). Consider the controlled SDE
dX{ = (b(t) X + c(t)oy) dt + o(t)dWry, (4.2.2)

where b : [0,T] — R4 ¢:[0,T] — R4 and o : [0,T] — R¥™ all of which are continuous.
The problem is to minimize

E [(X%)TRX% +/ H{XTPOXT + (@) Qta ) dt]

over all R%-valued process o = {at}o<t<7 with each component belonging to Lo. Here, R € Sé
and the functions P : [0, T] — S, @ : [0,T] — S% are assumed to be continuous and nonnegative
definite. Further, Q(t) is assumed to be positive definite for any ¢ € [0, 7]. By Theorem 4.3 (and
Theorem 4.4 or by a direct esitmation), there exists a unique solution {X{*}o<¢<7 of (4.2.2) for
any a = {ay }o<¢<r as in above and initial condition Xo € L? such that Esupy«,<p | X8| < oo.
Thus the criterion is always finite. So we take A to be the set of all R*-valued processes a such
that each component is in £y. Then A C A.

Theorem 4.5 suggests that if the HJB equation has an explicit solution then the solution
gives a candidate of an optimal solution. In our case,

H(t,x, Du(t,z), D*v(t, z))
= (b(t)x + c(t)a) "DV (t,z) + %tr(a(t)a(t)TDQV(t, z)) + 2 P(t)z + a"Q(t)a.
Therefore, the infimum of H%’s is attained by
a* () = ~ 5 Q1) DV (t,2)Tel).
In view of the linear-quadratic structure of the problem, we look for a solution V of the HJB

equation by assuming V (t,x) = 2T F(t)x + G(t) for some deterministic functions F : [0, T] — S¢
and G : [0,7] — R. Substituting this form into the HJB equation, we see

T [F'(t) — F()e®)Q(t) " Le(t)TF(t) + P(t) + b(t)TF(t) + F(t)b(t)] T
+ G (t) + tr(a(t)o(t)TF(t) =0
for (t,z) € [0,T) x RY, where L(t) = dL(t)/dt. This leads to the ODEs

F'(t) — Ft)e®)Qt) Le(t)TF(t) + P(t) + b(t)TF(t) + F(t)b(t) =0, F(T)=R, (4.2.3)
G'(t) + tr(o(t)o(t) T F(t)) =0, G(T)=0.

It is known that there exists a solution of the matriz Riccati differential equation (4.2.3) (see
Theorem 5.2 in [10]). With this F, the function G is explicitly determined and so V(t,z) =
x T F(t)z + G(t) is a solution of the HJB equation. Consequently, a*(t,z) = —Q(t) " te(t)T F(t)x.
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Problem 4.7. In Example 4.6, complete the remaining arguments to be done and obtain an
optimal control using Theorem 4.5.

Problem 4.8. Try to find an optimal control for a more general problem than that in Example
4.6.

Before turning to next example, we observe that the following theorem holds:

Theorem 4.9

Let {bt}o<t<r and {ot}o<i<r be R-valued and R™-valued adapted processes such that

T T
/ybtycm/ 012t < 00, 2.,
0 0

respectively. Then there exists a unique solution {Z;}}o<;<7 of the SDE

dZ; = Zy(bedt + of dWy), Zo = 1. (4.2.4)

Proof. Put

t 1 t
Yt:/ <b5—2|05|2> ds+/ a;rdWS, 0<t<T.
0 0

Then, with It formula, it is straightforward to see that Z; := e¥*, 0 < t < T, is a solution of
(4.2.4). Let Z,, 0 <t < T, be another solution. Then, It6 formula yields dZje~* = 0. Thus
Zy=27;,0<t<T. O

Ezample 4.10 (Merton problem). Recall the investment problem in Example 4.1. By Theorem
4.9 there exists a unique solution {X/*}o<i<7 of (4.1.4) for any R-valued adapted process a €
£2,loc7 given by

t 1 t
Xy = Xopexp {/ <r+(b—r)a5—2a2a§> ds—l—a/ ades] , 0<t<T.
0 0

Here we take U(z) = 2%, > 0, for some ¢ € (0, 1), and then define A by the set of all R-valued
processes o € L, such that Esupgc,;«p U(Xf) < oo. Moreover, we assume that X is a
positive constant. o

To solve the control problem, we consider

t 1 t
Y, = q/ <r +(b—r)as — 2020@) ds + qa/ asdWs, 0<t<T.
0 0

as a state variable. Then the corresponding HJB equation is

Ow(t,y) +sup H(y, Dv(t,y), D*v(t,y)) =0, (t,y) € [0,T) x R,
acR (4.2.5)
v(T,y) =¢¥, yeR.

where

1 1
502a2)p + §q202a2'y.

We look for a solution of (4.2.5) of the form v(¢,y) = w(t)e?, where w is a positive deterministic
function. Substituting this form into (4.2.5), we observe

H(z,p,v) =q(r+ (b—r)a —

0=e! {w’(t) + qu(t) Sup {r +(b—r)a- %(1 - q)(f?aﬂ }

— Y {w’(t) +qu(t) {’“ + M] } ’
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where the supremum is attained by a* := (b—r)/(0?(1 - q)). Thus, v(t,y) = exp(qd(T —t) +y)
with @ = r + (b —7)%/(20%(1 — q)) is a solution of (4.2.5), and the constant control o := a* is
a candidate of an optimal portfolio proportion. By the verification theorem, we can show that
«* is indeed optimal.

Problem 4.11. In Example 4.10, check the conditions in Theorem 4.5 hold to confirm the
optimality of o*. Doob’s maximal inequality will help you.

e As we have seen so far, the verification theorem gives a way of constructing an optimal
control. In particular, Theorem 4.5 gives sufficient conditions for which optimal control
exists.

e To apply Theorem 4.5 for applications, we need to obtain an explicit solution of the HJB
equation, which is rarely available, however. Even more, a classical solution may not exist.

As for the existence of optimal Markovian controls, we have the following result:

Theorem 4.12

Suppose that A is compact, b,0,g are all bounded continuous functions, and f = 0.
Suppose moreover that the set

{(o(t,z,a)o(t,z,a)7,b(t,z,a)) : a € A}

is convex for all (t,z) € [0,7] x R%. Then, there exist a filtered probability space
(Q*, F* F*,P*), a process a* € A, and a Borel function a* on [0,7] x R? such that
o is optimal for the stochastic control problem (4.1.6) defined on this filtered probability
space, where A = A is defined by the set of all A-valued adapted processes, and that

of =a*(t, X)), as., 0<t<T.

For a proof of this theorem, we refer to Haussmann [14].
We close this section by giving an example of HJB equations having no classical solutions.

Ezample 4.13. Consider the case where the controlled SDE { X} is given by
dXta = Oétth,
with a nonrandom initial condition, and then the optimal control problem

sup E[g(X7)]
acA

where A is the set of all R-valued processes in Lo, and

{sin:): (x >0),

ID=, <o)

Suppose that there exists a C12([0,T] x R)-solution V of the corresponding HJB equation

1
OV (t,x) + 3 sup[a’D?*V (t,z)] =0, (t,z) €[0,T) xR,
a€R

V(T,z)=g(z), x€R.

Then, D?V (t,x) < =20,V (t,x)/a® for a # 0, and so letting a — oo we have D?V (t,x) < 0 for
every (t,z) € [0,T) x R. Hence, V(t,-) is concave on R and V (¢, -) = g, which is a contradiction.
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4.3 Problems with Terminal Time Constraints

This section is devoted to a special class of control problems described by the following:

Problem (S). Given two Borel probability measures jg, 1 on R? and a positive constant o,
minimize .
E/ |Ut|2dt
0

over all R%-valued control processes {u;} such that the corresponding controlled diffusions

t

Xy = Xo —l—/ ugsds + oWy
0

satisfy P(Xo € dx) = po(dx) and P(X; € dy) = p1(dy), where {W;} is a d-dimensional Brownian
motion.

We shall adopt a weak formulation of the control problems above, i.e., the minimization are
taken over all possible probability measures, Brownian motions and control processes. We will
present a rigorous formulation below.

When there is no terminal time constraint P(X; € dy) = pi(dy) and po is a Gaussian
distribution, then the problem (S) is a special case of the linear regulator problem (see Example
4.6). Our problem here is to find a controlled diffusion dX; = u;dt + odW; that starts from
the initial distribution pg and arrives at a predetermined final distribution pq, with minimum
“energy” E fol g |2 dt.

Background

In the two papers [34] and [35], Erwin Schrodinger considered the following thought experiment:
for N-independent Brownian particles X, ..., X() suppose that at time ¢ = 0, this cloud
approximately follows po(dz) and at time ¢t = 1 the observed distribution of the could follows
p1(dy). Then, what is a could evolution that most likely occurs?

The law of large numbers tells us that the above transition is a rare event. To be precise, if
the initial distribution of each particle X follows po then by the strong law of large number,

the empirical measure (1/N) > j=10 X0 of this could at terminal time converges to

/ p(0, 2,1, y)puo(dex)dy # pa (dy),

almost surely as N — oo, where p is the transition density of a Brownian motion. To determine
a reasonable cloud transition probability among these unlikely possibilities, Schrodinger used
a particle migration model with space discretization, exactly computed the distribution of the
random variable of the particle migrations under the initial and terminal time constrains, and
then adopted the mazimum entropy principle. Then, after taking the continuous limit, he
derived a system of partial differential equations for the optimal transition probability, the so
called Schridinger system or Schrodinger’s functional equation (see (4.3.5) below). We refer to
an english translation [7] of [34] for an exposition of the Schrodinger’s original approach.

Follmer [12] discovers the Schrédinger’s problem is nothing but the one of large deviation.
By Sanov’s theorem (see, e.g., [9]) for the large deviation principles on empirical measures, the
problem of computing

N
1
N E 5X(j) follows py, t=0,1
t
=1

1
NlogIP’
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is nearly equivalent to the minimization problem of the relative entropy

Eq [log %] , (@< P),

+o0, (otherwise).

H(Q|P) := {

over all Borel probability measures @ on W¢ such that the initial and terminal marginals are
given by pg and puq, respectively, where P is the a priori law of Brownian particles. An optimal
measure () that solves this minimization problem is called the Schrodinger’s bridge between g
and .

Assume here that @ = W and X is the coordinate process: X;(w) = w(t). Under P, the
process X is represented as X; = Xo + Wy, where X follows pg and W is a Brownian motion
that is independent of Xy. Roughly speaking, by the martingale representation theorem, every
) above can be represented as

d ! 1t
£ = exp {/0 ul AWy — 2/0 ]ut|2dt]

for some process {us} adapted to the canonical filtration. By Girsanov’s theorem, the process
Wy == W, — fo ugds is a Brownian motion under @), whence X is represented as a controlled
diffusion given by

t
Xt:X()+/ U5d8+Wt
0

under ). Assuming the square integrability for {u;} formally, we obtain

1 1
H(QIP) = 3Bq [ lufd:

Consequently, finding a Schrédinger’s bridge is roughly equivalent to solving the problem (S)
with 0 = 1. For this reason, we will call (S) the Schriodinger’s bridge problem. We refer to, e.g.,
[6] and [24] for surveys of Schrodinger’s bridges.

Connections with optimal transport

Let Qo1 be the law of (Xo, X1) under @, where @ is a Borel probability measure on Q = W¢,
Then, one can prove that the problem

inf  H(Q|P),

QEP (1o 11)

where P(uo, 1) is the set of all Borel probability measure @ on Q such that QX b= 4y and
QX! = 111, is equivalent to the static problem

inf H(R|Py), 4.3.1
REPs(po,41) (FlPor) ( )

where P (10, i11) is the totality of all Borel probability measures R on R? x R? satisfying
R(A xRY) = pg(A), R(R? x A) = pui(A), Ac BRY

(see Proposition 4.19 below).
Let us slightly generalize the situation to the case ¢ > 0, i.e., X; = Xg+oW;,, 0 <t < 1. It
is straightforward to show the same results as above, where Py; is now given by

POl(A X B) = /A/Bp(o’m, 1,y)ﬂ0(dl‘)dy
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with the transition density
e~ ly—al?/(20%(s—1))

, 0<t<s<l1, z,yeR% 4.3.2
Qno?(s— a2’ = Si=h B (432)

pt,z,s,y) =

Assume here that po has a positive density po. In this case, for R(dzxdy) = p(x,y)dzdy,

p(x,y)
po()

1 d
log (x,y) = @Ly — x>+ 5 log(2mo?) 4 log , a.e.,

dP01

whence the static problem (4.3.1) is roughly equivalent to the minimization problem

/ ly — z|?R(dzdy) + 20> / <log plz, y)> p(x,y)dzdy + Cy
R4 xR R x R4 po()

over such R’s, where C, is a constant independent of R, satisfying C, — 0 as ¢ — 0. This
means that the problem (4.3.1) can be seen as an entropic regularization of the so-called Monge-
Kantorovich optimal mass transport problem

inf — z?R(dxdy).
REPs(po,p1) /]%“&Rd ‘y ‘ ( y)

It is known that under some regularity conditions there exists a measurable map 7' : R — R¢
such that R* := (Id x T)yuo is optimal to the Monge-Kantorovich problem, where Id is the
identity map and f;uo denotes the pushforward of pg with f.

Consequently, solving the Schrodinger’s bridge problem with small ¢ is amount to giving an
approximation of the displacement interpolation p; = (T3)spo where Ty(x) = (1 — t)x + tT(z),
0 <t <1, by the marginal distributions of a controlled diffusion {X;}o<t<1. We refet to [29] for
a rigorous convergence analysis in the zero-noise limit of Schrodinger’s bridges.

Rigorous formulation

Let (92, F,P) be a complete probability space. Let {W;}o<t<1 be a d-dimensional Brownian
motion on (2, F,P) with respect to a given filtration F satisfying the usual conditions. Then
consider the process

X, =Xo+oW,, 0<t<I.

Assume that X follows g under P, i.e., that P(Xo € A) = uo(A) for any A € B(R?).
Definition 4.14. We say that a triple 7 = (Q, B, u) is an admissible control system if
(i) Q is a probability measure on (€2, F) such that Q ~ P;
(ii) B = {B:}o<t<1 is a d-dimensional F-Brownian motion on (€2, 7, Q);

(iii) u = {w;}o<i<1 is an R%valued F-adapted process such that

1
Eg [/ |u5|2ds] < 00,
0
1 1 (1
Eq [exp <—/ uldB, — / |u8|2ds>] =1,
0 2 Jo

and the controlled process
t
X ::X0+/ ugds + 0By, 0<t<1,
0
satisfies Q(X¢ € A) = po(A) and Q(X € A) = p1(A) for all A € B(RY).
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We write II for the set of all admissible control systems.

Note that X;* = X; for the admissible control system (P, W,u) where u = 0. For any
admissible control system 7 = (Q, W, u) € II, define the control criterion by

J(r) :=Eqg Uol \us\st] :

Then consider the optimal control problem

J* := inf J(7). (4.3.3)
mell
We shall reformulate the problem (S) by (4.3.3). Namely, we redefine the problem (S) by the
one of finding an admissible control system that attains the infimum in (4.3.3).

Solutions

As a first step, we consider the static Schrodinger’s problem (4.3.1), and derive a first or-
der optimality condition. To this end, first assume that po and p; have the densities pg
and pj, respectively. Then, the measure Py (dzdy) = P((Xo, X1) € dxdy) has the density
po(z)p(0,z,1,y), where p is the transition density of {X;} under P, defined by (4.3.2). Further,
for any R € Ps(uo, 1) such that its density gpg exists, we have

(P = [

R4 xRd (lOg p(q(x’y)) Q(l‘, ?/)Po(:ﬂ)dl‘dy

0,2,1,y)

Introduce Lagrange multipliers A(z) and 7n(y), and then consider the functional

L) = [ Jatwaiop SO0 (@) 4 00) (1) ~ ate)oo(e) | dady

Assume here that R(dzdy) = q(z,y)po(z)dzdy is optimal. Let ¢’ be an arbitrary such that
fRd ¢ (z,y)dy = 0. By an elementary computation, the first order condition

d
—L ! =0
Ehared)|

leads to

q(z,y) = p(0,z,1, y)ek(w)ﬂz(y) _

Now put ¢(x) = po(x)eM® and $(y) = e"®). The constraint R € Ry(uo, p1) can be written as

o@) [ 90,0158y = po(o). @R,

(4.3.4)
¢(y) /Rd p(x)p(0,z, 1, y)dx = pi(y), yeR?
Then, consider a generalized version
pio(do) [ p(0. 1, )i () = o),
R (4.3.5)

pi(dy) [ (0., L)) = (),

of (4.3.4). The system (4.3.5) of equations is called the Schridinger’s system or Schrédinger’s
functional equation. A solution of the Schrédinger’s system is thus a pair (ug, 1j) of o-finite
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measures on R? satisfying (4.3.5). Note that if a solution (u, %) of the Schrédinger’s system
exists then it satisfies o < pf and p1 < pf, and (Apd, A~1ug) is also a solution for any A > 0.

Actually the Schrodinger’s system admits a solution. A proof of the following result can be
found in [23].

Theorem 4.15

There exists a solution (y, u7) of the Schrodinger’s system (4.3.5) such that pf ~ po and
pi ~ p1. Moreover, (1, i) is uniquely determined up to positive transformation, i.e., if
(15, i13) is another solution, then uf = Aig and pi = A~1} for some A > 0.

Hereafter, denote by (4, ;) the unique solution of (4.3.5) in sense of the theorem above.
Further, assume that p; is equivalent to the Lebesgue measure. Then, since p] ~ p1, the Radon-
Nikodym derivative of ;] with respect to the Lebesgue measure exists. So define the functions

d
1 on R* by

*

dul d
(p y - y b y ]R *
1( ) ly ( ) S

We further assume that 7 is continuous on R%. Then,
h(t,z) = Eelor(X7")], (t,2) € [0,1] x R?

solves the Cauchy problem

Ouh(t,z) + %UZAh(t,x) —0, (t,)€0,1) xRY,

(4.3.6)
h(l,z) = ¢i(z), =eR?
(see Section 1.3). By (4.3.5), we have
N d
h(0,z) = / p(0,z,1,9)p1(y)dy = / p(0,z, 1, y)ui(dy) = d,ug (z) >0, (4.3.7)
Rd Rd Ho
whence
R JRA Rd Rd
= po(R?) =
(4.3.8)
Thus, we define the probability measure P* on (2, F) by
dP*  h(1,Xy)
dP ~ h(0, Xo)’

Let u* = {u} }o<t<1 and W* = {W} }p<<1 be the processes defined respectively by

1 t
uf = o?Dlogh(t, X;), W} =W; — / ulds.
0

g

Theorem 4.16

Suppose that u; is equivalent to the Lebesgue measure and ¢ is a bounded continuous
function on R%. Moreover, suppose that

H(R*’P()l) < 00,

where R*(dzdy) = p(0,z, 1, y)ui(dx) i (dy). Then, 7% := (P*, W*,u*) € II and is optimal
to the problem (.5).
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Proof. Step (i). By (4.3.6) and It6 formula,

1
dh(t, X;) = o Dh(t, X;)"dW; = oh(t, X;) D log h(t, X;)"dW; = —h(t, X;)(u}) TdW;.
g

dP* 1 ! #\T 1 ! *12

This together with Girsanov’s theorem yields that {I¥;*} is a d-dimensional F-Brownian motion
under P*. Further, the controlled process X2, 0 < t < 1, is given by

Thus,

t
XY =X, +/ wids + oW = X
0

Hence, the underlying process {X;} is seen as the controlled diffusion with input «* under P*.
By (4.3.5) and (4.3.6), for A € B(R%),

P*(Xo € A) = [ {XoeA}ZEé ;ﬁﬂ = /A h(()l’ 2 </Rd <p1(y)p(0,x,1,y)dy> po(dx)
= po(A),
and
P e 4) =B [tonen x| = [ [ 0.0 1ol ()
= p1(A).

Therefore the controlled process { X"} satisfies the distribution constraints.

Next we will prove Ep« fol |uf|?dt < oo, which leads to 7* € II. To do so, consider the
stopping times 7, := inf{t > 0;|uf| > n}, n € N. Then, for each n define the probability
measure P, by

dP,  h(1ATp, Xinr,) /1 N / ()12
P 70, Xo) = exp () AWy — [, | 7dt

=exp[/01<w YTawy + /w)t |dt]

where win) = (1/0)uil{4<s,y- By the monotone convergence theorem,

1 -l
12 90 2 71; (n)|2 9. %
IE]P:*/O luj |“dt = o nlgréoEp _/0 KZha dt] =0 7}1_{{)101[3]}» {log dIP)] . (4.3.9)
On the other hand, since the relative entropy is nonnegative, we obtain

dPy, dP,, | dp* dp*
Ep« [log dIF’] < Ep« [IOngF’ + Ep-~ {log dIP’] = Ep« {log dIP’}

_ dpg dug
= [ o @emon (@ ) o021 )y de)

= H(R*|Py) < .

From this and (4.3.9) the announced result follows.
Step (ii). We will prove the optimality of 7*. Let m = (Q, B,u) € II be arbitrary. Then the
process

R 1 [t
W, Z—Bt—l-/ ugds, 0<t<1,
g Jo
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is a d-dimensional F-Brownian motion under P defined by

Since the controlled process X} satisfies X* = Xo + oW, the distribution of X* under P is the
same as that of X under IP. Hence,

h(1, X3 1/1 - 1 /1 5
> Eg |log ——~- — — dB; — — dt
—eXp{ @[Oghm,Xg) o Jo 1B T g [ el g

where we have used Jensen’s inequality in the last inequality. Therefore,

1 L,
—E d
- @[/0 e ]

h(1, X}) dpio
> Eg |log ~— 1| — g |1 Xo) +1 Xu
> @[Ogh(o,xg)] @[ogdﬂé( 0) +log i (XY)

N /Rd <log jﬁg (x)> poldz) + /Rd (log ¢1(y)) p1(dy)

“Jo S

* 1 ! *
= H(R*|Py1) = —Ep+ U ]ut|2dt] .
0

o)) 0.2 Lol + [ [ og01(0) 00,2, 1wy o)

202

Consequently, we deduce that 7* is optimal to (S). O

Proposition 4.17

Suppose that po(dz) = 64, (dz) for some 2o € R? and 1 (dy) = p(y)dy for some positive,
bounded, and continuous function p satisfying

/Rd p(y) {ly> +log p(y) } dy < oo. (4.3.10)

Then, the pair (ug, p#7) of o-finite measures defined respectively by

po(dz) = po(dx), pi(dy) = p(()f;(oy)ly)

is a solution of the Schrédinger’s system (4.3.5). Moreover,

7= HE ) = [ pl)log (p(o‘;fj”ly)) dy < oo,

Proof. By definition, we have

dpig dpi 1
d,u() ( ) d,ufl (y) p(07 Zo, 17 y)

Thus, for any A € B(RY) with A > zo,

1 d dr) = lLy)y—————=1= A).
/A/de(o’:x, 7y).u1( y):uO( CL’) /de(oa%, ’y)p(O,xo,l,y) :U’O( )
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Further, for any B € B(R?),
pa(dy)
0,2, 1,y)uy(dx) i (d :/ 0,20, 1,y) ————— = p1(B).
/B/de( y)po(da) iy (dy) BP( 0 y)p((),a:o,l,y) #(B)

Therefore (pg, 117) satisfies (4.3.5).
As confirmed in the proof of the theorem above, J* = H(R|Pp1). Under the present assump-
tions,

m(re | = [

R4 xRd p(oa Zo, ]-7 y)

p(y) log <p( p(y)

0,z,1,y)dyd, (d
S ) 01,y )

=/ p(y)logp(y)dy—/ p(y)log p(0, zg, 1,y)dy < oo.
R4 Rd

Thus the proposition follows. ]

Ezample 4.18. Consider the one dimensional case where po(dz) = do(dz) and pi(dy) = p(y)dy
with
py) = Opi(y) + (1 = O)p2(y), yeR
Here, 0 <0 <1 and
e—ly=—mil/(2vi) 19
pl(y) - \/m ) 1= 1,2,
with m; € R, 0 < v; < . Namely, p is the density of a Gaussian mixture distribution.

Let us confirm that p satisfies the integrability condition (4.3.10). Since the function F(y) :=
ylogy — y + 1 is nonnegative and convex, we find

0< /Rp(y) log p(y)dy = /RF(p(y))dy < 0/Rp1(y) log p1(y)dy + (1 —0)/sz(y) log pa(y)dy.

It is easy to check that each p; satisfies (4.3.10). Thus p satisfies (4.3.10).
Let us give an explicit representation of the drift term wu; of the optimal controlled diffusion.

Since ¢1(y) = p(y)/p(0,0,1,y), we have
h(t, ) = Ep[p1 (X))

_9/ p1(z + o1 —tz) 622/2dz+(1_9)/ p2(z+ o1 —tz) 6*22/2dz
B g (0,0, 1,7+ 01 —1t2) V21 g p(0,0,1,2 4+ 01 —tz) V2r
A tedious computation gives
d B (B)((L — )+ )3 (B)e ) 4 (1 - O)an(t) (L — &) + 22 )p(B)e(0)
—logh(t,x) = — ! ! 2 2 ;
dx Ooy (t)e_gl(l’) + (1 — (9)6(2@)6_92(1‘)
where
1
7%i(t) = 70— ,
(7—*2> 02(1—t)+1
a;(t) = ! ,
vii(t)
() = 2 (2 L) s = Pnatege + 25— P21 )
gib T =g v; 2 ) T z% * 2u; 2vza v

95



Finally, we prove the auxiliary result that claims the equivalence between the dynamic and
static Schrédinger’s problems.

Proposition 4.19

Assume that P is the law of the process X; = Xy + cW;, where o > 0. Suppose that
inf pep, (o) H (R|Po1) < oo. Then,

inf H(Q|P) = inf H(R|Py). 4.3.11
QEP (po,p1) @P) RePs(po,11) (Bl Por) ( )

Proof*. First we will show that for Q < P,

dQo1
dPo1

(X0, X1) =Ep [;@‘XO,)Q], P-as. (4.3.12)
To this end, take an arbitrary A € o(Xp, X1). Then A = {(Xo,X1) € B} for some B €
B(R? x R%). We observe

dQOl dQOl dQ
Ep 4Py (XO,Xl)lA:| = /B Por (2)Por(dz) = Qo1(B) = Eq[l{(xs.x1)en}] = Ep [lAdP] 7

leading to (4.3.12).
Next, represent the probability measure P by the disintegration formula

P(I) = /R dXRd(Pm)Z(P)POl(dz), I € B(W?),

where {(Po1):},crdxra is the family of probability measures on (W%, B(W9)) as in Theorem
1.10. Then, take R € Ps(uo, p1) and consider

Q) := /R ) Rd(Pm)z(F)R(dz), I € B(WY).

Note that @ € P(uo, it1). For I' € B(W?), by R < Py and Theorem 1.10,

Q) =Ep (Pgl)z(l“)dﬁjl (2 Z(X07Xl)] =Ep [Ep[lp]Xo,Xl]CZD};(XO,Xl)] =Ep [1FCZD};(XO,X1)] :
This means that Q < P and
%(w _ Zggll (w(0), w(1)), w= (w(t))o<t<1 € WY, P-ace.
Hence H(Q|P) = H(R|Py1). Therefore,
inf  H(Q|P)< inf  H(R|Py). (4.3.13)

Q'E€P(p0,141) T R'E€Ps(po,u1)

On the other hand, for @ € P(up, 1) with H(Q|P) < oo, applying Jensen’s inequality for
the conditional expectation for the convex function f(y) = ylogy —y+ 1, y € (0,00), we have

sy (49)] -2 1 (2D o]

dQ dQo1 )
> K E —1 X9, X =K 1 > f H(R|Py).
B [f< 9 [dP‘ o l]ﬂ Qo [og dPOl] N RGPl?uo,m) (Bl Por)

The last inequality and (4.3.13) leads to (4.3.11). O
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CHAPTER b

Controlled Diffusions and Viscosity Solutions

As seen at the end of Chapter 4, in general we cannot expect the existence of smooth solutions of
HJB equations. The viscosity solutions are the most useful and elegant notion for weak solutions
of nonlinear elliptic and parabolic partial differential equations (PDEs), as well as open up the
possibility of rigorous numerical analysis of HJB equations whose classical solutions might not
exist. In this chapter, we describe basic parts in the theory of viscosity solutions. We refer to
Crandall et.al [8], [11], [32], and [36] for more detailed accounts.

5.1 Dynamic Programming Principle

The dynamic programming principle (DPP) by Bellman [3] gives a recursive method of solving
optimal control problems. In discrete-time framework, by the dynamic programming, we can
directly obtain optimal control processes at least theoretically. In continuous-time, the situa-
tion is slightly different, and the DPP leads to nonlinear partial differential equations for the
stochastic control problems, so-called Hamilton-Jacobi-Bellman (HJB) equations. This section
is devoted to the statement and the proof of the DPP under mild assumptions, and in the next
section, the connection between the DPP and HJB equations is discussed.

Consider the stochastic control problem (4.1.6). Here we assume that the following is satis-
fied:

Assumption 5.1

(i) The set A is compact and convex in R%.
(ii) For each ¢ = b, 0, f, the function ¢ is continuous on [0, 7] x R% x A.

(iii) There exists a positive constant Cjy such that for each ¢ = b, o, f and for every
(t, V', x,2' a,a") € [0,T)? x (RY)? x A2,

6(t, 2, a) — $(t',2',a’)| < Colt — |2 + Colz — 2’| + Cola — |,
|p(t, z,a)| < Co.

(iv) The function g is bounded and uniformly continuous on RY.

o It follows from Assumption 5.1 that (4.1.7) and (4.1.8) holds. Thus, by Theorem 4.3, there

exists a unique solution {X&**},<s<r of (4.1.1) with initial condition X}™* = z for any
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(t,x) € [0,T] x R? and for any A-valued and adapted process a.

e The above fact together with the boundedness of g and f shows that A is the set of all
A-valued and adapted processes.

e We take here A = A.

The preceding arguments show that the value function

T
v(t,z) == in/f“IE [g(X%x’a) —i—/ f(s, Xt ag)ds|, (t,z) €[0,T] x RY, (5.1.1)
ac t

is real-valued. Moreover, Lemma 5.4 below means that v is bounded and Borel measurable.
In addition to Assumption 5.1, we make the following assumption:

The filtration F is the augmented one generated by {W}o<i<7.

Now the DPP is stated as follows:

Theorem 5.3

Suppose that Assumptions 5.1 and 5.2 hold. Let v be as in (5.1.1). Then, for any
t,s € [0,T] with t < s and z € R? we have

S
olt.2) = it B o5, X020 + [ X )i

e Assumptions 5.1 and 5.2 can be weakened. See Krylov [22] for the DPP under a more
general setting.

The rest of this section is devoted to the proof of Theorem 5.3. There are several variations
for the proof of the DPP and all of them are lengthy and technical. Our proof is close to the
one in Nisio [30] and can be skipped on a first reading.

To obtain Theorem 5.3, we need several preliminary results. First we show the uniform
continuity of the value function.

Under Assumptions 5.1 and 5.2, the value function v is uniformly continuous on [0, 7] x R9.

Proof. Let s,t € [0,T] with s > t, z,y € R? and o € A. We write C for positive constants that
do not depends on particular points in [0,7] x R? x A and may vary from line to line. First
observe, for r > s,

Xﬁ,x,a - Xf7y’a =r—y—+ /S b(u’ Xi,%a’ au)du + /s O'(U,, Xi,m,a) au)dWU
t t
n / b, X5, ) — bu, X392, )] du
S
+ / To(u, X5, aw) — o, XV, )] dW.
S
From this and Assumption 5.1, we obtain

r
E‘X;E,x,a _ Xﬁ,y,a|2 < C]a: o y|2 4 C(S _ t) + C/ E ‘thjx,a _ szy,a|2 du.
s
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Thus, by Gronwall’s lemma,

sup E|XD — X592 < Clz — y> + Cls — t|. (5.1.2)
s<r<T

Now, by Assumption 5.1,
|U(t7 ZL‘) - U(Sa y)|

S
<isugHEDgCY%%Q)—-gCY%y”)|+l/ﬁ!f(nlxﬁﬁa,arﬂdr
ae t

T
+/ |f(r, X}f’:”’a,ar) — f(r, Xf’y’a,ozr)|d7“]
S

T
< Csup [E@(X;w) — g(X5P) 4 (s — 1) + / E|Xboe — x5ue dr].
ac S

Since g is uniformly continuous, for ¢ > 0 there exists dp > 0 such that [g(z) — g(2’)| < ¢
whenever z, 2’ € R? satisfy |z — 2| < 8. Thus, by (5.1.2),

t? b 17 t7 b 17
Elg(X5™) — g(X3%)| = E [|g(X3™) = g(X5" ") L xpme_xame) gy + Lyxtme_xamojsa
C C
<e+ Kng;x’a — XV <et %US — ]+ |z —y*),

whence
1
o(t.0) = ol £ € (=4 g lls =t o~ o) 1=l 4o~y ) < C
0

whenever |x — yl, |s — | < 81 := So\/ A 3¢ A . Thus the lemma follows. O

Lemma 5.5

Suppose that Assumptions 5.1 and 5.2 hold. For any s,t € [0,7] with s > ¢, F;-measurable
random variable ¢ € L?, and o € A, there exists a Borel measurable map Fi; on L? x
Lo x C([t, s]; R?) such that

X8 = Foy(€,0, Wy — Wolizrss),  ass.

Proof. Fix s,t € [0,T] with s > t, F;-measurable random variable ¢ € L?, and a € A.
Step (i). For any n € N, put

A, = {B cA: ﬂ(?") = Oé(tk,n) for r € [tk’,natk—i-l,n)’ k=0,1,...,2" — 1},

where t),, = t + (s — )k27", and A = U | A,. Here we have denoted 8, = S(r) just for
notational convenience. Then, as in the proof of Lemma 2.3 we can show that there exists
{a™} c A such that

lim E/ la, — o™ |2dr = 0. (5.1.3)
t

n—o0

To prove (5.1.3), put a,, = ag for r < 0. Then define the adapted process {B,EN)}OSTST with
continuous paths by

BN) = oN / audu, N eN.
r—2—N
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Notice that S(V) € A since A is assumed to be compact and convex. Moreover, since SV is
differentiable a.e., we have @(,N) — ., dt x P-a.e. This together with the boundedness of «
yields

T
E/ la, — B2 50, N — oo,
t

Further, put B,QN’E) = 5(N)(tk7g) for r € [tin,tht1,n) and B?(N,e) = ,(N) for r € [0,t) U [s,T],

¢ € N. Then, again SN0 e A for each N, ¢ and limy_,oo B,]«V’e = @(«N) for any r and N by the
continuity of SV). Consequently, we obtain

S
lim lim IE/ la, — BN 2dr = 0.
t

N—o00 l—00

This means that there exists a sequence {(Ny, £,)}22, such that Ny, ¢, — oo as n — oo and
that

lim E [ oy — BN 12dr = 0.
t
(n) (N tn) . .
Thus the process ay ' := [y , 0<r <T,is the one we aim to construct.
Step (ii). Consider the sequence {Yk(n)}fz"o of the random variables defined by

Yk(:f)l = Yk(n) + b(tlm Yk(n)7 atk)(thrl - tk) + U(tk7 Yk(n)v atk)(Wtk+1 - Wtk)

for k = 0,1,..., K, — 1 with Yo(n) = £. Here we have denoted K, = 2 and ¢, = Uh2tn

for notational simplicity. That is, {Yk(n)} is the Euler-Maruyama approximation of {Xﬁ’gg’aw}.
Then, as in the proof of Theorem 3.14,

. aln) n
lim E[xE4" — v V12 = 0.

n—oo

Further, it is now straightforward to see
S
E| X6 — X;,{,a(")|2 < C’E/ |l — o) 2dr
¢

for some constant C' > 0. Therefore, using (5.1.3), we obtain

lim Yy = X050, as, (5.1.4)

n—oo

possibly along a subsequence.
On the other hand, by an inductive argument, Y[((Z) turns out to be o (&, a, (Wy — Wi)i<r<s)-
measurable. This and (5.1.4) together with Theorem 1.9 lead to the claim. O

For (t,z,a) € [0,T] x R% x A we write

T
J(t,z,a) =E [g(Xfp’w’a) —l—/ f(s, X0 ayg)ds| .
t

Then of course v(t,z) = infaes J(t,7,a), (t,z) € [0,T] x R Further, consider the set A; of
the controls o € A such that as = Gs((W, — Wy)i<r<s) a.s. for some Borel measurable map G
on C([t, s];RY) for each s € [t,T]. Then we have the following:

Under Assumptions 5.1 and 5.2,

v(t,x) = inf J(t,z,a), (t,x)ec[0,T] xR

acA;
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Proof. By Assumption 5.2 and Theorem 1.9, any a € A can be represented as as = G :=
Go.s({Wy}o<r<s) a.s., s € [0,T], for some Borel function G, s on C([t, s];R?). Using the Ito
isometry, we find

S S
/ o(r, XE5 o, )dW, = / o(r, XL &, )dW,, t<s<T, as.
t ¢

for any ¢ € [0,T]. This means that Xba XE’I’&, t <s < T, as. Further, by Lemma 5.5, we
find that for any s € [t, T, there exists a Borel function Fs; on R? x £y x C([t, s];RY) and G,
on C([0,t];RY) x O([t, s];RY), t < r < s, such that

X;E,z,a = Fs,t(xa Ga,-({Wr}Ogrgtv {WT - Wt}tﬁrg-)a {WT‘ - Wt}tﬁrgs)a a.s.
This together with the tower property of the conditional expectations yields
Elg(X;"*)] = E [E [g(xX3%)| 7]
~E[E [g Fri(z, Ga.({W; Yo<r<ts AWr — Wiki<r<.), {W, — Wt}tSTST))‘ ft”

=E |E |g(Fri(z,Go. (¢, {Wr — Wihi<r<), W, — Wt}tggT))”

¢:{WT‘}0<r<t:|

¢= {Wr}o<T<t:| ’

where B(¢) = éa,.(qb, {W; — Wihi<r<.). Similarly, we obtain
E[f(s, X?™, ag)] = E | E[f(s, X?"P@) B(#), } .
5. X5, )] = B [ B[f (5, X250 5001
Thus, since B(¢) € A;, we deduce

J(t,z,0) =F E[J(t,x,6(¢))]|¢:{WT}09§] 2E

f J(t = inf J(¢
auelAt (¢ xa):| algAz g :L‘Oé)

whence v(t,z) > infc 4, J(t,z,a'). The converse inequality is obvious from A; C A. Thus the
lemma follows. O

Proof of Theorem 5.3. Fix s,t € [0,T] with s > ¢, and € R%. By the uniqueness, X"* =
t,x,a
X% a5 for v € [s,T] and for a € A. As in the proof of Lemma 5.6,

_ 7]

=E|E |:g(FT,S(€7 éa,-(% {Wr - WS}SS’I‘S-); {Wr - Ws}sgrgT))} ‘{*Xt‘z’a b= (Wi boere :|
L -9 A rft<r<s

tza

Elg(Xy")] = E [E | g(x3*

~E [l )]

£X§’z’“,¢{Wr}t9J

where 3(¢) = Ga. (¢, (W, — Wy)s<r<.). Similarly,

B [£(r Xt 07)] = B | [£(: X599, 5(0),)] |

5:X2’“”"’7¢:{Wr}tgr§j
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Hence, for a € A,
s T
J(t,z,a) = Elg(X55)] + E/ flr, X559 o, )dr +/ E[f(r, X5 a.)]dr
t s
=F [E[‘](S7Xﬁ’x’ﬁ(d))M:{WT}tqq] + E/ fr, Xﬁ’x’a,ar)dr
== t
> Eo(s, X5 +E [0, X0 ),
t

whence

S

v(t,z) > inf E [U(S,Xﬁ’x’a) —1—/ f(r, Xﬁ’“”’a,aT)dr} .
OtEA t

To prove the converse inequality, let € > 0 be arbitrary and take § > 0 so that

lv(s,y) —v(s,y)| <e, sup |J(s,y,a)—J(s,9,a) <e (5.1.5)

Oée.As

whenever v, 7’ € R? satisfy |y — /| < 6. This is possible due to Lemma 5.4 and its proof.
Let {B,}22, C B(R%) be a disjoint partition of R? such that diam(B,,) < d. Then, for every
n, take x,, € B, arbitrary. For this x,, there exists a,, € A such that

v(s,zpn) > J(s,xp,a") —¢.
From this and (5.1.5) it follows that, for each n,
J(s,y,a™) <w(s,y) +3e, y€E B,. (5.1.6)

Now, fix a € A and define @ € A by

)
o = arl{rgs} + 1{r>s} Z Oz;}an(X?%a)’ 0<r<T.

n=1

Since each " is independent of Fg, as in the proof of Lemma 5.6,
0 s
J(t,z,a) =Y E[J(s,X0™ a")1p, (XL")] + E / Flr, X5 o) dr.
n=1 t
This and (5.1.6) yield

v(t,z) <E {U(S,Xi"'”"‘) +/ f(r, Xﬁ’x’ayar)dr] + 3¢,
t

leading to the inequality we wanted. O

5.2 Definition
Let I be a real-valued function on [0, 7] x RY x R x R x R? x §?, and consider the PDE
F(t,z,v(t,z),00(t, ), Dv(t,z), D*v(t,z)) =0, (t,z) €[0,T) x RY. (5.2.1)

We are mainly interested with the case where F is of the form

1
F(t,x,u,q,p, M) = —q +sup | =b(t,z,a) p — itr(a(t,x, a)o(t,z,a)" M) — f(t,z,a)|, (5.2.2)
acA

which is the case of HJB equations.

102



e The function F' is assumed to satisfy the ellipticity condition:
F(t,x,u,q,p, M) > F(t,z,u,q,p, Ma), (t,z,u,q,p) € [0,T] x R xR x R x RY, (5.2.3)
for My, My € S* with My < Mo.
e For A, B € S? we write A < B if B — A is positive semi-definite.
e The function F is also assumed to satisfy the parabolicity condition:
F(t,z,u,q,p, M) > F(t,x,u,q2,p, M), (t,z,u,p, M) € [0, T]xRIxRxRIxS?, (5.2.4)
for q1,q2 € R with q; < ¢o.
e The nonlinearity F' defined by (5.2.2) clearly satisfies (5.2.3) and (5.2.4).

To motivate the notion of viscosity solutions, let us assume that a classical subsolution
v of (5.2.1) exists, i.e., (5.2.1) holds with = replaced by <. Let ¢ € C"2([0,T] x R%) and
(t,xz) € [0,T) x R? be a global maximum point of v — . By adding a constant if necessary, we
can always assume that (v — ¢)(t,z) = 0. Then, we have the three conditions

O(v—@)(t,z) >0, D(w—)(t,z) =0, D*v—¢)(t,z)<O0.

Note that the first inequality holds with equality if ¢ > 0. From these conditions, (5.2.3) and
(5.2.4) it follows that

F(t,z,o(t,x), 0pp(t, x),Dcp(t,:c),D2g0(t,a:)) < F(t,z,v(t,z), Opv(t, x),Dv(t,x),D%(t,:r)) <0.

Thus the subsolution property holds at (¢, x) for the test function ¢.
Similarly, let v be a classical supersolution of (5.2.1), i.e., v satisfy (5.2.1) with = replaced by
>. Then for any ¢ € C*2([0,T] x R?) such that min ,yep0,7)xre (v —¢)(8,9) = (v—9)(t,z) =0,

F(t,z,o(t,z),0u0(t, ), Do(t,z), D*p(t, x)) > 0.

Definition 5.7. Let F : [0,7] x R? x R x R? x % — R satisfy (5.2.3) and (5.2.4), and let
u € C([0,T] x RY).

(i) We say that u is a viscosity subsolution of (5.2.1) if
F(t,z, p(t, ), 0p(t,z), Dp(t,z), D*p(t,2)) < 0

for all o € CH2([0, T] xR%) and (¢, z) € [0,T) xR? such that maxs \c[o,7)xr4 (V=) (8, y) =
(U - tp)(t,x) = 0.

(ii) We say that u is a viscosity supersolution of (5.2.1) if
F(t,z,o(t,x), 0p(t,z), Do(t, z), D230(t’ z)) >0

for all ¢ € C12([0, 7] x R?) and (¢, z) € [0,T) x R? such that min g ) cio,r)xre (V—9)(8,y) =

(iii) We say that v is a wiscosity solution if it is both a viscosity subsolution and a viscosity
supersolution.

5.3 Comparison Principle

The comparison principle is a key property for uniqueness of viscosity solutions, and is an
important ingredient in numerical analysis of fully nonlinear parabolic PDEs.
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An equivalent definition of viscosity solutions

We need an alternative definition of viscosity solutions in terms of superjets and subjets.
Observe that for U € C([0,7] x RY), p € CH2([0,T] x RY), and (t,x) € [0,7) x R? with
max s ) cfo, 1) x4 (U — ¢)(s,y) = (U — ¢)(¢, ), the Taylor expansion up to second order terms
yields

U(s,y) U x) + ¢(s,y) — o(t, x)
= U(t,2) + p(t,2)(s — )+ Dip(t, ) (y — 2)
+ 5y =) D%e(t,2)(y — o)+ olls — 1] + 1y — al?)

This leads to the following definition: for U € C([0,T] x R?) and (¢,z) € [0,T) x RY, the set
P2+U(t,z) is defined by

PETU(t,x) = {(q,p, M)eRxR?xs:

. Ut+haz+y) —Ut,z)—gh—p'y— 3y My
lim inf 5 >0,.
(hyy)—0 |h| + |y

Similarly, we define the set P*>~U(t, z) by the

PEU(t,x) = {(q,p, M)eRxR?xs:

lim sup Ult+h,xo+y)—Ut,z) —qgh—p'y — 3y My _ 0}.
(hy)—0 |h| + |y|? -

e The sets P>TU(t,z) and P>~ U(t,x) are called the superjet and subjet of U at (t,x),
respectively.

e Compare the definitions of the super/sub-jets with that of the subdifferential in convex
analysis, if you are familiar with it.

e By definition, for U € C([0,T] x RY), ¢ € C12([0,T] x RY), and (t,z) € [0,T) x R? with
max( \eo.7)xrd (U — ©)(s,9) = (U — ¢)(t, x),

(Orp(t, ), Dgl(t, ), D*p(t,x)) € P>TU(t, ).
e The converse implication of the claim just above holds true, i.e., for any (¢, z) € [0,T) x R?

and (g, p, M) € P2U(t, ), there exists p € C12([0, T]xRY) satisfying max s, cio 7z (U~
©)(s,y) = (U — ¢)(t, x) such that

(Q>p7 M) = (3t90(ta LU), DSO(LL» .fL'), D290(t7 x)) .
See [11, Lemma 4.1] for an explicit construction of such ¢.

e A similar characterization holds for the subjet. Consequently, for given (t,z) € [0,T) x R¢,
a point (¢, p, M) € P>~ U(t, ) if and only if there exists p € C%2([0,T] x R?) satisfying
ming ,yep0,1)xre (U — ©)(s,y) = (U — ¢)(¢, ) such that

(a0, M) = (9ep(t,x), Dp(t, ), D*p(t, x)) .

e The closures of the subjets and superjets are theoretically useful. We define P+ U (¢, z)
by the set of the points (¢, p, M) € R x R% x S? for which there exists (t,, Zpn, Gn, P, My) €
[0,T) x R x P2FU(t,x), n € N, satisfying (tn, Tn, Gn, Pn, M) — (t,2,q,p, M). The set
P2-U(t, ) is defined similarly.
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With the preliminaries above, we have the following:

Proposition 5.8

Let F:[0,T] x R? x R x R? x S — R be continuous and satisfy (5.2.3) and (5.2.4). Then
u € C([0,T] x RY) is a viscosity subsolution (resp. supersolution) of (5.2.1) if and only if
for any (t,z) € [0,T) x R? and (g,p, M) € P>t u(t,x) (vesp. (g,p, M) € P>~ u(t,))

F(taxau(t’x)7Qap’ M) <0 (resp. > 0)

Comparison principle

The Ishii’s lemma is a key to the proof of the comparison principle. Since the proof of this result
is lengthy and technical for our introductory notes, we refer to Theorem 8.3 in [8] and [36] for
details.

Lemma 5.9: Ishii’s Lemma

Assume that F : [0,7] x R x R x R? x S — R is continuous and satisfies (5.2.4), and
F(t7x7u7Q7p7M) - F(tax7u707p7M) —q

for any (t,z,u,q,p, M) € [0,T] x R¢ x R x R x R? x §¢. Let U,V € Cy([0,T] x R%)
be a viscosity subsolution and a viscosity supersolution of (5.2.1), respectively. Let ¢ €
CHL22([0, T) x [0, T) x RExR?) and (£, 3, Z,9) € [0,T)x[0,T)xR% xR be a local maximum
of U(t,z) — V(s,y) — ¢(t,s,2,y). Then, for every n > 0, there exist My, My € S¢ such
that

(9:¢(, 5, ,9), D20(L, 5,7, ), Ma) € P>HU(E, 7),
(_6S¢(f’ §,{Z’,g),—Dy¢(ﬂ g’ja E

and

e The space CH122([0, T] x [0, T] x R? x RY) is defined similarly as in the case of C12([0, T x
RY).

Hereafter, we assume that the function F': [0, 7] x R? x R x R% x S — R is represented as

1
F(tv z,u,q,p, M) = —q + Bu + sup |:_b(t’ z, a’)Tp - Etr(o-(ta z, (I)O'(t, z, a’)TM) - f(tv z, CL)
acA
(5.3.1)
for (t,x,u,q,p, M) € [0,T] x R x R x R x R% x §%, where § € [0, 00), the set A is a subset of
R and each ¢ = b, o, f satisfies that there exists a constant Cy > 0 such that
|¢(t,[13, a) - ¢(Say7 a’)| < C()‘t - S‘ + CO’:B - y’

for (t,5,2,9,a) € [0,7] x [0,T] x R x RY x A.
Now we are ready to prove the comparison principle.

Theorem 5.10: Comparison principle

Suppose that (5.3.1) holds. Let U,V € Cy([0,T] x R?) be a viscosity subsolution and a
viscosity supersolution of (5.2.1), respectively. If U(T,-) < V(T,-) on R%, then U < V on
[0, 7] x R
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Proof*. Step (i). Notice that for any & > 0, the function U(t, z) := e"U(t,z), (t,z) € [0, T] xR,
is a viscosity subsolution of (5.2.1) with F' replaced by

1
F(t,z,u,q,p, M) = —q+(B4r)u+sup |—b(t,z,a) p— itr(a(t,x, a)o(t,z,a)" M) — e f(t,z,a)| .
acA

Indeed, let c? € CY%([0,T] x RY) and (t,x) € [0,T) x R? be such that max s yef0,7)xrd (U —
&)(s,y) = (U — 3)(t,2) = 0, and put (s,y) = e~"F(s,y), (5,y) € [0, T] x RZ. Then,

(U = o)(s,y) = (U = §)(s,y) < (U = §)(t,2) = 0= (U — )(t,2).
Thus, (¢,x) is also a global minimum point of U — ¢, whence by the subsolution property,
F(t,z,0(t, ), Dp(t,x), D*p(t,x)) < 0.
This together with d;p(t,x) = e " (9@ (t, x) — k@(t, x)) yields
E(t,z,3(t, x), Dp(t, z), D*3(t, z)) < 0.

Hence U is a viscosity subsolution of F' = 0. A similar relation holds for V, and so we may
assume that § > 0 without loss of generality.

Step (ii). Set ¥(t,r) = e (1 + |z]?), (t,x) € [0,T] x R%, where A > 0. Then, it is
straightforward to see that for (¢,z) € [0,T) x R?,

oY(t,x) — p(t,x) + sup |b(t, z, a)TDw(t, x) + %tr(a(t, z,a)o(t,x, a)TDzw(t, x))

acA
< 67)\15(1 + ‘$|2)(—)\ _ /3 +Cl)7 (532)
for some positive constant ¢;. Further, for § > 0 the function V5 := V + d1¢ is a viscos-

ity supersolution of (5.2.1). Indeed, let ¢ € CL2([0,T] x R?) and (t,x) € [0,T) x R? be
such that ming ). ra(Vs — ©)(s,y) = (V5 — ¢)(t,z) = 0. Then ming 1), ga(V — ¢5)(s,y) =
(V — ps)(t,z) = 0, where ¢5 = ¢ — d1p. The viscosity supersolution property means that
F(t,x,05(t, ), Dps(t, x), D*ps(t,x)) > 0. This and (5.3.2) with the choice A > —f + ¢1 yield

0 < F(t, 2, 5(t, ), Dps(t,z), D*p5(t, )
F(t,z,p(t,z), Dp(t, ), D*p(t,x) + e (L + |2*) (=X = B+ e1)
F

(t,z, ¢(t, z), Do(t, z), D*p(t, 1)),

ININIA

whence the claim.

Step (iii). We will show that U(t,z) < Vj(t,z) for all (t,z) € [0,7] x R% and § > 0, which
leads to the claim of the theorem. To this end, assume that ¢ := sup; ;)ejo 77xre (U—V5)(t, ) > 0
for some ¢ > 0. Since

lim sup (U —Vs)(t,z) = —o0,
lz| =00 tefo,1)

there exists a bounded open subset @ of R¢ such that

) Vo). 5.3.3
‘ (tar)gﬁ%x@( 5)(t,x) ( )

Take a sequence (tn, Sn, Tn; Yn) € [0,T] x [0,T] x O x O, n € N, that maximizes the function ®,,
on [0,7] x [0,T] x O x O by

(I)Tb(tﬂsax?y) = U(t,fL’) - ‘/:5(873/) - ¢n(t,3,$,y)
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with n
¢n(t7 S,.I',y) = 5 (‘t - 8‘2 + ’x - y‘z)
for any n € N, where O denotes the closure of O. Further, we write ¢, for the maximum of ®,,.

Then we have
(cna¢n(tn78n7$n,yn)) — (C, 0), n — 0. (534)

To prove this, note that the bounded sequence { (¢, $n, Tn, Yn) }nen converges to some (¢, 5, T,
[0, 7] x [0,T] x O x O possibly along a subsequence. Since U(t,,xn) — Vs(sn,yn), n > 1, is
bounded, it follows from

c < cp S U(tn, Tn) — Vs(SnsYn) — Onltn, Sn, Tny Yn) < Ultn, Tn) — Vs(Sn, yn)
that ép,(tn, Sn, Tn,Yn), n > 1, is also bounded. This means that ¢ = § and T = g, whence

¢ < lim (U(ty, xn) — Vs(sn,yn)) = U(t, ) — Vs(t,T) < c.

n—oo

From this and (5.3.3) it follows that ¢ = U(¢,z) — V(¢,Z) and (¢,Z) € [0,T) x O, which leads to
(5.3.4).

Step (iv). Since (ty, Sn, Tn, yn) converges to (¢,t,Z,z) € [0,7) x [0,T) x O x O possibly along
a subsequence, we may assume that (t,, sp, Zn,yn) € [0,T) X [0,T) x O x O for all n. We apply
Lemma 5.9 with these points, ¢,’s, and n = 1/n. Direct computation gives 0;¢dp (tn, Sn, Tn, Yn) =

_as¢n(tm Sny Tn,y yn) = n(tn_sn) and Dx¢n(tn7 Sny T,y yn) = _Dy(z)n(tna Sn, xnlyn) = n(xn_yn)-
Thus there exist M7, My € Sd_ such that (n(t, — sn),n(xn — yn), M1) € P>*TU(zp,y,) and
(n(tn — 8n), n(Tn — Yn), M) € P>~ Vs(xpn,yn). Proposition 5.8 now implies that

—n(tn — sn) + BU (tn, xn) + F(tn, zn,0,0,n(xyn — yn), M1)

<0,
_n(tn - Sn) + ﬁ%(snv yn) + F(Sna Yn, 07 07 n(xn - yn)7 MQ) > 07

so that

/B(U(tn>$n) - V(S(Snuyn))
< F(SpyYn, 0,0, n(xy, — yn), Ma) — F(tn,xn,0,0,n(zy — ypn), M1)

1
< Conltn, SnsTn,yn) + 9 Sug tr(o(sn, Yn, @) (Sn, Yn, a)TMZ) —tr(o(tn, Tn, a)o(tn, Tn, a)TMl)
ac

for some constant C' > 0. Here we have used (5.3.1) to derive the last inequality. By the Ishii’s
lemma and

- Iy -1
D:%7y¢n(ta 87$7y) =n <_;l-d Idd> )
My 0 Iy —1

< .
(0 ) =5, 20)

tr(0<3na Yn, a)0<3n7 Yn, a)TMQ) - tr<0'(tn; L, CL)O'(tn, Tn, Q)TMI)

b (2 (f‘gl _34)) < 3ntr <2 < o }jd))
— 3ntr ((U(sn, Yns @) — 0 (tn, Ty @)) (0 (5n, Y, @) — 0 (Eny Tn, a))T)

= 3n|a(sn,yn,a) - a(tn,xn,a)|2 < C¢n(tn75na$n7yn)

we obtain

This and (5.3.1) yield
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for some constant C’ > 0 uniformly on A, where

Z — <0-(5n7ynva)o-(5nvynaa)—r U(Sn,yn,a)a(tn,xn,a)T)
U(tn,xn,a)a(sn,yn,a)_r U(tnvxma)o'(tnawma)—r

Therefore,
6(U(tna :En) - ‘/(5(57% yn)) g Cﬂgbn(tnv Sny Tn, yn)

for some C” > 0, whence by (5.3.4) we have ¢ < 0, a contradiction. O

5.4 HJB Equations in the Viscosity Sense
Recall that the value function v of the stochastic control problem in Section 5.1 is given by
T
v(t,z) = ian4E [g(X;x’a) +/ f(s, Xt ag)ds|, (t,z) €[0,T] x R4
ae t
The corresponding HJB equation is
1
-0,V (t,x) + sup [—b(t,x, a)"DV (t,x) — §tr((oaT)(t,x)D2V(t,x)) — f(t,z,a)| =0, (5.4.1)
acA

on [0,T) x R? with terminal condition v(7T,z) = g(z), = € R%

Theorem 5.11

Suppose that Assumptions 5.1 and 5.2 hold. Let v be defined by (5.1.1). Then v is a
unique viscosity solution of (5.4.1) satisfying v(7’,-) = g on R%.

Proof. First note that v € Cy([0,7] x R%) by Assumption 5.1 and Lemma 5.4. Let ¢ €
C12([0,T] x R?) and (¢, z) € [0,T) x R that is a global maximum of v — ¢ with v(t, 2) = ¢(t, z).
For this ¢ we define the function ¢ on [0,T] x R? by

$(5,9) = p(s,9)C(s,9) +2  sup  Ju(s,y)[(1 = C(s,m)),  (s,9) € [0,T] x RY,
(s',y")€[0,T] xR?
where ¢ € C§°([0,T] x R%) is such that 0 < ¢ < 1on [0,7] x R%, ¢ =1 on By(t,z), and ¢ = 0
on R%\ By(t,z). Then, ¢ € C’;’z([O,T] x RY) and

(v=0)(s,9) = (v—¢)(s,9)C(s,y) + (v —2 sup \v!> (5,9)(1 = ((s,9) <0=(v—9)(t ).

[0,T]xR?

Applying Theorem 5.3 and It formula for ¢, we see

t+h
¢<t,x>=v<t,x>SE[¢<t+h,X:f,f>+ t f(s,Xé””’“,a)dS]

t+h
=K [¢(t, x) + / [8tq§(s, XLma)y 4 {H9(s, X5 De(s, X0, D2¢(s, X};xa))] ds
t

t+h
+ Do(s, Xb5) T (s, Xg%a)dws]
t

for any a € A. Since o is bounded and ¢ € C;’Q([O, T] x R?), the expectation of the Itd integral
term in the inequality just above vanishes. Then, dividing the both side by h and letting h — 0,
we obtain

Oyo(t, x) + Ho(t,x, Do(t,x), D*¢(t,x) <0, a€ A,
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whence
—Oyp(t,x) — inf H(t, 2, Dip(t, z), D*¢(t, z)) < 0.
ac

Thus v is a viscosity subsolution.

Let ¢ € CY2([0,T] x R?) and (¢,z) € [0,7) x R? that is a global minimum of v — ¢ with
v(t,x) = ¢(t,x). As in above, we can modify ¢ to be in C’;’Q([O,T] x R%). By Theorem 5.3, for
any € > 0 there exists a® € A such that

t+h

v(t,x) + he > E [v(t + h,X:f;LaE) n (s, XL ai)ds] :
t
The condition on ¢ and the Itd formula yield

1 t+h € € € € £
e 0B [ [l XU 4 H (5, X050, Dip(s, X05), DPp(s, X1 )] s
t

]_ t+h £ £ € £
> 28 [ [atso<s,Xz@’“ ) nf H (s, X070, Dig(s, X2, Dp(s, X120 ))} ds.

Since D%y is uniformly continuous by the modification as in above, the function

s— E in£ Ha(s’ Xﬁ,w,as’ D@(S,Xﬁ’x’as)7 D2¢(S7X§,$,Oé£>)
ac

is continuous on [¢,t + h]. Indeed, by Assumption 5.1, ¢ € C’,} 2([0,T] x RY) and the uniform
continuity of D?¢p, for €1 > 0 there exits § > 0 such that

ingH“(s,y,Dcp(s,y),DQw(s,y)) — ingH“(S’,y’,Dw(S’,y’),DQsO(S’,y’))‘ <ep
ac ac

whenever |s — s'| + |y — ¢/| < 4. From this and the arguments as in the proof of Lemma 5.4 we
find

’E inf H%(s, X;™, Do(s, X;™), D%p(s, Xo™%))
ac

B int B, XU, Dol X7, DR, X))

1 c’
= sup E|X5me — X522 <o §|s &< (1+CNey

<e +C
! 62(1614

whenever |s—s'| < §; := §2e A§, where C and C’ are some positive constants. Thus the required
continuity follows.
Then using the mean-value theorem and letting h — 0, we have

e > Oyp(t,x) + inf H(t,z, Dp(t, x), D*¢(t, 7)),
ac
whence letting ¢ — 0,

—Op(t,x) — ingHa(t,:L“,Dgo(t,x),DQQD(t,x)) > 0.
ac

Thus v is a viscosity supersolution.
The uniqueness immediately follows from the comparison principle and the boundary con-
dition. O

Theorem 5.11 and the definition of viscosity solutions lead to the following corollary:

Suppose that Assumptions 5.1 and 5.2 hold. If the function v defined by (5.1.1) is in
C12([0,T] x R?), then v is a unique classical solution of the HJB equation (4.2.1).
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5.5 Approximation of Viscosity Solutions

Suppose that we want to prove that a given family {v,} of functions converges to a solution
v of the nonlinear PDE (5.2.1). In that case, of course we cannot execute a routine error
analysis by assuming a smoothness of v. Thus we are led to work in the framework of viscosity
solutions. Then, it is often difficult to know a priori that the limit lim,, . v, indeed exists and
is continuous if it exists. The notion of discontinuous viscosity solution is useful in handling
these technical problems.

Discontinuous Viscosity Solutions

Let u be bounded function on [0, 7] x R?. We define the upper semi-continuous envelope u* of
u by
u*(t,z) = limsup wu(s,y), (t,z)€[0,T] xR,

(s,y)—(t,z)
(s,)€[0,T] x R4

and the lower semi-continuous envelope u, of u by

w(te) = liminf u(s,y), (t2) € [0.T] x R”
(s,y)€[0,T] xR

e u* is the smallest upper semi-continuous (u.s.c.) function that is greater than or equal to
U.

e u, is the largest lower semi-continuous (l.s.c.) function that is smaller than or equal to w.

Definition 5.13. Let F : [0,7] x R? x R x R? x S — R satisfy (5.2.3) and (5.2.4), and let
u: [0,T] x R = R be bounded.

(i) We say that w is a discontinuous viscosity subsolution of (5.2.1) if
F(t, @, p(t,x), 0p(t, ), Do(t,x), D*¢(t,x)) <0

for all o € CL2([0, T]xR%) and (¢, z) € [0,T)xR? such that max(s ) cfo,1) x4 (V=) (8, y) =
(U* - (P)(t,$) = 0.
(ii) We say that u is a discontinuous viscosity supersolution of (5.2.1) if
F(ta €, Qp(tv 33’), at@(ta l’), D@(tv .7)), DQSO(t? m)) >0
for all p € CY2([0, T]xR?) and (¢, z) € [0,T)xR? such that min g )cio.r)xre (V=) (8, y) =
(U* - @)(ta 1:) = 0.

(iii) We say that v is a discontinuous viscosity solution if it is both a discontinuous viscosity
subsolution and a discontinuous viscosity supersolution.

Under the framework of the discontinuous viscosity solutions, we still have the comparison
principle.

Theorem 5.14: Comparison principle

Suppose that (5.3.1) holds. Let U,V : [0,7] x R® — R be a bounded discontinuous
viscosity subsolution and a bounded discontinuous viscosity supersolution of (5.2.1), re-
spectively. If U(T,-) < V(T,-) on R, then U <V on [0, 7] x R

Suppose that (5.3.1) holds. Suppose moreover that for a given bounded function u the
upper semi-continuous envelope u* is discontinuous viscosity subsolutions of (5.3.1) satisfying
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uw*(T,-) < g on R? and the lower semi-continuous envelope u, is discontinuous viscosity super-
solutions of (5.3.1) satisfying u.(T,-) > g on R%. Then by the comparison theorem, u* < u, on
[0,T] x R?. However, by definition, u, < u*, and so u* = u,. This means that u := u* = u, is a
continuous viscosity solution of (5.2.1). Further by the comparison theorem for continuous vis-
cosity solutions (Theorem 5.10), the uniqueness follows. Consequently, u is a unique continuous
viscosity solution.

Barles—Souganidis Method

The abstract method given in Barles and Souganidis [2] is a powerful tool for checking the
convergence of a given family of functions to a unique viscosity solution. Let F : [0,T] x R? x
R x R% x S — R. Further, let C be a class of bounded functions such that C? (R%) c C, and
{q)h}he(m} a family of operators such that ®" :C — C, h € (0,1].

Assume that F satisfies (5.2.3) and (5.2.4), and that the comparison principle holds.

Assumption 5.15

Let U,V : [0, T]xR% — R be a bounded discontinuous viscosity subsolution and a bounded
discontinuous viscosity supersolution of (5.2.1), respectively. If U(T,-) < V(T,-) on R?,
then U <V on [0,T] x R%.

Now consider the terminal value problem (5.2.1) with v(T,-) = g on R? where g € C.
Suppose that we construct the family {v"(t, }hea) CC, k=0,...,n, such that

o (ty, z) = D" (tpyr, )](z), k=0,...,n—1, z€R%

Mty ) = g(x), = €R< (5:5.1)

Here, t), = kT'/n for k = 0,...,n. We assume that {t;}}_, is described by the parameter h and
that At :==T/n — 0, as h = 0.
Then we make the following conditions on our scheme:

Assumption 5.16

(i) Monotonicity:
o"[¢)(z) < @"[Y](z), = e€R?

for any ¢, € C with ¢ < v on R%
(i1) Stability:

sup sup [v"(tg, )| < oo, k=0,...,n.
he(0,1] zeR?

(iii) Consistency I for any (t,z) € [0,T) x R? and ¢ € 02’2([0, T] x RY), we have

1
im = (6(s,y) +c— @[p(s + At ) +dl(y))

h—0, c—=0

= F(t,x,0:9(t, x), ¢(t, x), Do(t, x), D*P(t, x)) = 0.
(iv) Consistency II: for x € R?,

lim ol (¢ =g(x).
ey ) = 9

Here is our main result in this section.
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Theorem 5.17

Suppose that Assumptions 5.16 and 5.15 hold. Let v", h € (0,1], be as in (5.5.1). Then,
there exists a unique continuous viscosity solution v of (5.2.1), and for any ¢ € [0, 71,

li ht = vt
h—>01,r2€—>tv ( k7$) U( ’56)7

uniformly on any compact subset of R

Proof. We consider

o(t,x) = limsup v"(tr,y), (t,x)€[0,T] x R?
(tg,y)—(t,@)
h\0
and show that ¥ is a discontinuous viscosity subsolution of (5.2.1). Let ¢ € C%2([0,T] x R%)
such that 7 — ¢ has a global maximum at (¢,z) € [0,7) x R™ with 9(t,z) = ¢(t,x). As in the
proof of Theorem 5.11, we may assume that ¢ € C;’Q([O, T] x RY). Then, take 7 > 0 such that

@=¢)(s,9) < @ —)(t,x), (s,9) € Bo(t,x) C [0,T) x R%.
where B, (t,z) denote the closed ball at (¢, z) with radius r. For (s,y) € B,(t,x) set

P(s,y) = p(s,y) + |s —t]* + |y — z|*.

It follows that (¢,z) is a strict maximum of ¥ — ¢ on B, (t,z). Also, for (s,y) outside the ball,
we choose ¢ so that ¢(s,y) > 2suppe (o] [v"(s,%)| and that ¢ is still in C’;’z([O,T] x R%). Thus
(t,z) is a global strict maximum of 7 — ¢. By abuse of notation, we write ¢ for ¢.

By definition of ¥, there exist hm, km, Gm, m > 1, such that (t,;m,g)m) € B,(t,x) and as
m — 00,

hn =0, (t, > Tm) = (t,2), "™ (t, Gm) = V(t, ).

Take k,,, and y,, so that

(" = @)ty ym) > max sup ("™ — o) (tr,y) — (AL)Z,, (5.5.2)
TVt ye

where (At),, = At for h = hy,. The sequence (tx,, ,ym), m > 1, can be taken from the bounded
set B,(t,z), so there exists a limit point (£,%) € B,(t,z) possibly along a subsequence. Thus,
denoting ¢, = (v — ©)(tr,., Ym), We have

0=(T—¢)(t,z) = lim (v — ©)(t;, > Um) < liminfey, <limsupe, < (v - ©)(t, 7).

m—00 m—00 m—oo

Since (t,7) is a strict maximum, we deduce that (,%) = (t,x). Therefore, it follows that
(tk, > Ym) — (t,x) and ¢y, — 0.
By (5.5.2), for any y € R?,

P(t+1,Y) + Cm + (A1), = 0" (ty, 11, 9).-
Thus, using the monotonicity property in Assumption 5.16,

1
E(I)"m [o(th, + At,-) + cm + (A2 ]t Ym)

Lo 1 2
> —qm > — — .
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Combining this with the consistency property in Assumption 5.16, we find that
F(t,z,00p(t, ), (t,x), Dp(t, z), D?p(t, x)) > 0.

Thus 7 is a discontinuous viscosity subsolution of (5.2.1).

By a similar argument, we can show that

v(t,z) = liminf o"(t,y), (t,z)€[0,T] x R?
<tk72}41)§()(t’z)

is a discontinuous viscosity supersolution of (5.2.1). Since v(7\,-) = v(T,-) = g, Assumption
5.15 now implies that ¥ < v. However, by definition, ¥ > v. Hence we obtain 7 = v.
This means that v := ¥ = v is a discontinuous viscosity solution of (5.2.1). From v(t,z) =
Hmg, o) (¢,2) iMa—0 v"(ty,y), the continuity of v follows. Hence v is a continuous viscosity
solution of (5.2.1).

Now take an arbitrary compact set K C R%. Further fix t € [0,7] and € > 0. Then, by the
uniform continuity of v(t,-) on K, there exists dp > 0 such that |v(t,y) — v(t, z)| < € whenever
ly — z| < dp. Moreover, for any = € K there exist 6(x) > 0 and h(x) € (0, 1] such that

0"ty y) —v(t,2)| <&,y € Byy(a), h < h(),

where t, — t as h — 0. We may assume 6(z) < &g for all x € K. Since { B, () }zek is an open
coverage of K, there exist x1,...,x; € K such that K C UleB(;(xi)(a;i). Thus for any = € K we
have [v"(ty, z) — v (t,2;)| < € for some i = 1,..., k whenever h < hg := min{h(x1),...,h(zy)}.
This means that [v" (tg, z) —v(t, z)| < [v"(ty, ) —v(t, z5) |+ |v(t, ;) —v(t, z)| < 2e. Consequently,

sup [0 (tg, x) — v(t, )| < 2, h < he.
zeK

Thus the required uniform convergence follows. O
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CHAPTER O

Numerical Methods for Nonlinear PDEs

6.1 Introduction

The objective of this chapter is to discuss numerical methods for the terminal value problems
of the parabolic PDEs:

—0p(t,x) + F(t,z,v(t, z), Dv(t,z), D*v(t,x)) =0, (t,z) € [0,T) x RY,

(6.1.1)

o(T,z) = f(z), =€ R,
where F : [0,7] x R x R x R? x S — R. As seen in the previous chapter, under suitable
conditions including the ellipticity condition on F, the terminal value problem (6.1.1) has a
unique viscosity solution v.

Most popular numerical method is the finite difference method. This is powerful and math-
ematically harmless in the case of d = 1. However, its time complexity is growing exponentially
as d becomes large, and strong conditions need to ensure the rigorous convergence for d > 2.
We refer to [11] and Ieda [17] for the analysis of the finite difference method.

As an alternative, we present kernel-based collocation methods. To explain a basic idea, let
O c R? be a set on which functions to be approximated, I' = {m(l), e ,:c(N)} be a finite subset
of O, and ® : O x O — R. Suppose that the matrix A := {@(x(i),x(j))}i7j:17,_.7N is invertible.
Then for any f: O — R, the linear equation

Aa = f’r
has a unique solution a = (ay,...,ay)’ € RY, where flr = (f(a:(l)),...,f(a:(N))T e RV,

Namely, for f : O — R, the function

1f\p (z x(j)), xz e,

Mz

]:1
interpolates f on I', where (§); denotes the j-th component of £ € RY. This suggests

@)~ I(f)(@), €.

Now, by a time-discretization of (6.1.1),

v(th, ) ~ V(tper, ) — AtF(tpyr, 2, v(tgr1, ), Do(tpgr, z), D?v(tgyr, x)), x € O,
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where t, = kT/n, k =0,1,...,n, and At = T/n. Then by replacing the derivatives of v(tx11,-)
with those of I(v(tg+1,)), we obtain

O(te, ) = O(tpyr, @) — ALF (g1, 2, 0(tegr, ), DI(0(tppa, ) (@), D*I(v(try1, ) (2), z € O.

This leads to a recursive equation backward in time that is determined by the collocation points
{to,...,tn} x I'. We analyze this method in details in Section 6.3.

As preliminaries, the next section is devoted to the review of the theory of the function
approximations above. We refer to [38] for a complete account.

6.2 Function Approximations with Reproducing Kernels

Let O = {z € R?: |z — #|o < R}, an open ball centered at some & € R? with a radius R > 0
defined by some Euclidean norm | - |o in R?.

Definition 6.1. We say that ® : R — R is a positive definite function if for every ¢ € N, for
all pairwise distinct y1, ...,y € R? and for all a = (o;) € R\ {0}, we have

l
Z aiajCP(yi — yj) > 0.
ij=1
Moreover, ® is said to be a radial function if ®(-) = ¢(] - |) for some ¢ : [0,00) — R.

For f € L'(R?) the Fourier transform of f is defined by

Jle)=@m 2 | f@e YT e, € R

Suppose that ® € C(R?) N LY(RY). If &J(f) > 0 for any & € R?, then ® is positive definite.

Proof. Since ® € C(RY) N L}(R?), we can apply the Fourier inversion formula (see, e.g., [43]) to
obtain

O(x) = (277)_d/2/ a(ﬁ)eﬁﬂgd& z € RY.
Rd

Thus, for every ¢ € N, for all pairwise distinct y1,...,4, € O and for all & = (a;) € RY, we have

¢
> iy — y;) = d/Q/ Z ajojeV TV 6P (¢)dg

1,j=1 ,j=1

— (2m)- 42 /

Now suppose that Zij:l a;0j®(y; —y;) = 0. Then, since P> 0, we have Zle eV i€ =
0, d¢-a.e. Hence, by continuity, Zle aieﬁyz € = 0 for any ¢ € RY Fix an arbitrary i €
{1,...,¢} and consider f € C§°(R?) satisfying f = 1 on {z : |zt — 3| < £/2} and f = 0 on
{x : |z —y;| > €}, where € > 0 is sufficiently small such that f(y;) = 0 for every j # i. Then by

the Fourier inversion,
)4
ai =Y o;f(y;) =0
j=1

Thus the theorem follows. O

eV I <T><£>d§.
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Ezample 6.3 (Gaussian kernel). Consider the case where ®(z) = el 2 e R o> 0. It is
straig/l\ltforwa{d to see that G(z) := e*‘x|2/2, z € RY, satisfies G = G on R?. From this it follows
that ®(¢) = G(1/v/2a)(2a)~%? > 0. Hence ® is positive definite on R?.

Ezample 6.4 (Inverse multiquadric kernel). Consider the case where ®(z) = (2 +|z|?) 7, z € RY,
¢ >0, 8> d/2. Then we confirm by an elementary analysis that

~ €[\ g
50 =1 (&) Kupoalele) >0, acR,
where

o
1/y = 25—1/ Pt tdt,
0

and K,(z), z > 0, is the modified Bessel function of 3rd (2nd) kind given by

K,(z) —/0 e=#o50(®) cosh(vt)dt.

Hence ® positive definite on R,
Ezample 6.5 (Wendland kernel). Consider the case where ®(x) = ¢4, (|x|). Here,

1
/ s(1—s)(s> =72 tds, 0<r<1,
¢d,T(T) = T
07 r> 17

where ¢ = max{k € Z : k < d/2} + 7 + 1. It is known that ® is positive definite on R? and in
C?7(R%). See [38]. For example,

¢1,2(r) = max{l — 7,0} (8r% + 51 + 1),

p2,5(r) = max{1 — r,0}12(2048r° + 2697r* 4 1644r> + 5661 + 108r +9),
where = denotes equality up to a positive constant factor.

e One of advantages in using Wendland kernel, which is complicatedly constructed and has
a limited smoothness, is that the corresponding interpolation matrix A is sparse.

e Another advantage is that a function space where the approximation works is relatively
easy to handle.

In what follows, let ® : R? — R be a fixed positive definite function, and we provide a
theoretical validation of the approximation I(f) ~ f.

Theorem 6.6

There exists a unique Hilbert space Ngp(O) C C(O) with inner product (-, -)nr (o) such
that

(i) ®(-—y) € No(O) for all y € O.

(i) f(y) = (f, 2 —y))ny(o) for all f € Np(O) and y € O.

116



e We call N3(O) the native space.
e ® is said to be a reproducing kernel for Ng(O).

Ezample 6.7 (Gaussian kernel). In the case where ® is given by the Gaussian kernel,
Nap(RY) = {f RY SR ‘ /Rd 17 (&) [2elelP/te) ge < oo}
and there exist c;,co > 0 such that for f € Ng(R?),
a /R TPl N dg < £113, ray < 2 /R F@ Pl .
Here, for f € L'(R?), the function fis the Fourier transform of f, defined as usual by
F(6) = (2m) 72 y flm)e VI8 dr, ¢ e R

Ezample 6.8 (Inverse multiquadric kernel). In the case where ® is given by the inverse multi-
quadric kernel,

No®?) = {7 RS & | [ FOPIE 2 Kapa-p(cPite <
and there exist c1,c2 > 0 such that for f € Ngp(R9),

ct /R NF@PIEIP [ Kapap(cle)de < 113 re) < €2 /R NF@PIEI8 K ayop(clel)d

Here, K, is the modified Bessel function of the third kind of the order v.
Ezample 6.9 (Wendland kernel). In the case where ® is given by the Wendland kernel,

Np(R?) = {f RMR‘/ FOPA+¢ )T+d+1/2ds<oo}
and there exist ¢;,co > 0 such that for f € Ng(R?),
Cl/ ’f 1 + |€] )‘r+(d+1 /Qdf < Hf”/\/’ &%) < Cg/ |f (1 + ’§|2)T+(d+1)/2d§‘

That is, the native space is given by the L?-Sobolev space of the order 7 with equivalent norm.
Moreover, if 7+ (d +1)/2 is a positive integer, then

No@®Y={ f:RISR) Y /|D0‘f )2dz < 0o

o) <T+(d+1)/
We will show that the approximation I(f) ~ f works on the native space and the error can

be described in terms of || f||x;(0) := (f, f>1/2 and

Az := sup IIllIl |z — 20|
ze0 j=L...N

That is, Az is the Hausdorff distance between I' and O.

Suppose that ® € C?(R?). Then there exists a positive constant Cs,0, only depending
on ® and O, such that for any f € Ng(O),

|f(z) = I(f)(#)| < Co,0Az|f|Np(©) z€O.
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Figure 6.2.1: Approximation of e~ |zl (d = 1). Gaussian kernel with o = 1, N = 11 and
Wendland kernel ¢; 3 for N =11,21,41. I is set to be the uniform grid on [—-2, 2] including the
boundary.
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Figure 6.2.2: Approximation errors of e~ #7172l (4 = 2). Wendland kernel ¢g4 for N =
1000, 2000, ..., 10000. T is generated by the quasi random number of Halton type on [—2,2]%.
The evaluations are done at 441 uniform grid points on [—1, 1]? including the boundary.
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Outline of the proof.
Step (i). Observe '
sup | f(z)] € max |f(x(3))|+KfA:c

for any Lipschitz continuous function f on O where

Ky = sup @ WL
m;ﬁfyo |z — y

Step (ii). We will see that for any f € Ng(O) we have ||f — I(f)lxp©) < [Ifllnp(0) and there
exists a constant C' > 0 such that

Ky < Cllfllng0)-
O

If @ is of Gaussian or inverse multiquadric types, then we can obtain an arbitrary order of
convergence.

Theorem 6.11

Suppose that ® is one of the Gaussians or the inverse multiquadrics. Let £ € N. Then
there exist a positive constants dy and C such that for any f € Ng(O), x € O, and
Az < by,

|f(x) = I(f)(@)] < C(Az)"||flln (©)-

In the case of Wendland kernels, we have the following:

Suppose that ® = ¢4, (| -|) is the Wendland kernel. Then there exist positive constant o
and C such that for any f € Ng(O), x € O, and Az < §y,

1f(@) = I(f)(@)] < C(AZ)™ 2| fllnz 0)-

6.3 Kernel-Based Collocation Methods

Construction

In this section, the function ® is assumed to be the Wendland kernel ®4 . divided by some
positive constant with fixed 7 > 2. Let A > 0 be a parameter that describes approximate
solutions, I' = {z(I, ... (M} ¢ (=R, R)¢ with R > 1, and {to,...,t,} the set of time grid
points such that t; = kT /n, k = 0,...,n. Then think of the interpolant

(A~ W)@z — 29)), 2z eRY, (6.3.1)

M-

vh(tk,x) =
1

J

of v,’; = (vZ}l, e ,v,’;N)T € RN to be specified below. Substituting this into the time discretized
equation
v(tk—Ha ZE) _ v(tkv l’)

~ F(tk+1, Z; 'U(tk—l-l? ))7
tht1 — g

we derive the following equation for {v}}:

Upyry = Uk = (bt — te) Fregag(viy), k=0,...,n—1, j=1,...,N.
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Here, for any C?-function ¢ on R%,
F(t,x;0) = F(t,2,0(x), Dp(x), D*p(z)), = €RY,
and Fy, ;(v) = F(tg,z9);0"(ty,-)). The terminal condition leads to v274 = f(zU),j=1,...,N.

J
Thus, denoting Fj(v}) = (Fx1(v}), ..., Frn(vi)T, we get

(6.3.2)

flr

{U,Z:U]}QL_;_l_(tk-l-l_tk)Fk—i-l(vZ—l—l)? k=0,....,n—1,
h
Un,

Consequently, we define the function v" (¢, x), a candidate of an approximate solution of (6.1.1),
by (6.3.1) with {v!'} determined by the equation (6.3.2).

Remark 6.13. The linearity of the interpolant yields, for z € R%,
V' (tky ) = V" (trg1, @) = (tepr — ) L(Fra (Vi) (@),

where by abuse of notation we denote I(£)(z) = Z;V:l(A_lg)jtl)(x — z0)) for £ € RV,

Let us describe our collocation methods in a matrix form. To this end, we assume here that
the nonlinearity F' can be written as

F(t,z;0) = sup H(t,z, (x),b(x,m)" Dp(), tr(a(z, 1) D*p(x))),
TeK
where K isaset, b: RIx K - R% a:R*x K - S% and H:[0,T] xRIx RxRxR = R. It
should be noted that the nonlinearities corresponding to Hamilton-Jacobi-Bellman equations are
represented in this form. Then, consider the function ¢Ell£ (r) == ¢}, (r)/r, r > 0. By definition
of ¢4 -, the function qbgl is continuous on [0, c0) and supported in [0, 1]. With this function, we

have
Oy, () = oW (|22, = (21,...,14) € RL

Thus,
By(r) := (bg(x@),w)aw@(x(i) - xU))) = Qu(m)(GpA1 — A1Gy),

1<i,j<N
where Qg(m) = diag(bg(x(l),ﬂ),...,bg(:c(N),Tr)), Al = {d)gl(\a:(i) — x(j)|)}1§i7j§N and Gy =

diag(azgl), .. ,CCEN)). Hence,

R 3 (by(',7)(8/0:,)1(€) (2 )h1<isy = Be(m) A€

Similarly,
2 a(a) = | S llal + 62 lal)at, (€=m),
ot 6 (|12 zme, 0 #m),
where O
2 1d¢d,’r
()= ——2T(r), >0

Notice that gbffl is also continuous on [0, 00) and supported in [0, 1]. Thus,

Bp(m) == {amg(m(“,w)aimmfb(ﬂf(i) N x(j))}l<ij<N

is given by
B () = Quum (1) (A1 + G2, Ay — 2G 1, AsG + AG2)

120



and for m # ¢,
Bml = me(ﬂ-)(GmGéAQ - GmA2G€ - GKAZGm + AQGmGﬁ)

with Ay = {qﬁgl(kz:(") — x(j)|)}1§,;,j§1v and Qe(m) = diag(amg(fn(l),w), .. .,amg(x(N),w)). Con-
sequently, we obtain

d d
Fyj(vp) = sup H | ty, 219, (Z Bm(ﬂ_)A_le> : Z Bp(m) A~ ol
m=1

TEK j m,l=1

Numerical examples

Here we consider the following equation for our numerical experiments:

1
— 0w —= sup tr(c?D*v)+G(v,Dv) =0, (t,x)e[0,1) x R%
0<o<1/5

d

v(l,z) = sin (1—&—2%) . xz=(x1,...,2q9)" €RY,

i=1

where G(z,p) = (1/d) E‘ijzl pi — (d/2) inf0§U§1/5(02z) for z € R, p = (p1,... ,pd)T e Re. Tt is
straightforward to see that the unique solution is given by v(¢,z) = sin(t + Z?Zl x;).

We apply our method to this equation in the cases of d = 1 and d = 2. As mentioned in
Section 6.1, we use the interpolation method as a practical alternative to the regression one and
then show its usefulness through the numerical experiments below.

For each d = 1,2, we choose the parameter 7 = 74 of the Wendland kernel as m, = 4
and 7o = 15. We construct the set I' = I'y of collocation points as the equi-spaced points on
[— Ry, Rg)?, where

Ry = ~gNV/d=1/(d4270-3),

Here, 71 = 1/4 and 75 = 1/5. These choices come from the fact that Az ~ RyN~Y¢ and the
interpolation error up to the second derivatives is O((Az)™@3/2) (see Corollary 11.33 in [38]).

To implement the collocation method, we use the matrix representation, by noting info<s<1 /5 (o%y) =
—(1/5)? max(—y,0), with the uniform time grid. We examine the cases of n = 2% and n = 2!2.

Figures 6.3.1 and 6.3.2 show the resulting root mean square errors and the maximum errors,
defined by

oM (t:, ) — v(t:,€)

Max error = max
£ely, 1=0,...,n

)

1 - 2
N R(t. €Y — o(t.
RMS error 10d(n+ ) 6; EO [vh(t;, &) — v(ti, €)%,
0 1=

respectively, where Ty is the set of 10%-evaluation points constructed by a Sobol’ sequence on
[—1,1]¢ for each d = 1, 2.
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APPENDIX A

Review on Probability Theory

This chapter reviews basic facts about measure theoretic probability. We refer to, e.g., [39], [48],
[44], and [46] for details.

Probability spaces

Definition A.1. Let ) be an arbitrary set. A family F of subsets of €2 is said to be o-algebra
or o-field if the following are satisfied:

(i) 0 e F.
(ii) If A € F then A° € F. Here, A°=Q\ A.
(iii) If Ay, Ag,--- € F then |J,2, 4, € F.

e We say that a set A € F is F-measurable or simply measurable. Further, we call A € F
an event.

e The pair (Q, F) is called a measurable space.

Ezample A.2. For any set Q, the set F of all subsets of 2, i.e., F = 2% := {A:ACQ},isa
o-field.

Proposition A.3

Let (€2, F) be a measurable space, and let 4; € F, i = 1,2,.... Then, the following sets
are all F-measurable:

n n oo

UlAi, ﬂlAi, QAi, AU4. UNA-
= = =

n=1i=n n=1i=n

Remark A.4. Basically, in probability theory, a subset of € is interpreted as randomly occurred
phenomenon and is a mathematical object for measuring how probable is its occurrence. Then
the o-algebra F is a class of “well-defined” random phenomenons. For example, suppose that
for well-defined phenomenons A and B we are in a position to study the phenomenon that
both occurs and the one that A occurs but B does not. Then it is natural to require these
phenomenons are also well-defined. Namely, it is convenient for us to have AN B, AN B¢ € F
whenever A, B € F. For this purpose, we require a collection of random phenomenons to
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be a o-algebra. In other words, since o-algebras are closed under various set manipulations,
complicated events can be well-defined objects to be studied. On the other hand, recall from
Example A.2 that the totality of all subsets of {2 is always a o-algebra. Thus one may naturally
ask: is it sufficient to always adopt 2 as the underlying o-algebra? Are there needs to consider
possibly different o-algebras? We refer to, e.g.,[39] for a complete answer to this question. Here
we only mention that there exists a subset of [0, 1] such that the Lebesgue measure (see below)
of the set cannot be defined. In general, we need to choose appropriate o-algebras depending on
problems. However, the choices of actually used o-algebras are limited, so application-oriented
reader may not be discouraged with such technicality in measure theory.

For a family G of subsets of (2, we set
= ﬂ{?—l : o-algebra on Q s.t. G C H}.

This is the minimum o-filed containing G.

Ezample A.5. Let A € F. In the case of G = {A}, we have o(G) = {0, A, A°,Q}. We usually
write o(A) for o({A}).

Let € be a topological space, and let G be the set of all open sets in Q. Then, we call o(G)
a Borel o-algebras on €, and write B(Q2) = o(G). We may take Q = R", [a, b] for examples. The
notation B([a, b]) is often abbreviated as Bla, b].

Definition A.6. A set function P : F — [0, 1] is said to be a probability measure on (€2, F) if
the following conditions are satisfied:

(i) B(0) = 0, P(Q2) = 1.
(i) For Ay, Ag,--- € F with A;NA; =0 (i # j), we have

P (00) S
i=1 =1

e We call the triple (Q, F,P) a probability space.
e P(A) = “the probability that the event A occurs”.

e When P(A) = 1, we say that “the event A occurs with probability one” or “the event A
occurs with almost surely (a.s.)”.

e We say that a probability space (2, F,P) is complete if all subsets of an arbitrary set in
F with probability zero belong to F, i.e., if

BeF, ACB,P(B)=0 = AcF.

Theorem A.7

Let (Q2, F,P) be a probability space. Put

_ A, CAC A", P(A™\ Ay)
F=<ACQ: \
for some A,, A* € F

and set P(4) = P(A,), A € F, where A, is as above. Then (Q,F,P) is a complete
probability space.

e The probability space (Q, F,P) is said to be a completion of (Q, F,P).
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Ezample A.8. Let (22, F) be a measurable space. For a fixed wy € F, we define P : F — [0, 1] by

{1, if wo € A,

P(4) =
0, if wo ¢ A.

Then P is a probability measure on (€2, F). This P is called the Dirac measure at wp.

Ezample A.9. Let Q be a finite set (i.e., #Q < 00), and let F be the set of all subsets of .
Then we define P : F — [0,1] by P(A) = > c4Pw, A € F, where {p,}u,cq satisfies p,, € [0, 1]

for each w € Q and ) p, = 1. By this procedure, we can construct any probability measure
on (2, F).

Ezample A.10 (Lebesgue measure). There exists a probability measure p on ((0,1], B((0,1]))
such that
p((a,b))=b—a, 0<a<b<l1.

See, e.g., [44], [43], and [39]. That is, ;1 measures the length of intervals in [0, 1]. This is called
the Lebesgue measure on ((0,1],8(0,1]). By Definition A.6, we can show that p({0}) = 0. So it
can be seen as a probability measure on ([0, 1], B0, 1]).

Further, there exists a nonnegative measure v on (R, B(R)) (i.e., a nonnegative set function
v satisfying Definition A.6 (ii)) such that

v((a,b)) =b—a, —oo<a<b<+o0.

This is called the Lebesgue measure on (R, B(R)).
Moreover, since v defines a measure on [, 3] C R, the restricted measure is called the
Lebesgue measure on ([a, 5], Bla, (]).

Proposition A.11

Let (92, F,P) be a probability space. Then we have the following:
(i) Ae F = P(A°) =1-P(A).
(i) A, Be F, AC B= P(A) <P(B).

(iv) A, e F,n=1,2,..., A1 C Ay C -+ = lim, 0o P(4n) = P(U,, 4n)-

)
)
(i) An € F,n=1,2,... = P(U, 4n) < 3, P(4n).
)
)

(V A, e F,n=12,..., A, DA D — limnﬁooP(An) :P(ﬂnAn).

The following fact is frequently used:

Lemma A.12: Borel-Cantelli lemma

Suppose that a sequence {A,} C F satisfies > > P(A4,) < co. Then

P ﬂUAk =0.

n>1k>n

Proof. 1t follows from Proposition A.11 that

P ﬂUAk = lim P UAk < lim Y P(A4;) =0.

n—00 n—00
n>1k>n k>n k>n
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Random variables

Let (€2, F,P) be a probability space. A random variable describes realized values for all source
w € Q of randomness.

Definition A.13. We say that X : Q — R U {xo0} is an F-measurable random variable if
{we: X(w)>alteF, ack
For R%valued random function, we usually adopt the following definition:

Definition A.14. We say that X : Q — R” is an F-measurable random variable if
X YB)={weQ: X(w)eB}ecF, BeBR").

e Definition A.14 requires that for an arbitrary B € B(R™), the event that X (w) € B belongs
to the “well-defined” class F of random phenomenons.

e When F is referred to as an underlying o-algebra, i.e., the o-algebra F is the largest among
those appeared in a specified problem, we simply say that X is a random variable.

e The event {w € Q: X(w) € B} is often written as {X € B}.

Sometimes it is convenient to consider a stochastic process as a random variable taking values
in a function space. To this end, we describe a generalized version of Definition A.14.

Definition A.15. Let (S,S) and (U,U) be measurable spaces. A mapping f : S — U is said
to be a measurable mapping from (S,S) into (U,U) if

fUB)={feB}eS, VBelU.

In particular, when we work in a probability space (S,S,Q), the mapping f is said to be a
U-valued random variable on (5,S,Q).

e In the case that U is a topological space, we say that a B(U)-measurable mapping is Borel
measurable.

Functions and limits of random variables are again random variables.

Proposition A.16

Let (S,S) and (U,U) be measurable spaces. Then we have the following:
(i) X :Q2— Sand f:S5— U are measurable, so is f(X).

(ii) Let {X,} be a sequence of random variables X,, : @ — S, then inf,, X,,, sup,, X,
liminf, X, and lim sup,, X,, are all random variables.

(iii) Suppose that Q is a topological space and F = B(2). Then any continuous map
h: Q2 — R™ is measurable.

e Let (S,S) be a measurable space. For X : Q — S, the family
o(X):={X"YB):BecS}

of subsets of  is the minimum o-field such that X is measurable.
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e One may adopt (X, A\ € A) as an underlying o-filed when mappings X, on 2, A € A,
are the only random objects to be studied. That is, in that case, it is sufficient for us to
set F =o(X\, A € A).

That a random variable Y is measurable w.r.t. a o-field G means that Y can be constructed
by the information of G. Precisely speaking, we have the following;:

Theorem A.17

Let (E, £) be a measurable space, and X : 2 — R, and Y : Q@ — E. Then a necessary and
sufficient condition for which X is (Y )-measurable is that there exists an £-measurable

function f: E — R such that X = f(Y).

The well-known concept of the distributions is rigorously formulated in the measure theoretic
probability.

Definition A.18. Let (S,S) be a measurable space. Then for S-valued random variable X,
ux(B) = P(X™U(B)), Bes
is a probability measure on (S,S). We call this px as the distribution of X.
e When X is real-valued, the nondecreasing and right-continuous function
Fx(z):=P(X € (—o0,z]) =P(X <z), zeR,
is said to be the distribution function of X.

e We say that a nonnegative Borel function f on R? is a probability density function if

/Rd f(z)dz = 1.

For an R%valued random variable X, when there exists a probability density function f
such that

P(X € B) = / f(z)dz, B € B(RY),
B
we say that the distribution of X has a density f.

Ezample A.19. Let p € [0, 1]. Assume that the distribution p of a {0,1,...,n}- valued random
variable S, is given by

u({k}) = (;’) (1 )k,

Then we say that S, follows the binomial distribution with parameter (n,p), and write S, ~
B(n,p).

Ezample A.20. Let X be an R%valued random variable, m € R%, and V' € R%*4 positive definite.
We say that X follows a d-dimensional Gaussian distribution if the distribution p of X satisfies

z/2)dz, B e B(RY),

S S exp(—az* (V1
W) = o [ e

where det (V) is the determinant of V. Then we write X ~ N(m, V).
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Expectation

Let (92, F,P) be a probability space. In this section, we assume that all random variables are
R U {£o0}-valued unless otherwise stated.
We define the indicator function 14 of a set A C Q2 by

1, weA
1y(w) =
0, wé¢ A

e 1, is measurable <— A € F.

X : Q — R is said to be a simple function if there exist Ay,..., A4, € F and x1,...,2, € R
with

AiNAj=0(i#5), i,j=1,...,n, Q=[] A4

such that .
X(w)=> wilaw), we (A.1)
1=1

e If X is a simple function of the form (A.1), then X (2) = {z1,...,2,} and {X = z;}N{X =
zj} =0 (i # j).
Suppose that X :  — R is a simple function having representation (A.1). Then we define
the expectation E[X] of X by

e It should be emphasized that this definition is well-defined, i.e., E[X] is determined inde-
pendently of the representations of X as a simple function.

e Notice that for simple functions X,Y with X (w) < Y(w), w € © (in many cases, this is
simply written as X <Y'), we have E[X] < E[Y].

We define the expectations of general random variables by some approximations with those of
simple functions. To this end, we need the following lemma:

Lemma A.21

Let X : @ — RU{+£oo}. Then X is a random variable (i.e., F-measurable) if and only if
there exists a sequence {X,,}>°, of nonnegative simple functions such that for all w € Q

0< Xi(w) < Xp(w) <--- < X(w),

lim X, (w) = X(w). )

For any random variable X we define
XT(w) := max{X(w),0}, X (w):=-—min{X(w),0}, we .

The random variables X and X~ are both nonnegative. It follows from Lemma A.21 that
there exists a sequence {X;"} (resp. {X,, }) of simple functions satisfying (A.2) for X (resp.
X7). As remarked above, it follows that E[X,[] < E[X,',,], whence {E[X,[]} is nonnega-
tive and nondecreasing. Hence the limit lim,, . E[X,I] € [0,00] exists. Similarly, the limit
lim,, o0 E[X,,] € [0, 00] exists. We define the expectation E[X] of X by

E[X] = lim E[X;] - lim E[X,]

n—oo n—00

provided that at least one or both of the two limits are finite.
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e This definition is also well-defined.
e Since | X| = X' + X, that E[X] is finite is equivalent to E[|X|] < occ.

e The expectation is nothing but the Lebesgue integral with respect to the measure P and
S0 it can be written as

E[X] = / X (w)P(dw) = / XdP.

Also, we often write Ep[X] for the expectation of X to emphasize that it is defined under
the probability measure P.

Let X,Y be (real-valued) random variables and denote by i = /—1 the imaginary unit.
Then Z := X +4Y is a complex-valued random variable, and we define its expectation by

E[Z] = E[X] +E[Y].
In particular, for a real-valued random variable X and ¢t € R,
E[e"*] = E[cos(tX)] + iE[sin(tX)].
We list several basic properties of E[-].

Proposition A.22

Let X and Y be random variables. Assume that the both E[X] and E[Y] are defined.
Then for a,b € R we have the following:

(i) X =Y as. = E[X] =E[Y].
(i) X <Y as. = E[X] <E[Y].

(iii) E[aX + bY] = aE[X] + bE[Y] (unless the right-hand side is co — c0).

(v) E[|X]] < 0o = |X| < o0 a.s.

)
)
)
(iv) [E[X]] < E[X]].
)
(vi) X >0as,EX]=0= X =0 as.
)

(viil) X >Y as, EX]=E[Y] = X =Y as.

The expectation of a random variable can be given by the Lebesgue integral on the set which
the variable takes values in.

Proposition A.23

Let (S,S) be a measurable space, X an S-valued random variable, px its distribution,
and f a Borel measurable function on S. Then,

E[f(X)] = /S F(@)dpix ().

Here, the equality means that if the right-hand side is finite then the other one is also
finite and has the same value, and vice versa.

In general, for R%valued random variable X = (X1,..., X), we say that

ox(t) =E [eiZ?«l:Ithk} , t=(t1,...,tq) €R?
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is the characteristic function of X. The distribution of any random variable is completely
determined by its characteristic function.

Proposition A.24

Let X and Y be R%valued random variables. If ¢ x (t) = oy (t) holds for any ¢t € R%, then
ux = py.

Let p € [1,00]. For real-valued random variable X, we set
1
X, = (E[[x[P)» (p € [1,00)),
P inf{fa >0:|X|<aas} (p=o0).
Denote by LP(§, F,P) by the totality of random variables such that || X[, < cc.

e Since X =0 a.s. <= || X||, =0, if we identify X with Y in the case of X =Y a.s., then
| - ||, defines a norm. By this identification, LP = LP(£2, F,P) becomes a Banach space
(i.e., a complete normed space).

e Notice that for 1 < p < ¢g and X € L? we have || X||, < || X||;. Thus X € LP.

e L?is a real Hilbert space with the inner product

(X,Y) =E[XY].

e A random variable X is said to be integrable if X € L, i.e., E[|X]] < co.

The following several inequalities are frequently used.

Proposition A.25: Chebyshev’s inequality

Let X be a nonnegative random variable. Then, for any nondecreasing function f :
[0,00) — [0,00) and = > 0,

P(X > z) < =2

Applying Proposition A.25 for |X| and f(x) = z, we obtain the following:

Corollary A.26: Markov’s inequality

For any R-valued random variable X and any = > 0,

P(|X| > z) < E[L—X”.

Markov’s inequality implies that if X is integrable then the tail probability P(|X| > x)
decreases to zero faster than O(1/x). If X has higher moments, then Chebyshev’s inequality
means that the tail more rapidly decreases to zero.

Proposition A.27: Jensen’s inequality

Let X be an integrable random variable, and let g : R — R be convex. Then,

g(E[X]) < E[g(X)].
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Proposition A.28

Let p,q € (1,00) be such that (1/p) + (1/q) = 1. For X, Z € LP and Y € L? we have

(i) (Holder’s inequality)
[EXY]] < [ X1pl1Y]lgs

(ii) (Minkowski’s inequality)

X+ Zllp < [1XIlp + 112]lp-

e Holder’s inequality with p = 2 is generally called the Cauchy-Schwartz inequality.

Convergence of random variables

Definition A.29. Let X, X, X,... be random variables.

(i) {X,}92, converges to X almost surely (we write X,, — X a.s.) & P{w : X,(w) —

X(w)}) =1
(i) {Xn}52, converges to X in probability &L P(| X, —X|>¢) =0 (n — o0) for any € > 0.

(i) {X,}>2, converges to X in LP N | X, — X, =0.

(iv) Assume that X, X1, Xo, ... are all R%valued. Then {X,,}52, converges to X in law (or in
distribution) A% Yimy, o E[f(X,)] = E[f(X)] for any bounded continuous function f.

For R-valued random variables, we have the following relations for the definitions of the
convergences:

e X, —» X as. = X,, = X in probability.
e X, - X in L’ — X,, — X in probability.
e X,, — X in probability = X,, = X in law.

e X,, — X in probability = limj;_,o Xp, = X a.s. for some subsequence {n;}32, with
limkéoo nE = Q.

The following three claims state the interchangeablity between the expectation and the limit
of random variables.

Theorem A.30: Monotone convergence theorem

Let {X,,} be a sequence of random variables such that 0 < X; < X3 <--- a.s. Then

E[X,] 7ME[X] (n— ).

.

Lemma A.31: Fatou lemma

Let {X,,} be a sequence of almost surely nonnegative random variables. Then,

E [hm inf Xn} < lim inf E[X,].

n—o0 n—00
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Theorem A.32: Dominated convergence theorem

Suppose that random variables X, X,,, n € N, satisfy the following:
(i) Xp — X as.
(ii) There exists a random variable Y € L! such that |X,| <Y a.s. for all n € N.
Then,
lim E[X,] = E[X].

n—oo

Independence and product spaces
Definition A.33. Let (2, F,P) be a probability space.

(i) A, B € F are said to be independent of each other if

P(AN B) = P(A)P(B).

(i) A family {B;}, i € I, of subsets of F is said to be independent if for distinct i1, ...,9; C I
we have
]P)(B“ MN---N sz) = P(B“) . P(Blk), Bij € Bij; ji=1,... k.

(iii) Let {X;}ier be a family of random variables. We say that X;, ¢ € I, is independent if
o(X;), i € I, is independent.

For given measurable spaces (Q, Fi), k = 1,...,n, we call the o-field
[[7=0 ({HAk:Ak € Fi, k:ln}>
k=1 k=1

as the product o-field on [[p_; Qk, and ([1i_; @, [1r—1 Fr) as the product measurable space.

Proposition A.34

We have B(R?) = [¢_, B(R).

It is known that for probability spaces (Q, Fi,Pr), & = 1,...,n, there exists a unique
probability measure [[;_; Py on the product measurable space ([];_; Q& [[r—; Fk) such that

(HZ:I Pk)(Hz:l Ak) = HZ:I Pk(Ak)v Ay € Fiy, k=1,...,n.

We call [],_, Py as the product probability measure, and ([1p_; U, [Trey Fr, [ -1 Px) as the
product probability space.

Now, let (21, F1,P1) and (22, F2,P2) be given probability spaces. Here we will justfy the
interchange of the order of integrations for functions on €2 x 25. To this end, we need to confirm
the measurability of the functions appeared in the iterated integrals. As for this point, it is
straightforward to see that for any nonnegative and F; x Fo-measurable function X : 23 x{2s — R
the following four claims hold true:

e For w; € O the function X (wy,-) : Q2 — R is Fj-measurable.
e For wy € Oy the function X (-,ws) : Q1 — R is Fe-measurable.

e The function fQ2 X (+,w2)Py(dwz) on ) is a random variable on the probability space
(1, F1,Py).
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e The function le X (w1, )Pi(dwy) on Qg is a random variable on the probability space
(Q22, F2,P2).

Moreover, if X is not necessarily nonnegative but integrable on 2; x {29 then we have the
following two propositions:

e For Pj-almost every (a.e.) wy € Q, the function X (wy,-) : Q9 — R is Fj-measurable, and
the function sz X (+,w2)Py(dws) is a random variable on (1, F1,Py).

e For Py-a.e. wy € Qg, the function X (-, wsy) : Q1 — R is Fo-measurable, and the function
Jo, X(wi1,)P1(dwr) is a random variable on (Q2, F2, P2).

Basically, the expectation of a random variable on a product probability space is given by
the iterated expectation.

Theorem A.35

Let X (w1,w2) be a random variable on (21 x Qo, F1 X Fa,P; x Py).

(i) (Tonelli’s theorem) If X is nonnegative, then

Ep, xp, [X] =/

[ X (w1, ws)Py (dwl)} P(dws)
Qo 1951

— /91 [ QZX(wbwz)Pz(dW)} P(dwr).

(ii) (Fubini’s theorem) If X is integrable on €1 x 2y, then the equalities above also hold.

e To check the integrability of X, one may apply Tonelli’s theorem for |X| to try one of
three integrals above that is easy to compute.

It is also known that Fubini-Tonelli theorem holds for product spaces involving the Lebesgue
measure on ([0, 00), B[0, 00)). For example, if X. : [0, 00) X2 — R is nonnegative and B[0, co) x F-
measurable, then fooo X¢(w)dt is an F-measurable random variable and we have

E [/Ooo Xtdt} = /OOO E[X/]dt.

Next we summarize the relation between the independence and the product probability space.

Theorem A.36

Let X1,..., X, be random variables, u; the distribution of X; for ¢ = 1,...,n, and yu the
distribution of n-dimensional random variable (X1,...,X,). Then {X;}? ; is independent
if and only if p =1 X -+ X pp.

This theorem leads to the following properties:
e Suppose that X1,..., X, are independent and f1,..., f,, are Borel functions on R. Then
f1(X1),..., fn(X,) are also independent.
e Suppose that Xi,..., X, are independent and integrable. Then
E[X; - X, =E[Xy]---E[X,].

e A necessary and sufficient condition for which random variables X7, ..., X,, are indepen-

dent is
n

E [61'273:1%?%} _ HE[ez’thk]’ theR, k=1,...,n,
k=1

where 7 = v/—1.
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Change of probability measures

Let (92, F) be a measurable space.

Definition A.37. Let Q,[P be probability measures on (€2, F). We say that Q is absolutely
continuous with respect to P and write Q < P if we have

P(A) =0, Ac F = Q(A)=0.
e Suppose that Q < P. Then we have
P(A)=1 = Q(A) =1.
This means that an event almost surely occurs w.r.t. P also does w.r.t. Q.

o I[f Q < Pand P« Q, then we say that Q and P are equivalent and write Q ~ P.

Theorem A.38: Radon-Nikodym theorem

Let Q, P be probability measures on (€2, F) such that Q < P. Then there exists an almost
surely unique nonnegative random variable Y such that E[Y] =1 and

Q(A) =E[Y1y], AeF.

e We say that the random variable Y as in Theorem A.38 is Radon-Nikodym derivative of
Q with respect to P, and write ?i% for Y.

Limit theorems

Let (2, F,P) be a probability space.

Theorem A.39: Strong law of large number

Let {X,} be a sequence of independent random variables such that E[|X;|] < co. Then

X1t + X,
lim —

n—00 n

=E[X;] as.

Theorem A.40: Central limit theorem

Let {X,} be an IID sequence with X; € L? and N ~ N(0,1). Then

2 iz (Xi — E[X4])

— N in law, n — oo.
nV(X)

Since any interval is a continuous set w.r.t. Gaussian measure, we have

b —x2/2
' nox. Y _
nh_)n;oIP’(a<ZZ-:I(XZ w)/oyn <b)= = dx, o0 <a<b< oo,

provided that the central limit theorem holds.
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Convergence of probability measures

Let (S,d) be a metric space. A sequence {1, }52, of probability measures on (.5, B(S)) is said
to weakly converge to a probability measure p on (S, B(S)) if

fim [ fe)n (o) = [ Fotdn)

n—oo

for any bounded continuous function f on S. B
Denote by A and A the closure and interior of A € B(S) respectively. We say that 04 := A\ A
is the boundary set of A. Moreover, we say that A € B(S) is a p-continuous set if u(0A) = 0.

Theorem A.41

Let {u,} be a sequence of probability measures on (S, B(S)), u a probability measure on
(S,B(S)). Then the following two claims are equivalent:

(i) {un} weakly converges to p.

(ii) For any p-continuous set A € B(S),

lim jia(A) = p(A).

n—00

We often encounter the case of S = ([0, 00), the space of continuous functions on [0, 00).
With the metric

e}

1
o max (fea (1) — wa(®) A 1),
n=

the space C[0,00) is complete and separable, and the set B(C[0,00)) of all Borel subsets of
C[0,00) is defined. To discuss the weak convergence in this space, we introduce the modulus of

continuity of

d(wi,ws) :=

m? (w,6) := max{|w(t) —w(s)|:|s —t]| <6, 0< st < T}

of w € C[0,00) on [0,7] for each 6 > 0 and T > 0.

Theorem A .42

Suppose that a sequence {u,}72; of probability measures on (C0, c0), B(C|[0,00))) sat-
isfies the following two conditions:

(i) For each i > 0 there exist a > 0 and ng € N such that

(@ £ [0(0)] = @) <, n = ng

(ii) For each e > 0, T > 0, and 1 > 0 there exist § € (0,1) and np € N such that

pn(w :mT (w,0) >e) <n, n>ng.

There exists a subsequence {i, }7° that weakly converges to some probability measure
on (C[0,00), B(C[0,0))).

Lemma on 7-systems

Lemma A.44 is a tool for proving some propositions related to o-algebras. For example, it will
be useful when we aim to show that for two probability measures P and QQ coincides with each
other if P = Q on a sub o-algebras.
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Definition A.43. Let € be a set. A family C of subsets of €2 is said to be 7w-system if ANB € C
for A,B €C.

Lemma A .44

Let (©,F) be a measurable space, C a m-system with o(C) = F. If two probability
measures P and Q on (Q,F) coincide with each other on C, i.e., P(A) = Q(A) for any
AeC,then P=Q on F.
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