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Preface

These lecture notes have been prepared for the course MCS.T419: Stochastic Differential Equa-
tions at the Institute of Science Tokyo. The purpose of the notes is to provide an elementary yet
rigorous introduction to stochastic differential equations (SDEs), together with the foundations
of stochastic control and modern numerical methods for nonlinear partial differential equations
(PDEs). The notes are intended to offer a systematic pathway from basic stochastic processes
to controlled diffusions, viscosity solutions, and kernel-based numerical schemes.

Chapter 1 is devoted to some preliminaries for handling continuous-time stochastic processes.
In particular, we need to introduce the notion of measurability that describes predictabilities
of random motions. This theory is often bothersome to application-oriented students, but is
indispensable for a rigorous analysis of stochastic processes. Brownian motion is introduced as
the canonical model of continuous-time randomness.

Chapters 2 and 3 develop the basic theory of stochastic calculus. Chapter 2 introduces
stochastic integrals and Itô’s formula, followed by change-of-measure techniques such as the
Girsanov–Maruyama theorem and the martingale representation theorem. Chapter 3 then for-
mulates stochastic differential equations, covering existence and uniqueness, explicit solutions,
numerical approximations, statistical inference, weak solutions, and time reversal of diffusions.
The theory of time reversal provides the mathematical foundation for recent generative models
such as denoising diffusion probabilistic models (DDPMs), where the reverse time dynamics of
diffusions play a central role.

Chapters 4 and 5 introduce stochastic control theory for controlled diffusions. Chapter
4 presents a basic framework of stochastic controls, continuous-time optimization problems.
Then we give a characterization of the stochastic control problems by Hamilton–Jadobi–Bellman
(HJB) equations, through verification theorem. Further we study the stochastic control prob-
lems with terminal constraints. These terminal-constraint formulations encompass the classical
Schrödinger problem (or Schrödinger bridge problem), which can be regarded as an entropy-
regularized stochastic control problem connecting prescribed initial and terminal distributions.
Chapter 5 then develops the theory of the viscosity solutions, which are the most useful and
elegant notion for weak solutions of nonlinear elliptic and parabolic partial differential equations,
as well as open up the possibility of rigorous numerical analysis of HJB equations whose classical
solutions might not exist.

Chapter 6 turns to numerical methods for nonlinear PDEs. While classical finite-difference
methods are powerful in one dimension, their applicability is limited by the curse of dimensional-
ity and stringent regularity requirements. As an alternative, this chapter introduces kernel-based
collocation methods, which rely on reproducing kernel Hilbert spaces and have recently attracted
attention for multi-dimensional nonlinear PDEs.

Several important topics necessarily fall outside the scope of these notes, including advanced
properties of Brownian motion and diffusion processes, stochastic integration with respect to
discontinuous semimartingales, Rough paths, backward stochastic differential equations, optimal
filtering, infinite-horizon control, optimal stopping, and applications to mathematical finance.
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These topics may be treated in future versions.

To the Reader: The reader of these notes is expected to have knowledge of measure-theoretic
probability theory and of functional analysis at an introductory level. Several technical parts
can be skipped on a first reading, which are explicitly indicated. In particular, the proofs of
mathematical statements with the caption “Proof*” can be skipped on a first reading.
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Convention and Notation

Convention

• Throughout these notes except for the appendix, we work on a complete probability space
(Ω,F ,P). In particular, all random variables appeared in Chapters 1–5 are assumed to be
defined on the measurable space (Ω,F).

• All stochastic processes appeared in Chapters 2–5 are assumed to be measurable.

Notation

• N = {1, 2, . . .}.

• Z = {0,±1,±2, . . .}.

• Rd: d-dimensional Euclidean space.

• Zd = {(x1, . . . , xd) : xi ∈ Z, 1 ≤ i ≤ d}.

• Rm×d: the totality of real m× d-matrices.

• Sd: the set of all d× d real symmetric matrices.

• C: the set of complex numbers.

• |x|: the standard Euclidean norm of x ∈ Rd.

• |a| = (
∑

i,j |aij |2)1/2 for any real matrix a = (aij).

• x+ = max{x, 0}, x ∈ R.

• x− = max{−x, 0}, x ∈ R.

• aT: the transposition of a real vector or matrix a.

• Ac: the complement of a set A.

• 1A: the indicator function for a set A.

• E[X]: the expectation of a random variable X under P.

• V[X] = E[(X − E[X])2]: the variance of X under P.

• EQ[X]: the expectation of a random variable X under a probability measure Q on (Ω,F).

• Id: the identity matrix in Rd×d.

• Lp = Lp(Ω,F ,P) for p ∈ [1,∞].
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• ∂ξf = ∂f/∂ξ and ∂2ξηf = ∂2f/∂ξ∂η if the partial derivatives exist for any function f
defined on a subset of an Euclidean space.

• For every multi-index α = (α1, . . . , αd) with |α|1 := α1+ · · ·+αd, the differential operator
Dα is defined as usual by

Dαf(x1, . . . , xd) =
∂|α|1

∂xα1
1 · · · ∂x

αd
d

f(x1, . . . , xd).

• C(U): the set of all continuous functions on U ⊂ Rn.

• Cb(U): the set of all bounded continuous functions on U ⊂ Rn.

• C∞
0 (Rn): the set of all infinitely differentiable functions on Rn having compact supports.

• C1,2([0, T ]×Rn): the set of all functions f : [0, T ]×Rn → R such that the partial derivatives
∂tf , ∂xif , ∂

2
xixj

f , i, j = 1, . . . , n, exist and continuous on [0, T ]× Rd.

• C(U ;Rd): the set of all Rd-valued continuous function on U .

• Br(x) = {y ∈ Rn : |y − x| < r} for x ∈ Rn and r > 0.

vi



CHAPTER 1

Preliminaries for Continuous-Time Stochastic Processes

In the theory of stochastic differential equations, martingales play a fundamental role. So we first
review the abstract notion of conditional expectation on which martingale theory is built. Next,
we discuss several kinds of measurability which are indispensable for handling unpredictable
motions of dynamical systems. Then, we deal with Brownian motions, which is a basic model
of a source of purely random fluctuations.

1.1 Conditional Expectation

For A,B ∈ F with P(B) > 0, we call

P(A|B) :=
P(A ∩B)

P(B)

the conditional probablity of A given B.
Similarly, for random variable X and B ∈ F with P(B) > 0, we call

E[X|B] :=
E[X1B]

P(B)

the conditional expectation of X given B.

The case of finite σ-algebras

Definition 1.1. A sub σ-algebra G in F is said to be finite if there exist A1, . . . , An ∈ F such
that Ω = ∪nk=1Ak, Ai ∩Aj = ∅ (i 6= j) and G = σ(A1, . . . , An).

• We call {Ak}nk=1 in Definition 1.1 a partition of Ω.

• The σ-algebra G in Definition 1.1 is said to be generated by the partition {Ak}.

Definition 1.2. Let X ∈ L1 and G be the σ-algebra generated by the partition {Ak}nk=1. Then,

E[X|G] :=
n∑

k=1

E[X|Ak]1Ak

is said to be the conditional expectation of X given G. Here, we set an arbitrary value for
E[X|Ak] if P(Ak) = 0.
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• Roughly speaking, E[X|G] is the expectation of X computed provided that we know in-
formation of G.

• Note that E[X|G] is also a random variable. In particular, it is a G-measurable random
variable.

• We often write E[X|G](ω) to emphasize that it is a function of ω ∈ Ω.

• Since {Ak} is a partition of Ω, the quantity E[X|G](ω) gives the conditional expectation
of X given the events of which ω belongs to.

• For random variables X,Y , we often write E[X|Y ] for E[X|σ(Y )].

Problem 1.3. Let p ∈ (0, 1) and 0 < d < 1 < u. Consider the random variables Si, i = 0, 1, 2,
defined by

Si+1 = Di+1Si, i = 0, 1,

where D1, D2 are IID with P(D1 = u) = 1− P(D1 = d) = p and S0 is assumed to be a positive
constant.

(i) Show that σ(S1) is finite.

(ii) Prove that
E[S2|S1] = (up+ d(1− p))S1.

General definition

Next consider the case where σ-filed is not necessarily finite. Then of course Definition 1.2 is
no longer available. Our idea is to derive a good implication that can be described without the
definition of finite σ-fields, and to adopt it as the definition of general conditional expectations.

Proposition 1.4

Let X ∈ L1 and G a finite σ-field. Then, for A ∈ G we have E[X1A] = E[E[X|G]1A].

Proof. Let {Bk}nk=1 be a partition of Ω satisfying G = σ(B1, . . . , Bn).
First notice that the proposition immediately follows if A ∈ G is empty. Thus assume that

A ∈ G is nonempty. Then, A = ∪mk=1Bik for some i1, . . . , im ∈ {1, . . . , n}, and so

E[E[X|G]1A] =
m∑
k=1

E[E[X|G]1Bik
] =

m∑
k=1

E[E[X|Bik ]1Bik
]

=
m∑
k=1

E[X|Bik ]P(Bik) =
m∑
k=1

E[X1Bik
] = E[X1A].

Proposition 1.4 means that if G is finite, then Y = E[X|G] is a G-measurable random variable
such that E[X1A] = E[Y 1A], A ∈ G. A random variable Y with this property exists when σ-
algebra is not necessarily finite, and this existence is unique.
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Theorem 1.5

Let X ∈ L1 and G a sub σ-algebra in F . Then there exists a random variable Y satisfying
the following:

(i) Y is G-measurable.

(ii) Y ∈ L1.

(iii) E[1AY ] = E[1AX], A ∈ G.

Moreover, this existence is almost surely unique, i.e., for Ỹ with the three properties
above, we have Y = Ỹ a.s.

Proof. We use the representationX = X+−X−. For eachX+ andX−, we define the probability
measure Q± on (Ω,G) by

Q±(A) =

∫
A

X± + 1

E[X± + 1]
dP, A ∈ G,

respectively. Since Q+ and Q− are both absolutely continuous with respect to P, by Radon-
Nikodym theorem (see Theorem A.38), there exist nonnegative, integrable, and G-measurable
random variables Z± such that Q±(A) = E[1AZ±], A ∈ G. Hence, the G-measurable random
variable

Y = E[X+ + 1]Z+ − E[X− + 1]Z−

satisfies (ii) and (iii) in the statement of the theorem.
Next we will show the uniqueness. Suppose that Y and Ỹ satisfy (i)–(iii) in the statement

of the theorem and P(Y > Ỹ ) > 0. Then, since limn→∞ P(Y > Ỹ + 1/n) = P(Y > Ỹ ), we have
P(Y > Ỹ + 1/n) > 0 for some n ∈ N. It follows from this that

E[(Y − Ỹ )1{Y−Ỹ >1/n}] ≥
1

n
P(Y > Ỹ + 1/n) > 0.

On the other hand, the conditions (ii) and (iii) imply that A := {Y > Ỹ + 1/n} ∈ G and
E[Y 1A] = E[Ỹ 1A], which lead a contradiction. Thus Y ≤ Ỹ a.s. By a similar argument, we see
Y ≥ Ỹ a.s. Hence Y = Ỹ a.s.

Therefore, the conditional expectations with respect to finite σ-algebras are completely char-
acterized by the three properties in Theorem 1.5. Then we define the conditional expectations
with respect to general σ-algebras by these properties.

Definition 1.6. For X ∈ L1 and any sub σ-algebra G in F , we call the unique random variable
Y as in Theorem 1.5 the conditional expectation of X given G, and write Y = E[X|G].

• If you want to confirm that Y = E[X|G] a.s., then you only need to check that Y satisfies
the properties (i)–(iii) in Theorem 1.5.

We collect basic properties of the conditional expectations given σ-algebras.
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Proposition 1.7

Let X,Y ∈ L1 and let G,H be σ-algebras. Then the following hold:

(i) If X is G-measurable, then E[X|G] = X a.s.

(ii) E[aX + bY |G] = aE[X|G] + bE[Y |G] a.s. for a, b ∈ R.

(iii) If X ≥ 0 a.s., then E[X|G] ≥ 0 a.s.

(iv) For a sequence {Xn}∞n=1 of random variables such that 0 ≤ Xn ≤ Xn+1 ≤ · · · a.s.
and Xn → X a.s., then E[Xn|G]↗ E[X|G] a.s.

(v) For a sequence {Xn}∞n=1 of random variables such that |Xn| ≤ Z (∀n) a.s. for some
nonnegative random variable Z ∈ L1 and limn→∞Xn = X a.s., then

lim
n→∞

E[Xn|G] = E[X|G] a.s.

(vi) If H ⊂ G then E[E[X|G]|H] = E[X|H] a.s.

(vii) E[E[X|G]] = E[X].

(viii) If X is G-measurable and XY ∈ L1, then E[XY |G] = XE[Y |G] a.s.

(ix) If H is independent of σ(X,G), then E[X|σ(G,H)] = E[X|G] a.s.

(x) If X is independent of G, then E[X|G] = E[X] a.s.

(xi) For R-valued convex function g on R such that g(X) ∈ L1, we have E[g(X)|G] ≥
g(E[X|G]) a.s.

Proof. (i). The random variable X itself satisfies (i)–(iii) in Theorem 1.5. By the uniqueness,
X = E[X|G] a.s.
(ii). By the linearity of E[·], for A ∈ G,

E[(aX + bY )1A] = aE[X1A] + bE[Y 1A] = aE[E[X|G]1A] + bE[E[Y |G]1A]
= E[(aE[X|G] + bE[Y |G])1A].

The uniqueness of E[aX + bY |G] means E[aX + bY |G] = aE[X|G] + bE[Y |G] a.s.
(iii). It follows from X ≥ 0 and Theorem 1.5 (iii) that E[1AE[X|G]] ≥ 0 for A ∈ G. Hence
E[X|G] ≥ 0 a.s.
(iv). From (iii) the sequence {Yn} defined by Yn := E[Xn|G] is almost surely nonnegative and
nondecreasing. Thus Y (ω) := lim supn→∞ Yn(ω) satisfies Yn ↗ Y a.s. Then the monotone
convergence theorem for the expectation (see Theorem A.36) yields

E[Y 1A] = lim
n→∞

E[Yn1A] = lim
n→∞

E[Xn1A] = E[X1A], A ∈ G.

This means that Y satisfies the conditions (i)–(iii) in Theorem 1.5.
(v). Use an argument similar to that in the proof of (iv).
(vi). Let A ∈ H. Since A ∈ G, we have E[E[X|G]1A] = E[X1A].
(vii). This follows from the property (iii) in Theorem 1.5 for A = Ω.
(viii). For B ∈ G we see

E[1BE[Y |G]1A] = E[E[Y |G]1B∩A] = E[Y 1B∩A] = E[(1BY )1A], A ∈ G.
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Thus, the claim follows for X = 1B. For general X, approximate it with simple random variables
and then use a convergence theorem.
(ix). We may assume that X ≥ 0 a.s. without loss of generality. The claim is trivial when
X = 0 a.s. Thus we further assume E[X] > 0. Set Y = E[X|G]. Then we will show that the
two probability measures

µ1(A) = E[X1A]/E[X], µ2(A) = E[Y 1A]/E[Y ], A ∈ F

coincide with each other on σ(G,H).
Indeed, for A ∈ G and B ∈ H, since X1A and Y 1A are independent of B, we find

E[X1A∩B] = E[X1A]P(B) = E[Y 1A]P(B) = E[Y 1A∩B].

Hence µ1 = µ2 on C := {A ∩ B : A ∈ G, B ∈ H}. Lemma A.44 now implies that µ1 = µ2 on
σ(G,H) = σ(C).
(x). Take G = {∅,Ω} in (ix).
(xi). We will prove the claim in the case where G is finite, i.e., it is generated by a par-
tition {Ak}nk=1. For general cases we refer to, e.g., [39]. In the present case, E[X|G] =∑n

k=1 E[X|Ak]1Ak
. Then notice that E[X|Ak] = EQ[X], where Q is the probability measure

defined by dQ/dP = 1Ak
/P(Ak). Thus by Jensen’s inequality (Proposition A.27),

g(E[X|G]) =
n∑

k=1

g(E[X|Ak])1Ak
≤

n∑
k=1

E[g(X)|Ak]1Ak
= E[g(X)|G],

as required.

The conditional expectation E[X|G] can be interpreted as the least square estimates of X
over G-measurable random variables.

Proposition 1.8

For X ∈ L2, the conditional expectation E[X|G] is almost surely unique G-measurable
random variable such that

E[(X − E[X|G])2] = min{E[(X − Y )2] : Y ∈ L2, G-measurable}.

Proof. First notice that for Y ∈ L2, Cauchy-Schwartz inequality (see Proposition A.28 (i)) yields
|E[XY ]| <∞. Thus (X − Y )2 ∈ L1. Next, setting Z = E[X|G]− Y , we have

(X − Y )2 = (X − E[X|G] + E[X|G]− Y )2 = (X − E[X|G])2 + 2(X − E[X|G])Z + Z2.

If Y is G-measurable, so is Z. Thus By Proposition 1.7,

E[(X − E[X|G])Z] = E[E[(X − E[X|G])Z|G]] = E[ZE[X − E[X|G]|G]]
= E[Z(E[X|G]− E[X|G])] = 0.

This implies
E[(X − Y )2] = E[(X − E[X|G])2] + E[Z2]

for any G-measurable Y ∈ L2. Therefore E[Z2] attains the minimum 0 only when Y = E[X|G]
a.s., which leads to the claim.
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LetN be the collection of all P-null sets from F . Then, σ(N ) = {A ∈ F : P(A) = 1 or P(A) = 0}.
The following is a generalization of Theorem A.17:

Theorem 1.9

Let (E, E) be a measurable space, Y : Ω→ E, and X : Ω→ R a σ(N ∪σ(Y ))-measurable
random variable. Then, there exists an E-measurable function f : E → R such that
X = f(Y ) a.s.

Proof*. We may assume that X is bounded. Otherwise, it suffices to consider arctan(X). We
also assume that X ≥ 0 a.s. and P(X > 0) > 0 without loss of generality. Then, define

X̃(ω) = E[X|σ(Y )](ω), ω ∈ Ω.

By Theorem A.17, X̃(ω) = f(Y (ω)), ω ∈ Ω, for some E-measurable f . We will show that X = X̃
a.s. To this end, first note that G := σ(N ∪ σ(Y )) = σ(σ(N ) ∩ σ(Y )) and σ(N ) ∩ σ(Y ) is a
π-system. For any A ∈ σ(N ) and B ∈ σ(Y ) we have

E[X̃1A∩B] = E[X̃1B] = E[X1B] = E[X1A∩B]

if P(A) = 1. Otherwise, E[X̃1A∩B] = 0 = E[X1A∩B]. Thus, the two probability measures Q and
Q̃ on (Ω,G) defined respectively by

Q(A) =
E[X1A]

E[X]
, Q̃(A) =

E[X̃1A]

E[X]
, A ∈ G,

agree with each other on σ(N ) ∩ σ(Y ). Then, applying Lemma A.44, we find that E[X1A] =
E[X̃1A], A ∈ G, whence

E[XZ] = E[X̃Z]

for any bounded G-measurable random variable Z. Therefore, for any A ∈ F ,

E[X1A] = E[XE[1A|G]] = E[X̃E[1A|G]] = E[X̃1A].

This means X = X̃ a.s., as wanted.

By Theorem A.17, there exists a measurable function f such that E[X|σ(Y )] = f(Y ). Thus,
f(x) can be interpreted as the “conditional expectation” E[X|Y = x]. Rigorously, this quantity
has no meaning when P(Y = x) = 0. The next theorem gives a valid version of the conditional
expectation given Y = x. A proof can be found in [28].

Theorem 1.10

Suppose that Ω is a complete separable metric space and F = B(Ω). Let S be a separable
metrizable space, and Y : Ω → S a Borel measurable map. Denote by µ the law of Y .
Then, there exists a family {Px}x∈S of probability measures on (S,B(S)) such that

(i) S 3 x 7→ Px(A) is Borel measurable for any A ∈ F ;

(ii) Px(A \ {Y = x}) = 0 for µ-almost all x ∈ S;

(iii) for any X ∈ L1,
EY (ω)[X] = E[X|σ(Y )](ω)

for almost every ω ∈ Ω, where Ex is the expectation operator with respect to Px.
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Theorem 1.10 means that for any X ∈ L1 and bounded measurable f ,

E[Xf(Y )] =

∫
S
f(x)Ex[X]µ(dx). (1.1.1)

In particular, we have the disintegration formula

P(A) =
∫
S
Px(A)µ(dy), A ∈ F . (1.1.2)

To give the interpretation of Ex mentioned above, let x ∈ S be fixed and ε ≥ 0. Assume that
y 7→ Ey[X] is bounded on the open ball Bε,x at x with radius ε . Then by (1.1.1) and the mean
value theorem for Lebesgue integral (see, e.g., [43, 定理 12.5]),

E[X1{Y ∈Bε,x}] =

∫
Bε,x

Ey[X]µ(dy) = cP(Y ∈ Bε,x)

for some c ∈ [infy∈Bε,x Ey[X], supy∈Bε,x
Ey[X]]. Therefore, if P(Y = x) > 0, then considering

ε = 0 we obtain
E[X|Y = x] = Ex[X].

In the case of P(Y = x) = 0, by assuming the continuity of y 7→ Ey[X], we get

lim
ε→0

E[X|Y ∈ Bε,x] = Ex[X].

Thus, we conclude that Ex[X] can be interpreted as the conditional expectation of X given
Y = x.

1.2 Filtration, Measurability, and Martingales

An Rd-valued stochastic process is a family {Xt}t∈T of random variables taking values in Rd.
The index generally represents a continuous or discrete time variable.

Definition 1.11. Let T = [0,∞), [0, T ], N∪{0}, or {0, 1, . . . , N}, where T ∈ (0,∞) and N ∈ N.
A family F = {Ft}t∈T of sub σ-fields of F is said to be a filtration if Fs ⊂ Ft for s, t ∈ T with
s ≤ t.

• Ft is interpreted as the information available at time t.

• The quadruplet (Ω,F ,F,P) is said to be a filtered probability space.

Definition 1.12. Let T be as in Definition 1.11, and let F = {F}t∈T be a filtration. An
Rd-valued stochastic process {Xt}t∈T is said to be F-adapted if Xt is Ft-measurable for any
t ∈ T.

• If {Xt} is an adapted process, then the random variable Xt is realized up to time t.

• For an arbitrary process {Xt}t∈T, the family FX = {FX
t }t∈T of sub σ-algebras defined by

FX
t = σ(Xs; s ∈ T, s ≤ t) is said to be the natural filtration generated by {Xt}t∈T. Here,

for a family {Zλ}λ∈Λ of random variables,

σ(Zλ;λ ∈ Λ) := σ

(⋃
λ∈Λ

σ(Zλ)

)
.

• Any stochastic process is adapted w.r.t. the natural filtration generated by itself.
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In what follows, we work on a fixed filtered probability space (Ω,F ,F,P).

Definition 1.13. (i) A process {Xt}t≥0 is said to be measurable if X· : [0,∞) × Ω → R is
B[0,∞)×F-measurable.

(ii) A process {Xt}t≥0 is said to be F-progressively measurable ifX· : [0, t]×Ω→ R is B[0, t]×Ft-
measurable for every t ∈ [0,∞).

• If {Xt} is measurable, then for every t the random variable Yt :=
∫ t
0 Xsds is F-measurable.

• If {Xt} is progressively measurable, then {Yt} above is an adapted process.

Problem 1.14. Show that every progressively measurable process is measurable and adapted.

Hereafter, all processes appeared in these notes are assumed to be measurable.

Definition 1.15. We say that {Xt}t≥0 is a modification of {Yt}t≥0 if P(Xt = Yt) = 1 for any
t ≥ 0. Moreover, {Xt} and {Yt} are said to be indistinguishable if P(Xt = Yt, t ≥ 0) = 1.

Example 1.16. Let τ be a (0,∞)-valued random variable having a continuous density, say an
exponentially distributed random variable. Set Xt = 1{τ≤t}, t ≥ 0 and consider the left-limit
Xt− = lims↗tXt. Then it is straightforward to see that Yt := Xt − Xt− = 1{τ=t}, and that
P(Yt = 0) = P(τ 6= t) = 1 for every t ∈ [0,∞). Hence, the process Zt ≡ 0 is a modification of
{Yt}. On the other hand, we have P(Yt = 0, t ≥ 0) = P(τ 6= t, t ≥ 0) = P(τ /∈ [0,∞)) = 0,
which implies that {Yt} and {Zt} are not indistinguishable.

Proposition 1.17

Suppose that {Xt}t≥0 is adapted and {Yt}t≥0 is a modification of {Xt}. Suppose moreover
that F0 contains all P-null sets that are F-measurable, i.e., that N ⊂ F0. Then {Yt}t≥0

is also adapted.

Proof. Fix t ≥ 0 and set N = {Xt 6= Yt}. Then observe that for A ∈ B(R),

{Yt ∈ A} = ({Yt ∈ A} ∩N) ∪ ({Yt ∈ A} ∩N c) = ({Yt ∈ A} ∩N) ∪ ({Xt ∈ A} ∩N c).

Since Yt is F-measurable and N,N c ∈ F0, we have {Yt ∈ A} ∈ F and P({Yt ∈ A} ∩ N) = 0.
Hence {Yt ∈ A} ∩N ∈ F0．This together with {Xt ∈ A} ∩N c ∈ Ft means {Yt ∈ A} ∈ Ft．

• We often assume F0 ⊃ N = {A ∈ F : P(A) = 0} to use the convenient property above.

• The filtration σ(FX
t ∪N ), t ≥ 0, is called the augmented natural filtration generated by X.

Problem 1.18. Suppose that F0 ⊃ N . Let {X(n)
t }t≥0 be a sequence of adapted processes such

that X
(n)
t converges to some Xt almost surely for any t ≥ 0. Show that {Xt}t≥0 is adapted.

In general, t 7→ Xt(ω), ω ∈ Ω, is called a sample path of the process {Xt} with respect to
ω. We say that {Xt} is a continuous process if every sample path of {Xt} is continuous, i.e.,
t 7→ Xt(ω) is continuous for every ω ∈ Ω. We also say that {Xt} is a.s. continuous if t 7→ Xt(ω)
is continuous for almost all ω ∈ Ω.

Proposition 1.19

Let {Xt} and {Yt} be continuous. If {Xt} and {Yt} are modifications of each other,
then the two processes are indistinguishable. Moreover, if {Xt} is adapted, then it is
progressively measurable.
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Proof. Let ω ∈ {Xt = Yt for all t ∈ Q ∩ [0,∞)}. For any t ≥ 0 there exists {tn} ⊂ Q ∩ [0,∞)
such that tn → t. Then, by the continuity of {Xt}, we have Xt(ω) = limn→∞Xtn(ω) =
limn→∞ Ytn(ω) = Yt(ω). This implies P(Xt = Yt, ∀t) = ∩s∈Q∩[0,∞)P(Xs = Ys) = 1.

To prove the second claim, we consider a piece-wise linear function [0, t] 3 s 7→ X
(n)
s (ω)

satisfying X
(n)
s (ω) = Xs(ω), s = 0, 2−n, . . . , 2−nb2ntc. Here, bxc denotes the greatest integer not

exceeding x ∈ R. Then, X(n) is B([0, t])×Ft-measurable. This together with limn→∞X
(n)
s (ω) =

Xs(ω) for ω and s ∈ [0, t] means that Xs, s ≤ t, is also B([0, t])×Ft-measurable.

The proposition above is generalized in the following sense:

Proposition 1.20

Every measurable and adapted process has a progressively measurable modification.

The proof of this result is found in [28].

Proposition 1.21

Suppose that F0 ⊃ N . Let {Xt}0≤t≤T be an adapted process satisfying∫ T

0
|Xt|dt <∞, a.s.

Then, the process

Yt =

∫ t

0
Xsds, 0 ≤ t ≤ T,

is progressively measurable. In particular, {Yt} is adapted.

Proof. By Proposition 1.20, the process {Xt} has a progressively measurable modification {X̃t}.
Then, Ỹt :=

∫ t
0 X̃sds, 0 ≤ t ≤ T , is adapted. By Fubini theorem,

E
∫ T

0
1{Xs ̸=X̃s}ds =

∫ T

0
E[1{Xs ̸=X̃s}]ds = 0.

Thus, the Lebesgue measure of {s : Xs 6= X̃s} is zero almost surely, whence Yt = Ỹt a.s.,
t ∈ [0, T ]. Then Proposition 1.17 and Proposition 1.19 mean that {Yt} is adapted and so is
progressively measurable due to the continuity.

Problem 1.22. Prove that if {Xt}t≥0 is continuous then supt≥0Xt, inft≥0Xt, lim supt→∞Xt,
and lim inft→∞Xt are all F-measurable random variables.

Problem 1.23. Prove that if {Xt}t≥0 is continuous then

σ(Xt; 0 ≤ t ≤ T ) = σ(Xt; t ∈ T′ ∩ [0, T ])

for any dense subset T′ ⊂ [0,∞) and T ∈ [0,∞).

Definition 1.24. Let T be as in Definition 1.11, and let F = {F}t∈T be a filtration. A real-valued
process {Xt}t∈T is said to be an F-martingale if the following three conditions are satisfied:

(i) Xt ∈ L1 for any t ∈ T.

(ii) {Xt} is F-adapted.

(iii) E[Xt|Fs] = Xs for s, t ∈ T with s ≤ t.

9



Example 1.25 (Simple random walk). Let X0 ∈ R, and let {Xn}∞n=1 be an IID sequence with
P(Xn = 1) = P(Xn = −1) = 1/2, n ∈ N. Then define {Sn}∞n=0 by

Sn =

n∑
k=0

Xk, n ∈ N.

We say that the process {Sn}∞n=0 is a simple random walk starting from X0.
Now, let F be the natural filtration generated by {Xn}. Then it is straightforward to see

from Proposition 1.7 that E[Xm|Fn] = 0 for m > n. This means that {Sn} is an F-martingale.

Example 1.26. Let X ∈ L1. Then Xt := E[X|Ft], t ∈ T, gives the estimation of unrealized
variable X based on the information available at time t. By Proposition 1.7, the process {Xt}
is a martingale.

In Example 1.26, if T = N ∪ {0}, then one might expect that Xn → X as n → ∞, which is
guaranteed by the following result:

Theorem 1.27

Let G be a sub σ-field of F , and X ∈ L2 a G-measurable random variable. Suppose that
the filtration G = {Gn}n≥0 saitisfies G = σ(Gn : n ≥ 0). Then E[X|Gn] converges to X
almost surely and in L2.

The proof is omitted. An interested reader may refer to [39, Ch. 14].

Definition 1.28. Let T be as in Definition 1.11, and let F = {F}t∈T be a filtration. Suppose
that a real-valued process {Xt}t∈T is F-adapted and satisfies Xt ∈ L1, t ∈ T. We say that {Xt}
is an F-supermartingale if

E[Xt|Fs] ≤ Xs a.s. t ≥ s,
and that {Xt} is an F-submartingale if

E[Xt|Fs] ≥ Xs a.s. t ≥ s.

• If {Xt} is a supermartingale (resp. submartingale), then E[Xt] is nonincreasing (resp. non-
decreasing).

Problem 1.29. Let {Mt}t∈T be a martingale and p ≥ 1. Show that if E|Mt|p < ∞ for every
t ∈ T then the process {|Mt|p}t∈T is a submartingale.

Definition 1.30. Let F = {Ft}t∈[0,∞) be a filtration. We say that τ : Ω→ [0,∞] is F-stopping
time if it satisfies {τ ≤ t} ∈ Ft for any t ∈ [0,∞).

• If τ1 and τ2 are F-stopping times, then τ1 ∨ τ2 and τ1 ∧ τ2 are also F-stopping times. This
follows from

{τ1 ∨ τ2 ≤ t} = {τ1 ≤ t} ∩ {τ2 ≤ t},
{τ1 ∧ τ2 ≤ t} = {τ1 ≤ t} ∪ {τ2 ≤ t}.

A filtration F = {Ft}t≥0 is said to be right-continuous if Ft = Ft+ := ∩s>tFs for any t ≥ 0.

Proposition 1.31

Let F be a right-continuous filtration. Then the following (i)–(iv) are equivalent:

(i) τ is a stopping time.

(ii) {τ < t} ∈ Ft for any t ≥ 0.

(iii) {τ > t} ∈ Ft for any t ≥ 0.

(iv) {τ ≥ t} ∈ Ft for any t ≥ 0.
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Proof. If τ is a stopping time, then by definition {τ < t} = ∪∞n=1{τ ≤ t − 1/n} ∈ Ft. Thus
the implication (i)⇒(ii) follows．Conversely, assume that (ii) holds. Then for k ≥ 1 we have
{τ ≤ t} = ∩∞n=k{τ < t + 1/n} ∈ Ft+1/k. This together with the right-continuity of F implies
that (i) holds. The claims (i)⇔(iii) and (ii)⇔(iv) are trivial. Thus the proposition follows.

Proposition 1.32

Let F be a right-continuous filtration and {Xt}t≥0 an Rd-valued continuous F-adapted
process. If A is an open or a closed subset of Rd, then the random variable

τA(ω) := inf{t > 0 : Xt(ω) ∈ A}

is an F-stopping time. Here, by convention, inf ∅ = +∞.

• τA is called the hitting time of {Xt} to A or the first exit time of {Xt} from Ac.

• We say that a filtration F = {Ft}t≥0 satisfies the usual conditions if it is right-continuous
and F0 contains all P-null sets from F .

For a filtration G = {Gt}t≥0 and a G-stopping time τ , we define

Gτ := {A ∈ G∞ : A ∩ {τ ≤ t} ∈ Gt, ∀t ≥ 0}.

• Here, G∞ := σ(Gt : t ≥ 0).

• Roughly speaking, Gτ is the σ-algebra generated by events occurring before τ .

• If two stopping times σ and τ satisfies σ(ω) ≤ τ(ω) for all ω ∈ Ω, then we have Fσ ⊂ Fτ .

Proposition 1.33

Suppose that F is right-continuous. Let {Xt}t≥0 be an F-progressively measurable process,
and let τ an F-stopping time with τ <∞ a.s. Then Xτ is Fτ -measurable.

Proof. Fix t ≥ 0. By the assumption, the mapping (ω, s) 7→ Xs(ω) is measurable from (Ω ×
[0, t],Ft × B[0, t]) into (R,B(R)). Moreover, the mapping ω 7→ (ω, τ(ω) ∧ t) is measurable from
(Ω,Ft) into (Ω × [0, t],Ft × B[0, t]). Hence Xτ∧t is Ft-measurable. In addition, by Proposition
1.31, we have {τ < t}, {τ = t} ∈ Ft. Therefore, for B ∈ B(R),

{Xτ ∈ B} ∩ {τ ≤ t} = {Xτ ∈ B} ∩ {τ < t} ∪ {Xτ ∈ B} ∩ {τ = t}
= {Xτ∧t ∈ B} ∩ {τ < t} ∪ {Xt ∈ B} ∩ {τ = t} ∈ Ft.

Thus the proposition follows.

The following inequality for continuous submartingales is frequently used.
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Theorem 1.34: Doob’s maximal inequality

Suppose that {Xt}t≥0 is a nonnegative submartingale with continuous paths. Then, for
every T ≥ 0 and λ > 0,

P

(
sup

0≤t≤T
Xt ≥ λ

)
≤ 1

λ
E[XT ].

Moreover, for any p > 1, if E[Xp
T ] <∞ then we have

E

[
sup

0≤t≤T
Xp

t

]
≤
(

p

p− 1

)p

E
[
Xp

T

]
.

Proof. Notice that by the continuity sup0≤t≤T Xt is certainly F-measurable (see Problem 1.22)
and

sup
0≤t≤T

Xt = sup
n≥0

Xtn ,

where {tn}∞n=0 = Q ∩ [0, T ] such that 0 = t0 < t1 < · · · and limn→∞ tn = T . Then, we find that
the event A(n) = {sup0≤k≤nXtk ≥ λ} is represented as A(n) = ∪nk=0Ak with

A0 = {X0 ≥ λ}, Ak =

{
Xtk ≥ λ, max

0≤i≤k−1
Xti < λ

}
, k = 1, 2, . . . , n.

Since A
(n)
k ’s are disjoint, by Chebyshev’s inequality and the submartingale property we see

P(A(n)) =
n∑

k=0

P(A(n)
k ) ≤ 1

λ

n∑
k=0

E[Xtk1A(n)
k

] ≤ 1

λ

n∑
k=0

E[XT 1A(n)
k

] =
1

λ
E[XT 1A(n) ]

≤ 1

λ
E[XT 1{sup0≤t≤T Xt≥λ}] ≤

1

λ
E[XT ]. (1.2.1)

Letting n→∞, we obtain the first required inequality.
To show the second inequality, put Y = sup0≤t≤T Xt and observe, for K > 0,

E[(Y ∧K)p] = p

∫ ∞

0
λp−1P(Y ∧K ≥ λ)dλ ≤ p

∫ K

0
λp−1 1

λ
E[XT 1{Y≥λ}]dλ

= pE
[∫ Y ∧K

0
λp−2dλXT

]
=

p

p− 1
E[(Y ∧K)p−1XT ]

≤ p

p− 1
E[(Y ∧K)p](p−1)/pE[Xp

T ]
1/p.

Here, we have used (1.2.1) with limit, Fubini’s theorem, and Hölder’s inequality. Thus,

E[Y p]1/p = lim
K→∞

E[(Y ∧K)p]1/p ≤ p

p− 1
E[Xp

T ]
1/p,

as wanted.

1.3 Brownian Motion

Consider the simple random walk Sn =
∑n

k=1Xk, n ≥ 0, starting from 0. To embed this into
the continuous time framework, we use the normalized process

W
(n)
0 :=

1√
n
S0 = 0, W

(n)
1/n :=

1√
n
S1, W

(n)
2/n :=

1√
n
S2, · · ·
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of Sn by
√
n. Then we define the continuous time process W

(n)
t by its linear interpolation, i.e.,

W
(n)
t =

1√
n

[
S⌊nt⌋ +X⌊nt⌋+1(nt− bntc)

]
, t ≥ 0.

Figure 1.3.1: Sample paths of W
(n)
t . The cases of n = 10 (left), n = 100 (center), n = 1000

(right).

We shall consider a limit of W
(n)
t as n→∞.

Proposition 1.35

Let 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tm. Then the Rm+1-valued random variable
(W

(n)
t0
,W

(n)
t1
, . . . ,W

(n)
tm ) converges in distribution to an Rm+1-valued random variable

(Wt0 ,Wt1 , . . . ,Wtm) having the following properties:

(i) Wt0 = 0 a.s.

(ii) Wt1 ,Wt2 −Wt1 , . . . ,Wtm −Wtm−1 are independent.

(iii) For each k, the random variable Wtk−Wtk−1
has a Gaussian distribution with mean

0 and variance tk − tk−1.

Proof. We will prove the case of m = 2. The proof for the general case is similar. For simplicity
set s = t1 and t = t2. We see ∣∣∣∣W (n)

t − 1√
n
S⌊nt⌋

∣∣∣∣ ≤ 1√
n

to obtain ∣∣∣∣(W (n)
s ,W

(n)
t )− 1√

n
(S⌊sn⌋, S⌊tn⌋)

∣∣∣∣→ 0 a.s.

Hence, it is sufficient to show that

1√
n

⌊sn⌋∑
j=1

Xj ,

⌊tn⌋∑
j=1

Xj

→ (Ws,Wt) in law. (1.3.1)
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To this end, let i be the imaginary unit and α, β ∈ R. Then, by the IID property of {ξj},

E

exp
iα 1√

n

⌊sn⌋∑
j=1

Xj + iβ
1√
n

⌊tn⌋∑
j=1

Xj


= E

exp
i(α+ β)

1√
n

⌊sn⌋∑
j=1

Xj + iβ
1√
n

⌊tn⌋∑
j=⌊sn⌋+1

Xj


= E

exp
i(α+ β)

√
bsnc
n

1√
bsnc

⌊sn⌋∑
j=1

Xj


× E

exp
iβ√btnc − bsnc

n

1√
btnc − bsnc

⌊tn⌋−⌊sn⌋∑
j=1

Xj

 .
It follows from (sn−1)/n ≤ bsnc/n ≤ s that bsnc/n→ s. Further, by the central limit theorem,

the distribution of 1√
⌊sn⌋

∑⌊sn⌋
j=1 Xj converges to the standard normal distribution. Therefore

E

exp
iα 1√

n

⌊sn⌋∑
j=1

Xj + iβ
1√
n

⌊tn⌋∑
j=1

Xj

→ E[ei(α−β)Ws ]E[eiβ(Wt−s)]

= E[eiαWs+iβWt ].

Thus (1.3.1) follows.

This suggests that a process {Wt} satisfying Proposition 1.35 (i)–(iii) can be seen as a limit

of {W (n)
t }. We shall call such process {Wt} as Brownian motion.

Definition 1.36. A real-valued process {Wt}t≥0 is said to be a Brownian motion if

(i) W0 = 0 a.s.

(ii) Independent increments property: for 0 = t0 < t1 < · · · < tm, the random variables
Wt1 ,Wt2 −Wt1 , . . . ,Wtm −Wtm−1 are independent.

(iii) Stationary increments property: for s ≤ t, the random variable Wt −Ws is a Gaussian
random variable with mean 0 and variance t− s.

It should be noted that Proposition 1.35 does not guarantee the existence of a Brownian
motion. The proposition means that if a Brownian motion exists then its distribution coincides

with the limiting distribution of {W (n)
t }.

To discuss the existence of a Brownian motion rigorously, we consider the measurable space
(C[0,∞),B(C[0,∞))) defined by the totality of continuous functions on [0,∞). Then, the
projection πt defined by πt(ω) = ω(t), ω ∈ C[0,∞) is a measurable function on C[0,∞). For
each ω ∈ C[0,∞) we can regard {πt(ω)}t≥0 = {ω(t)}t≥0 as the sample paths of a process. We
call {πt}t≥0 as coordinate process.

Now suppose that a probability measure P on (C[0,∞),B(C[0,∞))) satisfies, for 0 = t0 <
t1 < · · · < tm and α1, . . . , αm ∈ R,

P (ω : ω(tk)− ω(tk−1) ≤ αk, k = 1, . . . ,m)

=
m∏
k=1

1√
2π(tk − tk−1)

∫ αk

−∞
e−u2/2(tk−tk−1)du.

(1.3.2)
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Then, the coordinate process {πt} on the probability space (C[0,∞),B(C[0,∞)), P ) is a Brow-
nian motion. Therefore, the existence problem of a Brownian motion is reduced to that of P .

Let Pn be the distribution of C[0,∞)-valued random variable W (n) := {W (n)
t }. Then Pn is

a probability measure on (C[0,∞),B(C[0,∞))). If {Pn} weakly converges to some P then it
follows from Proposition 1.35 that P satisfies (1.3.2).

A general theory of weak convergence of probability measures tells us that if the two con-
ditions in the statement of Theorem A.42 hold then there exists a subsequence {Pnk

} that
converges weakly. Indeed, we can prove that the two conditions do hold, and so a weak limit P
satisfies (1.3.2). An interested reader may consult [21, Chapter 2] and [5, Chapter 2]. Conse-
quently, under the weak limit P , the coordinate process {πt} satisfies the conditions in Definition
1.36.

The arguments above shows the following claim:

Theorem 1.37

There exists a Brownian motion on some probability space.

• P is called the Wiener measure.

• We also say that a process satisfying the requirements in Definition 1.36 is a Wiener
process.

• An Rd-valued process Wt = (W 1
t , . . . ,W

d
t ), t ≥ 0, is said to be a d-dimensional Brownian

motion if each W i
t is a Brownian motion and W i

t and W j
t are independent of each other

for i 6= j.

• Let P (i), i = 1, . . . , d, be d copies of the Wiener measure on (C[0,∞),B(C[0,∞))). Then
the product measure P 0 := P (1) × · · · × P (d) is called the d-dimensional Wiener measure
on (C([0,∞);Rd),B(C([0,∞);Rd)), and the coordinate process Wt(ω) := ω(t), t ≥ 0, is a
d-dimensional Brownian motion under P 0.

• It is known that for any Brownian motion there exists a continuous modification (this
follows from Kolmogorov’s continuity theorem. See, e.g., [31, Chapter 2]). Hereafter, we
always take this modification as a Brownian motion, i.e., any Brownian motion is assumed
to be continuous.

Definition 1.38. Let F = {Ft}t≥0 be a filtration. We call {Wt}t≥0 as a d-dimensional F-
Brownian motion if

(i) {Wt}t≥0 is F-adapted and a d-dimensional Brownian motion.

(ii) For s ≤ t the random variable Wt −Ws is independent of Fs.

• Let {Wt} be a d-dimensional Brownian motion and consider the augmented natural filtra-
tion G = {Gt}t≥0 generated by {Wt}, i.e., Gt := σ(FW

t ∪ N ), where N is the collection of
all P-null sets from F . Then {Wt} is also a d-dimensional G-Brownian motion.

• It is known that the filtration G above satisfies the usual conditions (see, e.g., [21, Theorem
2.7.9]).

Problem 1.39. Let {Wt}t≥0 be a d-dimensional Brownian motion. Show that

σ
(
FW
t ∪N

)
= σ ({σ(Wt1 , . . . ,Wtn) : 0 ≤ t1 < · · · < tn ≤ t, n ≥ 1} ∪ N ) .

There are infinitely many Brownian motion on the same probability space, as seen in the
following problem:
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Problem 1.40. Let {Wt}t≥0 be a Brownian motion. Then show that the processes defined by
the following (i)–(iii) are all Brownian motions:

(i) {−Wt}t≥0.

(ii) {Wt+s −Ws}t≥0.

(iii) {cWt/(c2)}t≥0.

Here s > 0 and c 6= 0.

Next we focus on an irregularity of the sample paths of a Brownian motion.

Theorem 1.41

Let {Wt} be a Brownian motion. Then

P({ω ∈ Ω : t 7→Wt(ω) is not differentiable at s ∈ Q ∩ [0,∞)}) = 1.

Proof. Fix s ≥ 0, put As = {ω : t 7→Wt(ω) is differentiable at s}, and take ω ∈ As. Then the
limit limh↘0(Ws+h(ω)−Ws(ω))/h exists and is finite. In particular, there exist δ > 0 and h0 > 0
such that |Ws+h(ω) −Ws(ω)|/h ≤ δ, 0 < ∀h < h0. Hence supn≥1 n|Ws+1/n(ω) −Ws(ω)| < ∞,
and so there exists N ≥ 1 such that for n ≥ 1 we have n|Ws+1/n(ω)−Ws(ω)| ≤ N . This implies

As ⊂
⋃
N≥1

⋂
n≥1

{n|Ws+1/n −Ws| ≤ N},

whence by the continuity of the probability measures

P(As) ≤ lim
N→∞

inf
n≥1

P(n|Ws+1/n −Ws| ≤ N).

Take ξ ∼ N(0, 1) and use Ws+1/n −Ws ∼ N(0, 1/n) to obtain

inf
n≥1

P(n|Ws+1/n −Ws| ≤ N) = inf
n≥1

P(n
√
1/n|ξ| ≤ N) = inf

n≥1
P(|ξ| ≤ Nn−1/2) = 0.

Consequently we have P(As) = 0. Therefore P(∪s∈Q∩[0,∞)As) = 0.

• Actually, we can show that the sample paths of a Brownian motion is not differentiable
for any time almost surely We refer to [21, Theorem 2.9.18] for a proof.

• This fact suggests an unpredictability of Brownian motion in a pathwise way.

We shall see an irregularity of Brownian motions with a different criterion. To this end, we
use the total variation of {Wt} in [0, t] for each t > 0, defined by

VW ([0, t]) := sup
k≥0

sup
π

k∑
i=0

|Wti+1 −Wti |,

where the second supremum is taken over the partitions π : 0 = t0 < t1 < · · · < tk < tk+1 = t of
[0, t] having k + 1 points.

Theorem 1.42

The total variation of {Wt} is almost surely infinite, i.e., P(VW ([0, t]) =∞, t > 0) = 1.
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Proof. First notice that for each partition π of [0, t],

E
∑
ti∈π

(Wti+1 −Wti)
2 =

∑
ti∈π

(ti+1 − ti) = t.

Then write Zi = (Wti+1 −Wti)
2 − (ti+1 − ti) and take ξ ∼ N(0, 1). Clearly, {Zi} is independent

and each Zi has the same distribution as that of (ξ2 − 1)(ti+1 − ti). Thus

E

(∑
ti∈π

(Wti+1 −Wti)
2 − t

)2
 = E

∑
ti∈π

Z2
i = E[(ξ2 − 1)2]

∑
ti∈π

(ti+1 − ti)2.

Let πn be a sequence of the partition such that ∆n := supti∈πn
|ti+1 − ti| → 0. Then the

right-hand side of the equality just above is at most tE[(ξ2 − 1)2]∆n. Therefore,

Qn :=
∑
ti∈πn

(Wti+1 −Wti)
2 → t, n→∞, in L2,

whence there exists a subsequence Qnk
that converges almost surely.

Now, suppose that P(VW ([0, t]) <∞) > 0. By the continuity of Brownian sample paths, we
have supti∈πnk

|Wti+1 −Wti | → 0, and so the probability of the event

t ≤ lim
k→∞

(
sup

ti∈πnk

|Wti+1 −Wti |

) ∑
ti∈πnk

|Wti+1 −Wti | = 0

is positive, which is impossible for t > 0. Hence P(VW ([0, t]) =∞) for every t > 0. Furthermore,
since VW ([0, s]) ≤ VW ([0, t]) for any t > 0 and s ∈ Q with s < t, we have

1 = P(VW ([0, s]) =∞, s ∈ Q ∩ (0,∞)) ≤ P(VW ([0, t]) =∞, t > 0).

Thus the theorem follows.

The proof of the theorem above implies that for each partition 0 = t0 < t1 < · · · < tn <
tn+1 = t such that ∆n = sup |ti+1 − ti| → 0,

〈W 〉t := lim
n∑

i=0

(Wti+1 −Wti)
2 = t, in L2.

We call 〈W 〉t, t ≥ 0, as the quadratic variation of {Wt}.

Definition 1.43. We say that an Rd-valued F-adapted process {Xt} is an F-Markov process if

E[f(Xt)|Fs] = E[f(Xt)|Xs], s ≤ t,

for any bounded Borel function f on Rd.

• {Xt} is simply called a Markov process if it is Markov with respect to {FX
t }t≥0.

Theorem 1.44

Any d-dimensional F-Brownian motion is F-Markov.

Proof. Let s ≤ t. SinceWt−Ws is independent of Fs, we can apply Lemma 1.45 below to obtain

E[f(Wt)|Fs] = E[f(Wt −Ws +Ws)|Fs] = g(Ws).

Here g(y) = E[f(Wt −Ws + y)]．
On the other hand, σ(Ws) ⊂ Fs yields E[f(Wt)|σ(Ws)] = E[E[f(Wt)|Fs]|σ(Ws)] = g(Ws),

whence the claim follows.
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We have used the following lemma to show Theorem 1.44.

Lemma 1.45

Let (Si,Si), i = 1, 2, be measurable spaces. Suppose that an S1-valued random variableX1

is independet of a σ-algebra G and that an S2-valued random variable X2 is G-measurable.
Then for any bounded Borel function f on (S1 × S2,S1 × S2) we have

E[f(X1, X2)|G] = E[f(X1, x)]|x=X2 .

Proof. Let A ∈ G. The assumption implies that Z = (X2, 1A) is independent of X1. So applying
Theorem A.36, we have

E[f(X,Y )1A] =

∫
f(x, y)ξµ(X,Z)(dx, dy, dξ) =

∫
f(x, y)ξµX(dx)µZ(dy, ξ),

where µV denotes the distribution of V . Thus by Fubini’s theorem (Theorem A.35),

E[f(X,Y )1A] =

∫ [∫
f(x, y)ξµX(dx)

]
ξµZ(dy, ξ) = E[g(Y )1A].

Since A ∈ G is arbitrary, we are done.

Theorem 1.46: The strong Markov property for Brownian motions

Suppose that the filtration F is right-continuous. Let {Wt}t≥0 be a d-dimensional F-
Brownian motion. Then, for any F-stopping time τ and bounded Borel function f on Rd,
we heve

E[1{τ<∞}f(Xτ+t)|Fτ ] = E[1{τ<∞}f(Xτ+t)|Xτ ], t ≥ 0.

Proof. First notice that for every bounded Borel measurable function f on B(R) there exists a
sequence {fn}∞n=1 ⊂ Cb(Rd) such that fn(x) → f(x), x ∈ Rd. To confirm this, recall that any
Borel measurable function can be approximated by simple functions and the indicator function
on
∏d

i=1(ai, bi] can be approximated by continuous functions. Thus, in view of this pointwise
approximation and the dominated convergence theorem, we can assume f ∈ Cb(Rd) without loss
of generality.

Let τ be a stopping time and put τn = (bnτc+ 1)/n, n ∈ N. Fix A ∈ Fτ . Then,

E
[
1{τ<∞}f(Wt+τn)1A

]
=

∞∑
k=1

E
[
f(Wt+k/n)1A∩{τn=k/n}

]
.

Since τ ≤ τn, we have Fτ ⊂ Fτn . Thus A ∩ {τn = k/n} ∈ Fk/n. Then by Theorem 1.44,

E[f(Wt+τn)1A∩{τn=k/n}] = E[E[f(Wt+τn)|Fk/n]1A∩{τn=k/n}]

= E[E[f(Wt+τn)|Wk/n]1A∩{τn=k/n}]

= E[E[f(Wt+k/n −Wk/n + x)]|x=Wk/n
1A∩{τn=k/n}].

Therefore,
E
[
1{τ<∞}f(Wt+τn)1A

]
= E

[
1{τ<∞}E[f(Wt + x)]|x=Wτn

1A
]
.

By the continuity of f and the dominated convergence theorem, letting n→∞, we obtain

E
[
1{τ<∞}f(Wt+τ )1A

]
= E

[
1{τ<∞}E[f(Wt + x)]|x=Wτ 1A

]
. (1.3.3)
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On the other hand, by Proposition 1.19, {Wt} is progressively measurable. This together
with Proposition 1.33 means that Wτ is Fτ -measurable. Thus, σ(Wτ ) ⊂ Fτ and (1.3.3) holds
for any event in σ(Wτ ). Consequently,

E
[
1{τ<∞}f(Wt+τ ) | Fτ

]
=
[
1{τ<∞}f(Wt+τ ) |σ(Wτ )

]
,

as required.

Theorem 1.47

Suppose that the filtration F is right-continuous. Let {Wt}t≥0 be a d-dimensional {Ft}t≥0-
Brownian motion and θ an F-stopping time with θ <∞, a.s. Then, W̃t :=Wt+θ−Wθ, t ≥
0, is also a d-dimensional Brownian motion with respect to {Ft+θ}t≥0 and is independent
of Fθ.

Proof. As in (1.3.3), we can show that

E
[
eiξ

T(Wt+θ−Ws+θ)1A

]
= E

[
E[eiξ

TWt−s ]1A

]
, t ≥ s, A ∈ Fs+θ, ξ ∈ Rd,

where i =
√
−1. Thus

E
[
eiξ

T(Wt+θ−Ws+θ)
∣∣∣Fs+θ

]
= e−(t−s)|ξ|2/2, t ≥ s, ξ ∈ Rd.

This leads to the claims.

Proposition 1.48

Let {Wt}t≥0 be an F-Brownian motion, and σ ∈ R. Then the following three processes
are F-martingales.

(i) {Wt}t≥0,

(ii) {W 2
t − t}t≥0,

(iii) {eσWt−(σ2/2)t}t≥0.

Proof. Let s ≤ t. (i). Since Wt −Ws is independent of Fs, we have

E[Wt|Fs] = E[Wt −Ws +Ws|Fs] = E[Wt −Ws] +Ws =Ws.

(ii). We use the representationW 2
t − t = (Wt−Ws+Ws)

2− t = (Wt−Ws)
2− (t−s)+2Ws(Wt−

Ws) +W 2
s − s to see

E[W 2
t − t|Fs] = E[(Wt −Ws)

2]− (t− s) + 2WsE[Wt −Ws] +W 2
s − s =W 2

s − s.

(iii). This follows from

E[eσWt−(σ2/2)t|Fs] = eσWs−(σ2/2)sE[eσ(Wt−Ws)−(σ2/2)(t−s)] = eσWs−(σ2/2)s.

Problem 1.49. Apply Doob’s maximal inequality to show that

E

[
exp

(
σ sup

0≤t≤T
|Wt|

)]
<∞

for any T > 0 and σ > 0.
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Let {Wt} be a 1-dimensional Brownian motion. For t ≥ 0 and x ∈ R,

W t,x
s := x+Ws −Wt, s ≥ t

is a Brownian motion starting at (t, x). Then, the probability density function

p(s, y | t, x) := ∂

∂y
P(W t,x

s ≤ y) = e−|x−y|2/2(s−t)√
2π(s− t)

, s > t, y ∈ R

of W t,x
s is called a transition density from (t, x) to (s, y). This satisfies second order parabolic

partial differential equations

∂sp−
1

2
∂2yyp = 0, (1.3.4)

∂tp+
1

2
∂2xxp = 0, . (1.3.5)

The equation (1.3.4) is called the forward Kolmogorov equation, whereas (1.3.5) is called the
backward Kolmogorov equation.

Let f be a bounded continuous function on R. Then, by the backward Kolmogorov equation
(1.3.5), the function

u(t, x) := E[f(W t,x
T )], (t, x) ∈ [0, T ]× R,

satisfies

∂tu(t, x) +
1

2
∂2xxu(t, x) = 0, (t, x) ∈ [0, T )× R,

and u(T, x) = f(x), x ∈ R.
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CHAPTER 2

Stochastic Integrals

Standard textbooks for the contents of this chapter are, e.g., [31], [49], [45], [21].
In what follows, we fix a time maturity T ∈ (0,∞) and work on a filtered probability space

(Ω,F , {Ft}0≤t≤T ,P). For the technical reasons described in Chapter 1, we assume that F satisfies
the usual conditions.

2.1 Construction

Let {Wt}0≤t≤T be a one-dimensional {Ft}0≤t≤T -standard Brownian motion on (Ω,F ,P). As
seen in Chapter 1, Brownian motions can be a mathematical model for unpredictable motions.
One might expect that an infinitesimal analysis for Brownian motions can be available as in the
case of the classical calculus. However, by Theorem 1.41, the sample paths of Brownian motions
are not differentiable. Therefore, to say nothing of a differentiation, an integral

∫ t
0 fsdWs cannot

be defined via the classical change of variation formula
∫ t
0 fs(dWs/ds)ds. Moreover, since the

total variation of any Brownian motion diverges (Theorem 1.42), an integral
∫ t
0 fsdWs cannot

also be defined by the so-called Lebesgue-Stieltjes integrals.

The case of simple processes

As in the case where the definition of the expectation, we start with the case of simple integrands.

Definition 2.1. We say that {ϕt}0≤t≤T is a simple process if there exist a partition 0 = t0 <
t1 < · · · < tn < tn+1 = T of [0, T ], F0-measurable ψ0 ∈ L2 and Fti-measurable φi ∈ L2,
i = 0, . . . , n, such that

ϕt(ω) = ψ0(ω)1{0}(t) +

n∑
i=0

φi(ω)1(ti,ti+1](t), (t, ω) ∈ [0, T ]× Ω. (2.1.1)

For simple processes {ϕt}, we define the stochastic integral or Itô integral on [0, T ] of {ϕt}
with respect to {Wt} by

I(ϕ) ≡
∫ T

0
ϕsdWs :=

n∑
i=0

φi(Wti+1 −Wti). (2.1.2)

It should be mentioned that the values at leftmost point in [ti, ti+1] are adopted for the integrals,
which differs from the arbitrariness in the case of Riemann integrals.
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Our first task is to confirm that the definition (2.1.2) is well-defined, i.e., (2.1.2) is indepen-
dent of the representation (2.1.1) of ϕt as a simple process. Suppose that {Xt} is represented
as

ϕt = ψ01{0}(t) +

m∑
i=1

φ′
i1(si,si+1](t)

for some partition 0 = s0 < s1 < · · · < sm < sm+1 = T , and Fsi-measurable φ′
i ∈ L2,

i = 1, . . . ,m. Then, with the common partition 0 = u0 < u1 < · · · < uk < uk+1 = T , we
see ϕt = ψ′′

01{0}(t) +
∑k

i=0 φ
′′
i 1(ui,ui+1](t), where φ

′′
i is given by φ′′

i = φj = φ′
ℓ for appropriate j

and ℓ. Since the interval (ui, ui+1] is a subdivision of (tj , tj+1] for some j, we have (tj , tj+1] =
∪i1i=i0

(ui, ui+1] for some i0 ≤ i1. Hence, φj(Wtj+1 −Wtj ) =
∑i1

i=i0
φ′′
j (Wui+1 −Wui). A similar

relation is obtained for the representation of φ′
ℓ(Wsℓ+1

−Wsℓ). Therefore,

I(ϕ) =

n∑
j=0

φj(Wtj+1 −Wtj ) =

k∑
i=0

φ′′
i (Wui+1 −Wui) =

m∑
ℓ=0

φ′
ℓ(Wsℓ+1

−Wsℓ).

This shows that (2.1.2) is well-defined.
Now, we shall define the Itô integrals for general integrands by extending the definition

(2.1.2) in a natural way. To this end, we focus on the following fact:

Proposition 2.2

If {ϕt} is a simple process, then

E

[(∫ T

0
ϕsdWs

)2
]
= E

[∫ T

0
ϕ2sds

]
. (2.1.3)

Proof. Suppose that ϕt is represented as in (2.1.1). Then,(∫ T

0
ϕtdWt

)2

=
∑
i,j

φiφj(Wti+1 −Wti)(Wtj+1 −Wtj )

=
n∑

i=0

φ2
i (Wti1

−Wti)
2 + 2

∑
j>i

φiφj(Wti+1 −Wti)(Wtj+1 −Wtj ).

By the independent increments property of {Wt}, for j > i we have

E[φiφj(Wti+1 −Wti)(Wtj+1 −Wtj )] = E[φi(Wti+1 −Wti)φjE[Wtj+1 −Wtj |Ftj ]] = 0,

whence

E

[(∫ T

0
ϕtdWt

)2
]
=

n∑
i=0

E
[
ϕ2i
]
(ti+1 − ti) = E

∫ T

0
ϕ2tdt.

• The property (2.1.3) is called as the isometry of the Itô integrals.

• Proposition 2.2 means that for two simple processes {ϕt} and {ψt}

E[(I(ϕ)− I(ψ))2] = E
∫ T

0
(ϕt − ψt)

2dt.

Thus, the L2-error between I(ϕ) and I(ψ) is equal to the mean squared error E
∫ T
0 (ϕt −

ψt)
2dt of the two stochastic processes {ϕt} and {ψt}.
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The case of square integrable processes

The preceding argument suggests that for a general process {ϕt} having approximate sequence

{ϕ(n)t } of simple processes, the L2-limit of I(ϕ(n)) is meaningful and can be defined as an integral
of {ϕt}.

We consider the class

L2 =
{
{ϕt}0≤t≤T : F-adapted, E

∫ T

0
ϕ2tdt <∞

}
.

Then we have the following:

Lemma 2.3

For any {ϕt} ∈ L2, there exists a sequence {ϕ(n)t }, n ≥ 1, of simple processes such that

lim
n→∞

E
[∫ T

0
|ϕt − ϕ(n)t |2dt

]
= 0.

Proof*. First, consider the case where ϕt(ω) is continuous for any ω ∈ Ω and uniformly bounded,
i.e., sup(t,ω)∈[0,T ]×Ω |ϕt(ω)| <∞. Then, the sequence

ϕ
(n)
t := ϕk2−nT t ∈ [k2−nT , (k + 1)2−nT ), k = 0, . . . , 2n − 1, n = 1, 2, . . .

of simple processes converges to ϕt(ω) for any (t, ω). Further, it follows that |ϕ(n)t − ϕt| ≤
2 sups,ω |ϕs(ω)| <∞, whence, by the dominated convergence theorem, E

∫ T
0 |ϕ

(n)
t − ϕt|2dt→ 0.

Second, consider the case where {ϕt} is adapted and uniformly bounded. Then, by Propo-
sition 1.21, the process

ϕ
(ε)
t :=

1

ε

∫ t

t−ε
ϕs∨0ds, 0 ≤ t ≤ T

is adapted, uniformly bounded, and continuous. By [43, 定理 19.3], we have ϕ
(ε)
t → ϕt as

ε → 0 for almost every t. Moreover, there exists a sequence {ϕ(n,ε)t } of simple processes that

approximate {ϕ(ε)t } for every ε > 0. Therefore, applying the dominated convergence theorem,
we obtain

lim
ε→0

lim
n→∞

E
∫ T

0
|ϕ(n,ε)t − ϕt|2dt = 0.

Thus we have E
∫ T
0 |ϕ

(n,εn)
t − ϕt|2dt→ 0 for some subsequence εn → 0.

Third, consider the case where {ϕt} is adapted and is not necessarily bounded. Then, the

process ϕ
(N)
t := ϕt1{|ϕt|≤N}, 0 ≤ t ≤ T , is adapted and bounded, and satisfies

lim
N→∞

E
∫ T

0
|ϕ(N)

t − ϕt|2dt = lim
N→∞

E
∫ T

0
(ϕt)

21{|ϕt|>N}dt = 0. (2.1.4)

Hence, there exists a sequence {ϕ(n,N)
t } of simple processes that approximate {ϕ(N)

t } for every

N ≥ 1. This together with (2.1.4) implies that E
∫ T
0 |ϕ

(n,Nn)
t − ϕt|2dt→ 0 for some subsequence

Nn →∞.

By Proposition 2.2 and Lemma 2.3, for any {ϕt} ∈ L2 there exists a sequence {ϕ(n)t }0≤t≤T

of simple processes such that

E|I(ϕ(n))− I(ϕ(m))|2 = E
∫ T

0
|ϕ(n)t − ϕ(m)

t |2dt, m, n ∈ N,

lim
n→∞

E
∫ T

0
|ϕt − ϕ(n)t |2dt = 0.
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This shows that {I(ϕ(n))}∞n=1 is a Cauchy sequence in L2, whence there exists a limit I(ϕ) ∈ L2.

Moreover, I(ϕ) does not depend on the choice of approximating simple processes {ϕ(n)t }. Indeed,
if {ψ(n)

t }0≤t≤T , n ∈ N, are another simple processes such that E
∫ T
0 |ϕt − ψ

(n)
t |2dt→ 0, then

E|I(ϕ)− I(ψ(n))|2 ≤ 2E|I(ϕ(n))− I(ψ(n))|2 + 2E|I(ϕ(n))− I(ϕ)|2

= 2E
∫ T

0
|ϕ(n)t − ψ(n)

t |2dt+ 2E|I(ϕ(n))− I(ϕ)|2 → 0.

The arguments above justify the following definition:

Definition 2.4. Let {ϕt} ∈ L2 and {ϕ(n)t } be as in Lemma 2.3. Then we define the Itô integral

I(ϕ) =
∫ T
0 ϕtdWt of {ϕt} by the L2-limit of I(ϕ(n)).

Example 2.5. Let us compute
∫ T
0 WtdWt. In this case,

ϕ
(n)
t =

2n−1∑
j=0

Wj2−nT 1(j2−nT,(j+1)2−nT ](t), 0 ≤ t ≤ T, n = 1, 2, . . .

is an approximate sequence of {Wt}. Indeed,

E
[∫ T

0
(ϕ

(n)
t −Wt)

2dt

]
= E

2n−1∑
j=0

∫ (j+1)2−nT

j2−nT
(Wt −Wj2−nT )

2dt


=

2n−1∑
j=0

∫ (j+1)2−nT

j2−nT
(t− j2−nT )dt =

2n−1∑
j=0

2−1((j + 1)2−nT − j2−nT )2 → 0.

Thus, ∫ T

0
WtdWt = lim

n→∞

2n−1∑
j=0

Wj2−nT (W(j+1)2−nT −Wj2−nT ) in L2.

Using 2y(x− y) = x2 − y2 − (x− y)2, we see

2
2n−1∑
j=0

Wj2−nT (W(j+1)2−nT −Wj2−nT ) =W 2
T −

2n−1∑
j=0

(W(j+1)2−nT −Wj2−nT )
2.

Further, the second term of the right-hand side in the equality just above converges to T in L2.
Therefore, ∫ T

0
WtdWt =

1

2
W 2

T −
T

2
.

Itô integral as stochastic processes

We shall define the stochastic integrals on [0, t] for each t ∈ [0, T ], and then construct the
processes of the integrals. For the simple process {ϕt} with representation (2.1.1),

It(ϕ) =

∫ t

0
ϕsdWs :=

∫ T

0
ϕs1{s≤t}dWs =

n∑
k=0

φk(Wtk+1∧t −Wtk∧t), 0 ≤ t ≤ T.

That is, for t ∈ (ti, ti+1], It(ϕ) =
∑i−1

k=0 φk(Wtk+1
−Wtk) + φi(Wt −Wti). The sample paths of

{It(ϕ)} is clearly continuous almost surely.
Next, we introduce the class

M2 := {{Mt}0≤t≤T : a.s. continuous, F-martingales, M0 = 0, E|MT |2 <∞}
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of processes. Then we have the following fundamental result:

Proposition 2.6

For any simple process {ϕt}0≤t≤T , the process {It(ϕ)}0≤t≤T is an F-martingale, i.e.,
{It(ϕ)} ∈ M2.

Proof. Let {ϕt} be given by (2.1.1). Then, for t > s,

E[It(ϕ)|Fs] =
∑

k:tk≤s

φkE[Wtk+1∧t −Wtk∧t|Fs] +
∑

k:tk>s

E
[
φkE[Wtk+1∧t −Wtk∧t|Ftk ]|Fs

]
=
∑

k:tk≤s

φk(Wtk+1∧s −Wtk∧s) = Is(ϕ).

For t ∈ [0, T ] and for {ϕs}0≤s≤t ∈ L2, we define It(ϕ) by the L2-limit of the stochastic

integrals It(ϕ
(n)) of an approximating simple processes {ϕ(n)s }0≤s≤t. Then we have the following:

Theorem 2.7

For any {ϕt}0≤t≤T ∈ L2 there exists a modification process {Jt} ∈ M2 of {It(ϕ)}0≤t≤T .
Namely, {Jt} is a continuous F-martingale and satisfies P(Jt = It(ϕ)) = 1 for t ∈ [0, T ].

Proof*. By Doob’s maximal inequality (Theorem 1.34), for any fixed ε > 0,

P

(
sup

0≤t≤T
|It(ϕ(n))− It(ϕ(m))| > ε

)
≤ 1

ε2
E
[
|IT (ϕ(n))− IT (ϕ(m))|2

]
=

1

ε2
E
∫ T

0
|ϕ(n)t − ϕ(m)

t |2dt→ 0

as m,n→∞. Hence there exists a subsequence nk ↗∞ such that

P

(
sup

0≤t≤T
|It(ϕ(nk+1))− It(ϕ(nk))| > 2−k

)
≤ 2−k.

Then we apply Borel-Cantelli lemma (Lemma A.12) to obtain

P

⋃
k≥1

⋂
j≥k

{
sup

0≤t≤T
|It(ϕ(nk+1))− It(ϕ(nk))| > 2−k

} = 1.

From this, for almost every ω ∈ Ω there exists k0(ω) such that

sup
0≤t≤T

|It(ϕ(nk+1))(ω)− It(ϕ(nk))(ω)| ≤ 2−k, k ≥ k0(ω).

This implies that for almost every ω the sequence It(ϕ
(nk))(ω) of functions converges to some

Jt(ω) uniformly on [0, T ]. We set Jt(ω) = 0 for ω such that the limit It(ϕ
(nk))(ω) does not exist.

Then {Jt} is continuous almost surely and a modification of {It(ϕ)}. Indeed, by Fatou’s lemma,

E[(Jt − It(ϕ))2] = E[ lim
n→∞

(It(ϕ
(n))− It(ϕ))2] ≤ lim inf

n→∞
E[(It(ϕ(n))− It(ϕ))2] = 0

whence Jt = It(ϕ) a.s.

25



Next we will show that {Jt} is a martingale. It is clear that Jt ∈ L1 for every t. By Problem
1.18 and Proposition 1.17, {It(ϕ)} and {Jt} are adapted. Moreover, for s ≤ t, the inequality
(a+ b)2 ≤ 2(a2 + b2) for a, b ∈ R and Jensen’s inequality for conditional expectations yield

E |E[Jt|Fs]− Js|2 ≤ 2E
∣∣∣E[Jt|Fs]− E[It(ϕ(n))|Fs]

∣∣∣2 + 2E
∣∣∣I(n)s − Js

∣∣∣2
≤ 2

(
E
∣∣∣I(n)t − Jt

∣∣∣2 + E
∣∣∣I(n)s − Js

∣∣∣2)
→ 0,

whence E[Jt|Fs] = Js. Therefore we have {Jt} ∈ M.

• In what follows, the process It(ϕ) =
∫ t
0 ϕsdWs, 0 ≤ t ≤ T , denotes the continuous modifi-

cation {Jt}0≤t≤t in Theorem 2.7.

• The processes of the stochastic integrals can be seen as a linear map from L2 into M2.
Namely, for {ϕt}, {ψt} ∈ L2 and α, β ∈ R we have It(αϕ+ βψ) = αIt(ϕ) + βIt(ψ).

• We define, for s ≤ t, ∫ t

s
ϕudWu =

∫ t

0
ϕudWu −

∫ s

0
ϕudWu.

Then it follows that for A ∈ Fs∫ t

s
1Aϕu1{s<u}dWu = 1A

∫ t

s
ϕudWu, (2.1.5)

which can be verified by the approximation argument with simple processes.

Next, we consider the stopped process I·∧τ (ϕ) defined for an F-stopping time τ (see Chapter
1). The following proposition gives a representation for It∧τ (ϕ):

Proposition 2.8

For any {ϕt} ∈ L2 and F-stopping τ ,∫ t∧τ

0
ϕsdWs =

∫ t

0
ϕs1{s≤τ}dWs, 0 ≤ t ≤ T, a.s.

Proof. It suffices to show the proposition in the case that τ is [0, t]-valued for some fixed t ∈ [0, T ].
First assume that τ is represented as τ =

∑n
i=1 ti1Ai , where 0 < t1 < · · · < tn = t and Ai ∈

Fti such that {Ai} is disjoint. From {s > τ} = ∪ni=1{s > ti}∩Ai, the fact that s 7→ 1Ai1{s>ti}ϕs
is adapted and the linearity of the stochastic integrals we obtain∫ t

0
1{s>τ}ϕsdWs =

n∑
i=1

∫ t

0
1Ai1{s>ti}ϕsdWs.

Applying (2.1.5) to the right-hand side in the equality just above, we find∫ t

0
1{s>τ}ϕsdWs =

n∑
i=1

1Ai

∫ t

ti

ϕsdWs =

∫ t

τ
ϕsdWs.

For a general [0, t]-valued stopping time τ , we consider an approximation of τ with

τn =

2n∑
i=0

(i+ 1)2−nt1{i2−nt≤τ<(i+1)2−nt}.
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Since τn → τ a.s. and s 7→
∫ s
0 ϕudWu is continuous almost surely, the sequence of the random

variables
∫ τn
0 ϕsdWs converges to

∫ τ
0 ϕsdWs almost surely.

On the other hand, by the dominated convergence theorem, as n→∞,

E
∣∣∣∣∫ t

0
1{s≤τ}ϕsdWs −

∫ t

0
1{s≤τn}ϕsdWs

∣∣∣∣2 = E
∫ t

0
1{τ<s≤τn}ϕ

2
sds→ 0.

Therefore,
∫ t
0 1{s≤τnk

}ϕsdWs →
∫ t
0 1{s≤τ}ϕsdWs a.s. for some subsequence nk ↗ ∞. Thus the

proposition follows.

Itô integrals for general integrands

We shall define the stochastic integrals for the class

L2,loc :=
{
{ϕt}0≤t≤T : F-adapted,

∫ T

0
ϕ2tdt <∞ a.s.

}
that is larger than L2. To this end, we introduce local martingales.

Definition 2.9. We say that {Mt}t≥0 is an F-local martingale if there exists an increasing
sequence {τn}n≥1 of stopping times such that limn→∞ τn = ∞ and that {M τn

t }t≥0 is an F-
martingale.

Denote byMloc the collection of all F-local martingales M = {Mt}0≤t≤T with almost surely
continuous paths and M0 = 0. For {ϕt} ∈ L2,loc, we consider the random variable

τn = inf

{
s ∈ [0, T ] :

∫ s

0
ϕ2udu ≥ n

}
.

Here inf ∅ = ∞ by convention. Then, since {τn ≤ t} = {
∫ t
0 ϕ

2
sds ≥ n} and

∫ t
0 ϕ

2
sds is Ft-

measurable by Proposition 1.21, each τn is a stopping time.

Now, define the process {ϕ(n)t } by

ϕ
(n)
t = ϕt1{t≤τn}.

Then {ϕ(n)t } ∈ L2．By definition, we obtain∫ t

0
ϕ(n)s dWs =

∫ t

0
1{s≤τn}ϕ

(n+1)
s dWs.

Moreover, by Proposition 2.8, ∫ t

0
ϕ(n)s dWs =

∫ t∧τn

0
ϕ(n+1)
s dWs.

Therefore, on the event {t ≤ τn} = {
∫ t
0 ϕ

2
sds < n} we have

∫ t
0 ϕ

(n)dWs =
∫ t
0 ϕ

(n+1)
s dWs. Also,

since ⋃
n≥0

{∫ t

0
ϕ2sds < n

}
=

{∫ t

0
ϕ2udu < +∞

}
,

we can consistently define {J̃(ϕ)t} by

J̃(ϕ)t :=

∫ t

0
ϕ(n)s dWs, 0 ≤ t ≤ τn ∧ T.

Then {J̃(ϕ)t} ∈ Mloc and J̃(ϕ)t =
∫ t
0 ϕsdWs for any {ϕt} ∈ L2. We write J̃(ϕ)t =

∫ t
0 ϕsdWs,

0 ≤ t ≤ T , and call it the Itô integral or stochastic integral of {ϕt} ∈ L2,loc.
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Multidimensional cases

We shall define the Itô integrals for multidimensional Brownian motions. LetWt = (W 1
t , . . . ,W

m
t ),

t ≥ 0, be an m-dimensional F-Brownian motion.

Definition 2.10. Let θt = (θ1t , . . . , θ
m
t ), 0 ≤ t ≤ T , be an Rm-valued process such that

{θit}0≤t≤T ∈ L2,loc for each i = 1, . . . ,m. Then, we define the Itô integral of {θt} with re-
spect to {Wt} by ∫ t

0
θTs dWs =

m∑
i=1

∫ t

0
θisdW

i
s .

Similarly, for Rd×m-valued process σt = (σijt ), 0 ≤ t ≤ T , such that {σijt }0≤t≤T ∈ L2,loc for
each i, j, we define the Itô integral of {σt} with respect to {Wt} by∫ t

0
σsdWs =

 m∑
j=1

∫ t

0
σ1js dW

j
s , · · · ,

m∑
j=1

∫ t

0
σdjs dW

j
s

T

.

Pathwise construction

Assume here that m = 1, and let (ϕt)t≥0 be a continuous adapted process. For each n ∈ N, we
define the sequence {τni }∞i=0 of the stopping times by{

τn0 = 0,

τni+1 = inf{t ≥ τni : |ϕt − ϕτni | ≥ 2−n}, i ∈ N ∪ {0},

Further, for every n ∈ N, we define the process (Y n
t )t≥0 by

Y n
t =

k∑
i=1

ϕτni−1
(Wτni

−Wτni−1
) + ϕτnk (Wt −Wτni

), t ∈ [τnk , τ
n
k+1), k ∈ N ∪ {0},

with convention
∑0

i=1 = 0. Then the process (Y n
t ) converges to the corresponding Itô integral

almost surely.

Theorem 2.11

For T ∈ (0,∞), we have

lim
n→∞

sup
0≤t≤T

∣∣∣∣Y n
t −

∫ t

0
ϕsdWs

∣∣∣∣→ 0, a.s.

Proof. Note that Y n
t can be written as Y n

t =
∫ t
0 ϕ

n
s dWs where ϕ

n
s = ϕτnk for t ∈ [τnk , τ

n
k+1). Then,

by definition, |ϕnt − ϕt| ≤ 2−n. Thus, using Doob’s maximal inequality, we see

E sup
0≤t≤T

∣∣∣∣Y n
t −

∫ t

0
ϕsdWs

∣∣∣∣2 ≤ 4E
∫ T

0
|ϕns − ϕs|2ds ≤ 4T2−2n.

This together with Cauchy-Schwartz inequality yields

E
∞∑
n=1

sup
0≤t≤T

∣∣∣∣Y n
t −

∫ t

0
ϕsdWs

∣∣∣∣ = ∞∑
n=1

E sup
0≤t≤T

∣∣∣∣Y n
t −

∫ t

0
ϕsdWs

∣∣∣∣ ≤ ∞∑
n=1

2
√
T2−n <∞,

whence
∞∑
n=1

sup
0≤t≤T

∣∣∣∣Y n
t −

∫ t

0
ϕsdWs

∣∣∣∣ <∞ a.s.

Thus the theorem follows.
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2.2 Itô Formula

Recall that if the function f(t, x(t)) is smooth, then the chain rule

df(t, x(t))

dt
=
∂f

∂t
(t, x(t)) +

∂f

∂x
(t, x(t))

dx(t)

dt

holds. By the fundamental theorem in calculus, this can be written in the integral form

f(t, x(t)) = f(0, x(0)) +

∫ t

0

∂f

∂s
(s, x(s))ds+

∫ t

0

∂f

∂x
(s, x(s))dx(s).

In this section, we shall derive its stochastic version, i.e., a chain rule for f(t,Xt) when Xt is a
stochastic process.

In what follows, we fix an m-dimensional F-Brownian motion Wt = (W 1
t , . . . ,W

m
t ), 0 ≤ t ≤

T .

Itô processes

Definition 2.12. A d-dimensional process Xt = (X1
t , . . . , X

d
t ), 0 ≤ t ≤ T , is called an Itô

process if each component is written as

Xi
t = Xi

0 +

∫ t

0
Ki

sds+

m∑
j=1

∫ t

0
H ij

s dW
j
s , 0 ≤ t ≤ T, i = 1, . . . , d, (2.2.1)

where Xi
0 is F0-measurable, {Ki

t} and {H
ij
t } are adapted with

∫ T
0 |K

i
t |dt <∞,

∫ T
0 (H ij

t )2dt <∞,
a.s., i = 1, . . . , d, j = 1, . . . ,m.

• Propositions 1.17 and 1.21 means that the processes
∫ t
0 K

i
sds, i = 1, . . . , d, are adapted

and so is {Xt}.

It should be noted that the representation of an Itô process is uniquely determined. To see
this, assume m = d = 1 for simplicity and that {Xt} has representations

Xt = X0 +

∫ t

0
Ksds+

∫ t

0
HsdWs = X0 +

∫ t

0
K ′

sds+

∫ t

0
H ′

sdWs.

Then,

At :=

∫ t

0
(Ks −K ′

s)ds =

∫ t

0
(Hs −H ′

s)dWs, 0 ≤ t ≤ T

is a local martingale, whence, by Lemma 2.13 below, we necessarily have At = 0 a.e. This yileds
Kt = K ′

t, dt× P-a.e., and so Ht = H ′
t, dt× P-a.e．

Lemma 2.13

If the Itô process Yt =
∫ t
0 bsds, 0 ≤ t ≤ T , is a local martingale, then bt = 0, dt× P-a.e.

Proof*. Let {τn}∞n=0 be a sequence of the stopping times such that τn ↗ +∞ and {Y τn
t }0≤t≤T

is a martingale. Then since

Y τn
t = Yt∧τn =

∫ t

0
b̃(n)u du,

where b̃
(n)
u = bu1{u<τn}, the martingale property implies

E
∫ t

s
b̃(n)u du = 0, 0 ≤ s < t ≤ T.
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Therefore,

A =

{
A ∈ B([0, T ]) : E

∫
A
b̃(n)u du = 0

}
forms a σ-algebra that contains {(s, t] : 0 ≤ s ≤ t ≤ T}. This means that A = σ((s, t] : 0 ≤ s ≤
t ≤ T ) = B([0, T ]). Consequently, we have

E
∫
A
b̃(n)u du = 0, A ∈ B([0, T ]),

whence b̃
(n)
t = 0, dt× P-a.e. Letting n→∞ in this equality, we obtain the lemma.

Chain rule

The following theorem gives a chain rule for Itô processes:

Theorem 2.14: Itô formula

Let Xt = (X1
t , . . . , X

d
t ), 0 ≤ t ≤ T , be an Itô process with representation

Xi
t = Xi

0 +

∫ t

0
Ki

sds+

m∑
j=1

∫ t

0
H ij

s dW
j
s , i = 1, . . . , d.

Suppose that f ∈ C1,2([0, T ]×Rd). Then {f(t,Xt)}0≤t≤T is an Itô process and represented
as

f(t,Xt) = f(0, X0) +
d∑

i=1

m∑
j=1

∫ t

0
∂xif(s,Xs)H

ij
s dW

j
s

+

∫ t

0

{
∂sf(s,Xs) +

d∑
i=1

∂xif(s,Xs)K
i
s +

1

2

d∑
i,j=1

m∑
k=1

∂2xixj
f(s,Xs)H

ik
s H

jk
s

}
ds.

It is useful to state the Itô formula in the case of m = d = 1.

Corollary 2.15

Assume m = d = 1. Let {Xt} be an Itô process with representation

Xt = X0 +

∫ t

0
Ksds+

∫ t

0
HsdWs. (2.2.2)

Suppose that f ∈ C1,2([0, T ]× R). Then we have

f(t,Xt) = f(0, X0) +

∫ t

0
∂xf(s,Xs)HsdWs

+

∫ t

0

{
∂sf(s,Xs) + ∂xf(s,Xs)Ks +

1

2
∂2xxf(s,Xs)H

2
s

}
ds.

• The representation (2.2.2) of an Itô process is often written as the differential form

dXt = Ktdt+HtdWt.

Notice that this is only a formal expression and a simplified way of representing the integral
form (2.2.2). Further, for any adapted process {σt} such that∫ T

0
|σt|(|Kt|+ |Ht|2)dt <∞, a.s.,
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we define ∫ t

0
σsdXs =

∫ t

0
σsKsds+

∫ t

0
σsHsdWs.

With this definition, we can write

σtdXt = σt(Ktdt+HtdWt).

Multidimensional cases are treated in a similar way.

Writing down the Itô formula in one dimension with the differential form, we have

df(t,Xt) = ∂tf(t,Xt)dt+ ∂xf(t,Xt)dXt +
1

2
∂2xxf(t,Xt)(Ht)

2dt. (2.2.3)

Now suppose that f(t, x(t)) is smooth. Then the Taylor expansion up to 2nd terms gives

f(t+∆t, x(t+∆t))− f(t, x(t)) = ∂tf(t, x(t))∆t+ ∂xf(t, x(t))x
′(t)∆t

+
1

2
∂2ttf(t, x(t))(∆t)

2 + ∂2txf(t, x(t))∆tx
′(t)∆t+

1

2
∂2xxf(t, x(t))x

′′(t)(∆t)2 + o((∆t)2).

Formally, this can be written as

df(t, x(t)) = ∂tf(t, x(t))dt+ ∂xf(t, x(t))dx(t) +
1

2
∂2ttf(t, x(t))dtdt

+ ∂2txf(t, x(t))dtdx(t) +
1

2
∂2xxf(t, x(t))dx(t)dx(t).

Comparing each term in the equality just above with one in (2.2.3), we obtain

dtdt = 0,

dtdXt = Ktdtdt+HtdWtdt = 0,

dXtdXt = K2
t dtdt+ 2KtHtdtdWt +H2

t dWtdWt = H2
t dt,

from which the Itô’s rule:

dtdt = 0, dtdWt = 0, dWtdWt = dt

is derived. In multidimensional cases, similarly we have

dtdW i
t = 0, dW i

t dW
j
t = δijdt

where δij is the Kronecker delta. Consequently, the chain rule of f(t,Xt) can be derived by
expanding it up to 2nd terms as follows:

df(t,Xt) = ∂tf(t,Xt)dt+ ∂xf(t,Xt)dXt +
1

2
∂2ttf(t,Xt)dtdt

+ ∂2txf(t,Xt)dtdXt +
1

2
∂2xxf(t,Xt)dXtdXt

and then by applying the Itô’s rule to the expansion.

Proof of Theorem 2.14. We will show the claim in the case where

m = d = 1, f do not depend on t, f ′(x) and f ′′(x) are bounded, {Ht} = {H ij
t } ∈ L2.

For the general case we refer to the references given in the last part of these notes.
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First, assume that {Kt} = {Ki
t} and {Ht} are simple processes. Taylor’s theorem gives

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + (x− x0)2r(x, x0), (2.2.4)

where r(x, x0) is a bounded function such that limx→x0 r(x, x0) = 0. We may assume that Kt

and Ht have a common partition 0 = t0 < t1 < · · · < tN < tN+1 = t without loss of generality.
Then we use the representation

f(Xt) = f(X0) +
N∑
k=0

∆fk

with ∆fk := f(Xtk+1
)− f(Xtk). Furthermore, we divide ∆fk as follows:

∆fk =
2m∑
j=1

(f(Xsmj
)− f(Xsmj−1

)),

where smj = tk + j2−m(tk+1 − tk)．Since Kt and Ht are constant on [tk, tk+1), we have

Xsmj
−Xsmj−1

= Ktk2
−m(tk+1 − tk) +Htk(Wsmj

−Wsmj−1
).

Applying (2.2.4) to f(Xsmj
)− f(Xsmj−1

), we obtain

∆fk =
2m∑
j=1

f ′(Xsmj−1
)(Ktk2

−m(tk+1 − tk) +Htk(Wsmj
−Wsmj−1

)) (2.2.5)

+
2m∑
j=1

1

2
f ′′(Xsmj−1

)(Ktk2
−m(tk+1 − tk) +Htk(Wsmj

−Wsmj−1
))2

+

2m∑
j=1

(Ktk2
−m(tk+1 − tk) +Htk(Wsmj

−Wsmj−1
))2r(Xsmj

, Xsmj−1
).

By the boundedness of f ′(x), the first term of the right-hand side in (2.2.5) converges to

Ktk

∫ tk+1

tk

f ′(Xs)ds+Htk

∫ tk+1

tk

f ′(Xs)dWs

in L2 as m→∞.
Next, the second term of the right-hand side in (2.2.5) is written as I1 + I2 + I3 with

I1 =
1

2
· 2−m(tk+1 − tk)2K2

tk

2m∑
j=1

f ′′(Xsmj−1
)2−m,

I2 = 2−m(tk+1 − tk)KtkHtk

2m∑
j=1

f ′′(Xsmj−1
)(Wsmj

−Wsmj−1
),

I3 =
1

2
H2

tk

2m∑
j=1

f ′′(Xsmj−1
)(Wsmj

−Wsmj−1
)2.

Since f ′′(x) is bounded, as m → ∞, the random variable
∑2m

j=1 f
′′(Xsmj−1

)2−m converges to∫ tk+1

tk
f ′′(Xs)ds almost surely, and

∑2m

j=1 f
′′(Xsmj−1

)(Wsmj
−Wsmj−1

) converges to
∫ tk+1

tk
f ′′(Xs)dWs
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in L2, from which I1 + I2 converges to 0 in L2. To see a limiting behavior of I3, observe

E

 2m∑
j=1

f ′′(Xsmj−1
)(Wsj −Wsmj−1

)2 −
∫ tk+1

tk

f ′′(Xs)ds

2
≤ 2E


2m∑
j=1

f ′′(Xsmj−1
)((Wsmj

−Wsmj−1
)2 − 2−m)


2

+ 2E

 2m∑
j=1

f ′′(Xsmj−1
)2−m −

∫ tk+1

tk

f ′′(Xs)ds

2 .
By the boundedness of f ′′(x) and the argument in the proof of Theorem 1.42, there exist positive
constants C1 and C2 such that the right-hand side in the inequality just above is at most

C1E

 2m∑
j=1

((Wsmj
−Wsmj−1

)2 − 2−m)2

 ≤ C22
−m

Therefore, I3 converges to (1/2)H2
tk

∫ tk+1

tk
f ′′(Xs)ds in L2 as m→∞.

Moreover, the 3rd term of the right-hand side in (2.2.5) is at most

2 sup
j
|r(Xsmj

, Xsmj−1
)|

K2
tk
(tk+1 − tk)2 +H2

tk

2m∑
j=1

(Wsmj
−Wsmj−1

)2

 .

The term
∑2m

j=1(Wsmj
−Wsmj−1

)2 converges to tk+1−tk in L2, and supj |r(Xsmj
, Xsmj−1

)| is a bounded
random variable that converges to 0 almost surely. Hence the 3rd term of the right-hand side
in (2.2.5) converges to 0 almost surely along with some subsequence.

Consequently, taking an a.s. convergent subsequence, we obtain

∆fk =

∫ tk+1

tk

f ′(Xs)Ksds+

∫ tk+1

tk

f ′(Xs)HsdWs +
1

2

∫ tk+1

tk

f ′′(Xs)H
2
sds,

from which the Itô formula follows by summing up the both side in the equality just above from
k = 0 to n.

In general cases where {Kt} and {Ht} are not necessarily simple, choose approximating

simple processes {K(n)
t } and {H

(n)
t } such that∫ T

0
|Ks −K(n)

s |ds→ 0, a.s., E
∫ T

0
|Hs −H(n)

s |2ds→ 0,

apply the derived Itô formula for simple process, and take limits. We are done.

Example 2.16. Let m = 1. Recall that in Example 2.5 we compute
∫ T
0 WtdWt directly from the

definition of the Itô integrals. Here we shall compute it using Itô formula. Applying Corollary
2.15 with f(x) = x2/2, we have

df(Wt) = f ′(Wt)dWt +
1

2
f ′′(Wt)dt =WtdWt +

1

2
dt,

whence ∫ T

0
WtdWt =

1

2
W 2

T −
T

2
.
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We obtain the following the product formula by Theorem 2.14 with f(x, y) = xy.

Proposition 2.17: Product formula

For one dimensional Itô processes {Xt} and {Yt}, we have

d(XtYt) = XtdYt + YtdXt + dXtdYt.

Example 2.18. Let us compute
∫ t
0 sdWs. Use the product formula with Xt = t and Yt =Wt and

dtdWt = 0 to see
d(tWt) = tdWt +Wtdt.

Thus, ∫ t

0
sdWs = tWt −

∫ t

0
Wsds.

Example 2.19. Let {Wt} is a scalar Brownian motion. Suppose that an R-valued process {Xt}
satisfies the stochastic differential equation

dXt = bXtdt+ σdWt, (2.2.6)

where b ∈ R and σ > 0.
Applying the product formula for e−bt and Xt, we observe

d(e−btXt) = −be−btXtdt+ e−bt(bXtdt+ σdWt) = σe−btdWt.

Hence, the solution of (2.2.6) is given by

Xt = ebtX0 + σ

∫ t

0
eb(t−s)dWs,

which is called an Ornstein-Uhlenbeck process.

2.3 Girsanov–Maruyama Theorem

In this section, we will see that a Brownian motion with drift bt+Wt turns out to be a Brownian
motion under a probability measure different from P.

We start with two examples of changing drifts.

Example 2.20. Let X be a standard Gaussian random variable on (Ω,F ,P), i.e.,

µX(A) = P(X ∈ A) =
∫
A

e−x2/2

√
2π

dx, A ∈ B(R).

Then, for any a ∈ R, the random variable Y := X + a of course follows a normal distribution
with mean a and variance 1 under P. Namely,

µY (A) = P(Y ∈ A) =
∫
A

e−(x−a)2/2

√
2π

dx, A ∈ B(R).

Since the probability measures µX and µY are equivalent and

µX(A) =

∫
A

e−x2/2+(x−a)2/2−(x−a)2/2

√
2π

dx =

∫
A
e−x2/2+(x−a)2/2dµY (x),

we have
dµX
dµY

(x) = e−x2/2+(x−a)2/2 = e−ax+a2/2.
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Therefore, the probability measure Q on (Ω,F) defined by

dQ
dP

= e−aY+a2/2 = e−aX−a2/2

satisfies, for A ∈ B(R),

Q(Y ∈ A) = E[1{Y ∈A}e
−aY+a2/2] =

∫
A
e−ax+a2/2dµY (x)

=

∫
A

dµX
dµY

(x)dµY (x) = µX(A) =

∫
A

e−x2/2

√
2π

dx.

Thus, Y ∼ N(0, 1) under Q.

Example 2.21. Consider the symmetric random walk Sn =
∑n

i=0Xi starting from 0. Then {Sn}
is a martingale with respect to the filtration {Gn} given by Gn = σ(Xi : i ≤ n). Let {θn} be a
process such that θn is Gn−1-measurable and satisfies |θn| < 1 for each n. Then

Ln :=

n∏
i=1

(1 + θiXi), L0 := 1

is a positive martingale.
Define the probability measure Q on (Ω,GN ) by dQ/dP = LN , and consider the process

S̃n = Sn −
n∑

i=1

θi, S̃0 = 0.

Then the Bayes formula
EQ[S̃n+1|Gn] = L−1

n E[Ln+1S̃n+1|Gn]

and E[(1 + θn+1Xn+1)(Xn+1 − θn+1)|Gn] = 0 lead to EQ[S̃n+1|Gn] = S̃n, whence {S̃n}Nn=0 is a
Q-martingale.

Now we consider the change of drifts of Brownian motions. To this end, we show some
preliminary results.

Lemma 2.22

Let {Mt}0≤t≤T be a nonnegative local martingale. Then {Mt} is a supermartingale.
Moreover if E[MT ] = E[M0] then {Mt} is a martingale.

Proof. Let {τn}∞n=1 be a sequence of stopping times such that τn ↗∞ and M τ
t is a martingale.

By Fatou’s lemma, we have

E[Mt] = E[ lim
n→∞

Mt∧τn ] ≤ lim inf
n→∞

E[Mt∧τn ] = E[M0] <∞,

whence Mt ∈ L1 for any t. Then Fatou’s lemma for the conditional expectations yields, for
s ≤ t,

E[Mt|Fs] ≤ lim inf
n→∞

E[Mt∧τ |Fs] = lim inf
n→∞

Ms∧τn =Ms,

from which {Mt} is a supermartingale. In particular, E[MT ] ≤ E[Mt] ≤ E[Ms] ≤ E[M0] for
s ≤ t. Thus, if E[MT ] = E[M0], then Z := Ms − E[Mt|Fs] satisfies Z ≥ 0 a.s. and E[Z] = 0.
This means Z = 0 a.s.
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Now, Let {Wt}0≤t≤T be a d-dimensional F-Brownian motion, and θt = (θ1t , . . . , θ
d
t ), 0 ≤ t ≤

T , a d-dimensional process such that {θit} ∈ L2,loc, i = 1, . . . , d. Then consider the process

Zt := exp

(
−
∫ t

0
θTs dWs −

1

2

∫ t

0
θ2sds

)
, 0 ≤ t ≤ T, (2.3.1)

which is a local martingale (take τn = inf{t ≥ 0 :
∫ t
0 Zs|θs|2ds ≥ n} as a localizing sequence).

By the previous lemma, {Zt} is a nonnegative supermartingale. Moreover, under the condition
E[ZT ] = 1, it is a martingale, and we can define the probability measure Q on (Ω,FT ) by
dQ/dP = ZT .

Theorem 2.23: Girsanov–Maruyama Theorem

Let {Zt}0≤t≤T be given by (2.3.1). Then the process

Xt :=Wt +

∫ t

0
θsds, 0 ≤ t ≤ T,

is a d-dimensional F-Brownian motion under Q.

Proof. We will prove the theorem under the boundedness of {θt}. We refer to [21, Chapter 3]
for a proof for general cases.

It is clear that X0 = 0. Thus it suffices to show that for every s ≤ t and bounded Fs-
measurable random variable Y the increments Xt−Xs is independent of Y and follows N(0, (t−
s)Id). To this end, let α ∈ Rd and β ∈ R. Then,

EQ[e
iαT(Xt−Xs)+iβY ] = EP[ZT e

iαT(Xt−Xs)+iβY ] = EP[Zte
iαT(Xt−Xs)+iβY ]

= EP

[
Zse

∫ t
s (iα−θs)TdWu+

∫ t
s (iα−θu/2)Tθudu+iβY

]
= e−|α|2(t−s)/2EP

[
Zse

∫ t
s (iα−θu)TdWu− 1

2

∫ t
s |iα−θu|2du+iβY

]
,

where i =
√
−1 denotes the imaginary unit.

Now, by the Itô formula, the process

Mt := exp

[∫ t

0
(iα− θu)TdWu −

1

2

∫ t

0
|iα− θu|2du

]
, 0 ≤ t ≤ T,

satisfies

Mt = 1 +

∫ t

0
Mu(iα− θu)TdWu,

and so is a local martingale under P. This and the boundedness of {θt} mean that it is indeed

a martingale under P. Thus, EP[e
∫ t
s (iα−θu)TdWu− 1

2

∫ t
s |iα−θu|2du|Fs] = 1. Consequently,

EQ[e
iαT(Xt−Xs)+iβZ ] = e−|α|2(t−s)/2EP

[
Zse

iβZ
]
= e−|α|2(t−s)/2EQ[e

iβZ ],

from which the theorem follows.

We give a sufficient condition for which {Zt} in (2.3.1) satisfies E[ZT ] = 1, without a proof,
which is known as the Novikov’s condition.
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Theorem 2.24: Novikov

Let θt = (θ1t , . . . , θ
d
t ), 0 ≤ t ≤ T , be a d-dimensional process such that each component

belongs to L2,loc. Suppose that

E
[
exp

(
1

2

∫ T

0
|θt|2dt

)]
<∞.

Then {Zt}0≤t≤T given by (2.3.1) is a martingale.

2.4 Martingale Representation Theorem

As seen in Section 2.1, for {Xt} ∈ L2 the process {I(X)t} of Itô integrals is L2-martingale.
In this section, conversely, we will show that any L2-martingale is represented as a process of
Itô integrals. In doing so, we will see that any random variable in L2 is represented as an Itô
integral.

Let {Wt}0≤t≤T be a a d-dimensional Brownian motion. Recall that for any C1-function f the

fundamental theorem of calculus tells us that f(t) = f(0) +
∫ t
0 f

′(s)ds. In stochastic analysis,

however, Itô formula tells us that the analogous result f(W 1
t ) = f(0) +

∫ t
0 f

′(W 1
s )dW

1
s does not

hold in general.
Throughout this section, we assume that F = {Ft}0≤t≤T is given by the augmented natural

filtration generated by {Wt}, i.e., assume that

Ft = σ(FW
t ∪N ), 0 ≤ t ≤ T.

The following is the martingale representation theorem:

Theorem 2.25: Martingale representation theorem

Let {Mt}0≤t≤T be an F-martingale with MT ∈ L2. Then there exists a unique Rd-valued
process {ϕt}0≤t≤T with each component belonging to L2 such that

Mt =M0 +

∫ t

0
ϕTs dWs, a.s., 0 ≤ t ≤ T.

• The uniqueness here means that two processes coincides with each other up to null sets
with respect to the measure dt× P. Namely, if

Mt =M0 +

∫ t

0
ϕTs dWs =M0 +

∫ t

0
ψT
s dWs, a.s., 0 ≤ t ≤ T,

for {ϕit}, {ψi
t} ∈ L2, i = 1, . . . , d, then ϕit(ω) = ψi

t(ω) holds for almost all (t, ω) ∈ [0, T ]×Ω
for any i.

Theorem 2.25 is a corollary of the following result:

Theorem 2.26: Itô representation theorem

Let X be an FT -measurable random variable in L2. Then, there exists a unique Rd-valued
process {ϕt} with each component belonging to L2 such that

X = E[X] +

∫ T

0
ϕTt dWt, a.s. (2.4.1)

Here, the uniqueness is understood as in above.
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Proof. The uniqueness follows from the Itô isometry. We prove the existence. First we prove
that it suffices to show the representation (2.4.1) holds for X = f(Wt1 , . . . ,Wtn) with bounded
Borel functions f on (Rd)n and 0 ≤ t1 < · · · < tn ≤ T . To this end, consider

X =
{
X ∈ L2(FT ) : the representation (2.4.1) holds for some {ϕt} ∈ L2

}
.

Notice that X is a closed subspace in L2(FT ). Suppose that X contains all random variables
of the form X = 1A(Wt1 , . . . ,Wtn) where A ∈ B((Rd)n) and 0 ≤ t1 < · · · < tn ≤ T . Then, for
Y ∈ X⊥, A and ti’s as above,

E[Y 1A(Wt1 , . . . ,Wtn)] = 0

or
E[Y +1A(Wt1 , . . . ,Wtn)] = E[Y −1A(Wt1 , . . . ,Wtn)].

This means that two probability measures defined by Y + and Y − as their Radon-Nikodym
derivatives coincide with each other on the π-system C := {(Wt1 , . . . ,Wtn) ∈ A : 0 = t0 ≤ t1 <
· · · < tn = T, A ∈ (Rd)n, n ≥ 1}. This together with σ(C) = FT and Lemma A.44 yields
Y + = Y − a.s., whence X⊥ = {0}.

Next we show that the martingale representation holds for X = f(Wt1 , . . . ,Wtn) with f and
ti’s as above. Define the function vk : [tk−1, tk]× (Rd)k → R, k = 1, . . . , n, inductively by

vn(t, x1, . . . , xn) = E[f(x1, . . . , xn−1, xn−1 +Wtn−t)], tn−1 ≤ t ≤ tn,

and for k = n− 1, n− 2, . . . , 1,

vk(t, x1, . . . , xk) = E[vk+1(tk, x1, . . . , xk, xk +Wtk−t)], tk−1 ≤ t ≤ tk.

Then by Chapter 2, the function (tk−1, tk)×Rd 3 (t, xk) 7→ vk(t, x1, . . . , xk) is C
∞ and satisfies

∂tvk +
1

2
∆xk

vk = 0,

where ∆xk
is the Laplacian with respect to the variable xk. Thus Itô formula yields

vk(t,Wt1 , . . . ,Wtk) = vk(tk−1,Wt1 , . . . ,Wtk−1
,Wtk−1

)

+

∫ t

tk−1

Dxk
vk(tk−1,Wtk−1

, . . . ,Wtk−1
,Ws)

TdWs, tk−1 < t < tk,

where Dxk
is the gradient with respect to the variable xk, from which we obtain

vk(tk,Wt1 , . . . ,Wtk) = vk−1(tk−1,Wt1 , . . . ,Wtk−1
) +

∫ tk

tk−1

ϕTs dWs

with ϕs = Dxk
vk(tk−1,Wtk−1

, . . . ,Wtk−1
,Ws), s ∈ [tk−1, tk]. Notice that ϕ ∈ L2 since f is

bounded. Consequently,

f(Wt1 , . . . ,Wtn) = vn(tn,Wt1 , . . . ,Wtn)

= vn−1(tn−1,Wt1 , . . . ,Wtn−1) +

∫ tn

tn−1

ϕTs dWs

= vn−2(tn−2,Wt1 , . . . ,Wtn−2) +

∫ tn

tn−2

ϕTs dWs.

Repeating this argument, we deduce

f(Wt1 , . . . ,Wtn) = v1(0, 0) +

∫ tn

0
ϕTs dWs,

as required.
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We state a more general martingale representation theorem. For a proof we refer to the
references on stochastic analysis.

Theorem 2.27

For every local F-martingale {Mt}, there exists a unique Rd-valued process {ϕt} with each
component belonging to L2,loc such that

Mt =M0 +

∫ t

0
ϕTs dWs, a.s., 0 ≤ t ≤ T.

2.5 Stochastic Integrals for Continuous Local Martingales

This section is devoted to a brief introduction to stochastic integration theory for general con-
tinuous local martingales. As an application, we will prove Lévy’s theorem, providing a sufficient
condition for which a given continuous local martingale is a Brownian motion. Let (Ω,F ,P) be
a (complete) probability space equipped with a filtration F = {Ft}0≤t≤T satisfying the usual
conditions. Recall from §2.1 that Mloc is the set of all continuous F-local martingale starting
from zero.

We shall start with the following theorem:

Theorem 2.28

Let M = {Mt}0≤t≤T ∈ Mloc. Then there exists a unique continuous, adapted, and
monotonically nondecreasing process 〈M〉 = {〈M〉t}0≤t≤T such that 〈M〉0 = 0, M2 −
〈M〉 ∈ Mloc, and

sup
0≤t≤T

∣∣∣∣∣〈M〉t −
n−1∑
i=0

(Mti+1∧t −Mti∧t)
2

∣∣∣∣∣→ 0, (2.5.1)

in probability as maxi(ti+1 − ti)→ 0, where 0 = t0 < t1 < · · · < tn = T .

Proof. We will prove the existence of 〈M〉 as in the statement in the case where M is given by
Mt =

∫ t
0 ϕsdWs for some one dimensional F-Brownian motion W and bounded adapted process

{ϕt}0≤t≤T . For a proof of the general existence we refer to e.g. [49] and [21, Chapter 1].
Define 〈M〉 by

〈M〉t =
∫ t

0
ϕ2sds, 0 ≤ t ≤ T.

Then 〈M〉 is continuous, adapted, and monotonically nondecreasing with 〈M〉0 = 0. By Itô
formula, we have

dM2
t = 2MtϕtdWt + ϕ2tdt,

whence M2 − 〈M〉 ∈ Mloc. Further, for any {ti}ni=0 with 0 = t0 < t1 < · · · < tn = T ,

n−1∑
i=0

(Mti+1∧t −Mti∧t)
2 =

n−1∑
i=0

[
2

∫ ti+1∧t

ti∧t
(Ms −Mti∧t)ϕsdWs +

∫ ti+1∧t

ti∧t
ϕ2sds

]
= 2

∫ t

0
K(n)

s ϕsdWs + 〈M〉t,

where

K(n)
s =

n−1∑
i=0

(Ms −Mti∧t)1(ti∧t,ti+1∧t](s).
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The continuity of M yields that K
(n)
s → 0, a.s., as ∆ := maxi(ti+1− ti)→ 0, for any s. Further,

|K(n)
s | ≤ 2max0≤t≤T |Mt| and by Doob’s maximal inequality (Theorem 1.34)

E max
0≤t≤T

|Mt|2 ≤ 4EM2
T = 4E

∫ t

0
|ϕt|2dt.

Thus the dominated convergence theorem and the boundedness of ϕ lead to

E
∫ T

0
|K(n)

s ϕs|2ds ≤ CE
∫ T

0
|K(n)

s |2ds→ 0, as ∆→ 0.

Again by Doob’s maximal inequality, for any ε > 0,

P

(
sup

0≤t≤T

∣∣∣∣∫ t

0
K(n)

s ϕsdWs

∣∣∣∣ > ε

)
≤ 1

ε2
E
∣∣∣∣∫ T

0
K(n)

s ϕsdWs

∣∣∣∣2 = 1

ε2
E
∫ T

0

∣∣∣K(n)
s ϕs

∣∣∣2 ds→ 0,

as ∆→ 0, whence 〈M〉 satisfies (2.5.1).
Next we will prove the uniqueness. Let A = {At}0≤t≤T satisfy (2.5.1). Then, for any ε > 0,

P

(
sup

0≤t≤T
|〈M〉t −At| > ε

)
≤ P

(
sup

0≤t≤T

∣∣∣∣∣〈M〉t −
n−1∑
i=0

(Mti+1∧t −Mti∧t)
2

∣∣∣∣∣ > ε

2

)

+ P

(
sup

0≤t≤T

∣∣∣∣∣At −
n−1∑
i=0

(Mti+1∧t −Mti∧t)
2

∣∣∣∣∣ > ε

2

)
→ 0,

as ∆→ 0. This means sup0≤t≤T |〈M〉t −At| = 0, a.s.

• 〈M〉 is called the quadratic variation ofM . Recall that in the case where M is a Brownian
motion, the fact that 〈M〉t = t is derived in §1.3.

Theorem 2.29

Let M,N ∈ Mloc. Then there exists a unique continuous adapted process 〈M,N〉 =
{〈M,N〉t}0≤t≤T with finite total variation such that 〈M,N〉0 = 0, MN −〈M,N〉 ∈ Mloc,
and

sup
0≤t≤T

∣∣∣∣∣〈M,N〉t −
n−1∑
i=0

(Mti+1∧t −Mti∧t)(Nti+1∧t −Nti∧t)

∣∣∣∣∣→ 0,

in probability as maxi(ti+1 − ti)→ 0, where 0 = t0 < t1 < · · · < tn = T .

Proof. The process

〈M,N〉 := 1

4
(〈M +N〉 − 〈M −N〉)

satisfies the required properties. Indeed,

MN − 〈M,N〉 = 1

4

(
(M +N)2 − 〈M +N〉

)
− 1

4

(
(M −N)2 − 〈M −N〉

)
∈Mloc.

Proofs of the other statements are left to the reader.

• The process 〈M,N〉 is called the quadratic covariation or quadratic cross variation of M
and N .
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• Let M and N be given by Mt =
∫ t
0 fsdWs and Nt =

∫ t
0 gsdWs for some f, g ∈ L2,loc, where

{Wt} is a one-dimensional F-Brownian motion. Then, the product Itô formula yields

〈M,N〉t =
∫ t

0
fsgsds.

Thus we can write
dMtNt =MtdNt +NtdMt + d〈M,N〉t.

Now introduce the class

M0
2 :=

{
M ∈M2 : 〈M〉t =

∫ t

0
asds for some nonnegative and adapted process {at}

}
.

Let M ∈ M0
2. We shall first define the Itô integral with respect to M . To this end, define the

class LM2 of the integrands by

LM2 =

{
ϕ = {ϕt}0≤t≤T : adapted, E

∫ T

0
|ϕt|2dt〈M〉t <∞

}
.

As in the case of Brownian motions, for any simple process ϕ of the form

ϕt = ψ01{0}(t) +

n∑
i=0

φi1(ti,ti+1](t),

the Itô integral
∫ T
0 ϕtdMt is defined by∫ T

0
ϕtdMt =

n∑
i=0

φi(Mti+1 −Mti).

The following result is an analog to Proposition 2.2:

Proposition 2.30

Let M ∈M0
2. For every simple process ϕ, we have

E
∣∣∣∣∫ T

0
ϕtdMt

∣∣∣∣2 = E
∫ T

0
|ϕt|2d〈M〉t.

A proof of this proposition is left to the reader.
The class of simple processes is also dense in LM2 in the following sense:

Lemma 2.31

Let M ∈M0
2. For any ϕ ∈ LM2 , there exists a sequence (ϕ(n))∞n=1 of simple processes such

that

lim
n→∞

E
∫ T

0
|ϕt − ϕ(n)t |2d〈M〉t = 0.

Proof*. Since M ∈M0
2, there exists a nonnegative and adapted process {at} such that 〈M〉t =∫ t

0 asds and E
∫ T
0 atdt <∞.

First we will prove the lemma in the case where |ϕt| ≤ K on [0, T ] × Ω for some constant
K > 0. Since ϕ ∈ L2, by Lemma 2.3, there exists a sequence (ϕ(n)) of simple processes such
that

lim
n→∞

E
∫ T

0
|ϕt − ϕ(n)t |2dt = 0.
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This means that there exists a subsequence (ϕ(nj)) such that

lim
j→∞

ϕ
(nj)
t = ϕt, dt× dP-a.e.

We can take ϕ
(nj)
t so that |ϕ(nj)

t | ≤ K as in the proof of Lemma 2.3. Thus, by the dominated
convergence theorem,

lim
j→∞

E
∫ T

0
|ϕt − ϕ

(nj)
t |2atdt = 0.

To prove the lemma for general ϕ ∈ LM2 , consider the truncated process ϕ
(N)
t := ϕt1{|ϕt|≤N}

and follow the arguments as in the proof of Lemma 2.3.

Definition 2.32. Let {ϕt} ∈ LM2 , and let (ϕ(n)) be a sequence of simple processes as in Lemma

2.31. Then we define the Itô integral
∫ T
0 ϕtdMt of {ϕt} by∫ T

0
ϕtdMt = lim

n→∞

∫ T

0
ϕ
(n)
t dMt in L2.

As in Theorem 2.7, there exists a continuous modification Jt of
∫ t
0 ϕsdMs :=

∫ T
0 ϕs1[0,t](s)dMs.

Thus we shall call {Jt} as the process of stochastic integral of ϕt and write Jt =
∫ t
0 ϕsdMs by

abuse of notation.

Definition 2.33. Let ϕ ∈ LM2 . The process
∫ t
0 ϕsdMs, 0 ≤ t ≤ T , is a unique element in M2

such that for any sequence (ϕ(n))∞n=1 of simple processes satisfying

lim
n→∞

E
∫ T

0
|ϕs − ϕ(n)s |2d〈M〉s = 0,

we have

lim
n→∞

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0
ϕsdMs −

∫ t

0
ϕ(n)s dMs

∣∣∣∣2
]
= 0.

Next, we shall extend the definition of Itô integral to the case where M belongs to the class

M0
loc :=

{
M ∈Mloc : 〈M〉t =

∫ t

0
asds for some nonnegative and adapted process {as}

}
.

The procedure for doing this is completely parallel to the Brownian case. Let M ∈ M0
loc.

Consider the space LM2,loc of the integrands defined by

LM2,loc =
{
ϕ = {ϕt}0≤t≤T : adapted,

∫ T

0
ϕ2td〈M〉t <∞, a.s.

}
.

Then, for any ϕ ∈ LM2,loc, the process

ϕ
(n)
t := ϕt1{τn≤t}, 0 ≤ t ≤ T,

is in LM2 , where

τn = inf

{
0 ≤ t ≤ T :

∫ t

0
ϕ2sd〈M〉s ≥ n

}
.

The Itô integral
∫ t
0 ϕsdMs is now defined as∫ t

0
ϕsdMs =

∫ t

0
ϕ(n)s dMs, 0 ≤ t ≤ τn ∧ T.
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Problem 2.34. Let M ∈M0
loc and ϕ be a left-continuous and adapted process. Show that the

Itô integral
∫ t
0 ϕsdMs is well-defined and satisfies∫ t

0
ϕsdMs = lim

∆→0

n−1∑
i=0

ϕti(Mti+1 −Mti)

in probability, where {ti} is any sequence such that 0 = t0 < t1 < · · · < tn = t and ∆ =
maxi(ti+1 − ti).

• In the case where M is inMloc but not inM0
loc, the Itô integral

∫ t
0 ϕsdMs is well-defined

and is inMloc if ϕ is F-progressively measurable with
∫ T
0 ϕ2td〈M〉t <∞, a.s. We refer to

e.g. [21], [18], [49] for details.

• In particular, if ϕ is continuous and adapted, then by Proposition 1.19, it is progressively
measurable and satisfies ∫ t

0
ϕsdMs = lim

∆→0

n−1∑
i=0

ϕti(Mti+1 −Mti)

in probability, where {ti} is any sequence such that 0 = t0 < t1 < · · · < tn = t and
∆ = maxi(ti+1 − ti).

We say that a one-dimensional processX = {Xt}0≤t≤T is a semimartingale if it is represented
as

Xt = X0 +

∫ t

0
bsds+Mt, 0 ≤ t ≤ T, (2.5.2)

where

• X0 is F0-measurable.

• M ∈Mloc.

• {bt} is an adapted process with
∫ T
0 |bt|dt <∞, a.s.

Let X be a semimartingale represented as in (2.5.2). For every continuous and adapted process
ϕ, the Itô integral

∫ t
0 ϕsdXs with respect to X is defined by∫ t

0
ϕsdXs =

∫ t

0
ϕsbsds+

∫ t

0
ϕsdMs, 0 ≤ t ≤ T.

Definition 2.35. LetX and Y be semimartingales. The quadratic variation 〈X〉 = {〈X〉t}0≤t≤T

of X is defined by

〈X〉t = X2
t − 2

∫ t

0
XsdXs, 0 ≤ t ≤ T.

The quadratic covariation 〈X,Y 〉 = {〈X,Y 〉t}0≤t≤T of X and Y is defined by

〈X,Y 〉t = XtYt −
∫ t

0
XsdYs −

∫ t

0
YsdXs, 0 ≤ t ≤ T.

Theorem 2.36

Let X and Y be semimartingales. Then,

〈X,Y 〉t = X0Y0 + lim
∆→0

n−1∑
i=0

(Xti+1 −Xti)(Yti+1 − Yti), in prob.,

where the limit is taken with respect to any sequence {ti}ni=0 with 0 = t0 < t1 < · · · <
tn = t and ∆ = maxi(ti+1 − ti).
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Proof. Using XtYt = X0Y0 +
∑n−1

i=0 (Xti+1Yti+1 −XtiYti) we observe

XtYt −
n−1∑
i=0

Xti(Yti+1 − Yti)−
n−1∑
i=0

Yti(Xti+1 −Xti)

= X0Y0 +
n−1∑
i=0

(
Xti+1Yti+1 −XtiYti −Xti(Yti+1 − Yti)− Yti(Xti+1 −Xti)

)
= X0Y0 +

n−1∑
i=0

(Xti+1 −Xti)(Yti+1 − Yti).

From this and Problem 2.34 the theorem follows.

By this theorem, we can confirm that the quadratic covariation 〈M,N〉 of M,N ∈ Mloc

coincides with the one in Definition 2.35.
Here is a generalized Itô formula for semimartingales.

Theorem 2.37

Let {Xt} be a semimartingale of the form

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdMs.

Let f ∈ C1,2([0, T ]× Rd). Then

df(t,Xt) = ∂tf(t,Xt)dt+ ∂xf(t,Xt)dXt +
1

2
∂2xxf(t,Xt)σ

2
t d〈M〉t.

• A generalized Itô rule is given by

(dMt)
2 = d〈M〉t, dtdMt = 0.

• Applying Theorem 2.37 with f(x) = x2, we find

〈X〉t = X2
0 +

∫ t

0
σ2sd〈M〉s.

Thus formally
(dXt)

2 = d〈X〉t = σ2t d〈M〉t,

and df(t,Xt) is described by

df(t,Xt) = ∂tf(t,Xt)dt+ ∂xf(t,Xt)dXt +
1

2
∂2xxf(t,Xt)d〈X〉t.

The multidimensional Itô formula is as follows:

Theorem 2.38

Let X = (X1, . . . , Xd) a d-dimensional process such that Xi is a semimartingale for each
i. Let f ∈ C1.2. Then,

df(t,Xt) = ∂tf(t,Xt)dt+
d∑

i=1

∂xif(t,Xt)dX
i
t +

1

2

d∑
i,j=1

∂2xixj
f(t,Xt)d〈Xi, Xj〉t.
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• We call d-dimensional process with each component being semimartingale a d-dimensional
semimartingale.

• When X is represented as dXi
t = bitdt+

∑m
k=1 σ

ik
t dM

k
t , then formally

dXi
tdX

j
t =

m∑
k,ℓ=1

σikt σ
iℓ
t dM

i
tdM

j
t =

m∑
k,ℓ=1

σikt σ
iℓ
t d〈M i,M j〉t.

Moreover, we can prove that

〈Xi, Xj〉t = Xi
0X

j
0 +

m∑
k,ℓ=1

∫ t

0
σiks σ

iℓ
s d〈M i,M j〉s.

To emphasize the remarks above, we shall state the product Itô formula as a corollary of
Theorem 2.37.

Corollary 2.39

Let M ∈M0
loc. Let X and Y be semimartingales with representation

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdMs,

Yt = Y0 +

∫ t

0
fsds+

∫ t

0
gsdMs.

Then,

〈X,Y 〉t = X0Y0 +

∫ t

0
σsgsd〈M〉s.

Recall that by definition of the quadratic covariation, for semimartingales X and Y ,

XtYt = X0Y0 +

∫ t

0
YsdXs +

∫ t

0
XsdYs + 〈X,Y 〉t.

The existence of the correction term 〈X,Y 〉 makes the Itô calculus different from the ordinary
calculus. The Stratonovich integral provides a useful means of developing stochastic analysis as
in ordinary calculus.

Definition 2.40. Let X and Y be one-dimensional semimartingales. The Stratonovich integral∫ t
0 Ys ◦ dXs of Y with respect to X is defined as∫ t

0
Ys ◦ dXs :=

∫ t

0
YsdXs +

1

2
〈X,Y 〉t.

• By definition, for semimartingales X and Y ,

XtYt = X0Y0 +

∫ t

0
Ys ◦ dXs +

∫ t

0
Xs ◦ dYs.

• If Xt and Yt are represented as

dXt = btdt+ σtdMt,

dYt = ftdt+ gtdMt

for some M ∈M0
loc, respectively, then∫ t

0
Ys ◦ dXs =

∫ t

0
Ys(bsds+ σsdMs) +

1

2

∫ t

0
σsgs〈M〉s.
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The following chain rule holds for the Stratonovich integral under more smoothness condition
than that in the Itô formula:

Proposition 2.41

Let X = (X1, . . . , Xd) be a d-dimensional semimartingale, and f ∈ C3(Rd). Then

df(Xt) =
d∑

i=1

∂xif(Xt) ◦ dXi
t .

Proof. For simplicity we shall assume that d = 1 and Xt is represented as dXt = btdt + σdMt

with 〈M〉t = atdt. Theorem 2.37 yields

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d〈X〉t

= f ′(Xt)dXt +
1

2
f ′′(Xt)σ

2
t atdt,

as well as

df ′(Xt) = f ′′(Xt)dXt +
1

2
f ′′′(Xt)d〈X〉t

= f ′′(Xt)

(
bt +

1

2
f ′′′(Xt)σ

2
t at

)
dt+ f ′′(Xt)σtdMt.

Thus, by definition of the Stratonovich integral, we have

f ′(Xt) ◦ dXt = f ′(Xt)dXt +
1

2
df ′(Xt)dXt = f ′(Xt)dXt +

1

2
f ′′(Xt)σ

2
t atdt

= df(Xt),

as required.

Proposition 2.42

Let X and Y are one-dimensional semimartingales. Then,∫ t

0
Ys ◦ dXs = lim

∆→0

n−1∑
i=0

(
1

2
Yti +

1

2
Yti+1

)
(Xti+1 −Xti), in prob.,

where the limit is taken with respect to any sequence {ti}ni=0 with 0 = t0 < t1 < · · · <
tn = t and ∆ = maxi(ti+1 − ti).

Proof. From this and (Yti+1 + Yti)/2 = (Yti+1 − Yti)/2 + Yti we find

n−1∑
i=0

(
1

2
Yti+1 +

1

2
Yti

)
=

n−1∑
i=0

Yti(Xti+1 −Xti) +
1

2

n−1∑
i=1

(Yti+1 − Yti)(Xti+1 −Xti)

→
∫ t

0
YsdXs +

1

2
〈X,Y 〉t

in probability as ∆→ 0. Thus the proposition follows.

The notion of the backward Itô integral will be used in the analysis of the reverse-time
diffusions (see Section 3.8).
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Definition 2.43. Let X = {Xt}0≤t≤T and Y = {Yt}0≤t≤T be continuous processes. If there
exists a limit of

n−1∑
i=0

Yti+1(Xti+1 −Xti)

in probability as ∆ → 0, where the limit is taken with respect to any sequence {ti}ni=0 with

0 = t0 < t1 < · · · < tn = t and ∆ = maxi(ti+1 − ti), then we write
∫ t
0 Ys
←−
dXt for this limit and

call it the backward Itô integral.

Proposition 2.44

Let X and Y be one-dimensional semimartingales. Then,∫ t

0
Ys
←−
dXt =

∫ t

0
YsdXs + 〈Y,X〉t.

Proof. Use the relation Yti+1(Xti+1 − Xti) = Yti(Xti+1 − Xti) + (Yti+1 − Yti)(Xti+1 − Xti) and
apply the results from Problem 2.34 and Theorem 2.36.

We close this section by showing Lévy’s theorem as announced in the beginning.

Theorem 2.45: Lévy’s characterization of Brownian motions

Let M = (M1, · · · ,Md) be such that M i ∈Mloc for each i, and 〈M i,M j〉t = δijt, where
δij is the Kronecker’s delta. Then, M is a d-dimensional F-Brownian motion.

Proof. We will show this theorem in the case where d = 1 and M =M1 ∈M0
loc. For a proof of

general cases we refer to, e.g., [49] and [21]. Let {τn}∞n=1 be a sequence of stopping times such
that {Mt∧τn}0≤t≤T is a martingale. Since M2 − 〈M〉 ∈ Mloc, we find

E[M2
t∧τn ] = E[〈M〉t∧τn ] = E[t ∧ τn] ≤ t.

Applying Fatou’s lemma, we have

E[M2
t ] = E

[
lim
n→∞

M2
t∧τn

]
≤ lim inf

n→∞
E[M2

t∧τn ] ≤ t,

whence M ∈M0
2.

By Itô formula and 〈M〉t = t,

deiξMt = iξeiξMtdMt −
ξ2

2
eiξMtdt

for ξ ∈ Rd, where i =
√
−1 is the imaginary unit. Since |eiξMt | = 1, the complex valued process∫ t

0 e
iξMsdMs is a martingale. Thus, for any A ∈ Fs and t ≥ s,

E
[
eiξ(Mt−Ms)1A

]
= P(A)− ξ2

2

∫ t

s
E
[
eiξ(Mr−Ms)1A

]
dr.

Solving this ODE, we obtain

E
[
eiξ(Mt−Ms)1A

]
= P(A)e−

ξ2

2
(t−s) = E

[
e−

ξ2

2
(t−s)1A

]
.

Since A ∈ Fs is arbitrary, we deduce

E
[
eiξ(Mt−Ms)

∣∣∣Fs

]
= e−

ξ2

2
(t−s), t > s,

from which the theorem follows.
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CHAPTER 3

Stochastic Differential Equations

3.1 Introduction

Ordinary differential equations with white noise

We are concerned with ordinary differential equations (ODEs) with random noises. For example,
such ODEs can be of the form

dXt

dt
= b(t,Xt) + σ(t,Xt)ξt, (3.1.1)

where {ξt} is a stochastic process providing random disturbance to the system process {Xt}.
In science and engineering, a natural candidate for the disturbance processes is a Gaussian
white noise, i.e., it is natural to assume that ξt is a Gaussian process with mean zero and
covariance E[ξtξs] = δ(t − s), t, s ∈ R, where δ(·) is the delta function. Unfortunately, this
natural formulation for nonlinear ODEs (3.1.1) comes up against an obstacle since the delta
function is not a usual function but a distribution rigorously. Indeed, {ξt}t∈R is not a stochastic
process in the usual sense but a random distribution (see Itô [20]).

Changing the approach to (3.1.1), we use the fact that ξt is given by the time derivative, in
the sense of the distribution, of a one-dimensional Brownian motion Wt (see again [20]). Then,
replacing ξt with dWt/dt in (3.1.1), we get

dXt

dt
= b(t,Xt) + σ(t,Xt)

dWt

dt
,

whence, by a formal integration,

Xt = X0 +

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs. (3.1.2)

The integral equation (3.1.2) is equivalent to (3.1.1) formally, as well as can be defined rigorously
since the term

∫ t
0 σ(s,Xs)dWs is understood as the Itô integral. Then, we write

dXt = b(t,Xt)dt+ σ(t,Xt)dWt (3.1.3)

for (3.1.2). This is a modern approach to stochastic differential equations (SDEs), which is
originated by Itô [42] (see also Itô [19]) and has achieved remarkable successes.
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In this chapter, we present some basic results on SDEs. We refer to [31], [49], [45], [21] for
more detailed accounts. Before presenting examples of SDEs, we give a formal characterization
of the coefficients b and σ in (3.1.3). By (3.1.2), we have

Xt+∆t = Xt +

∫ t+∆t

t
b(s,Xs)ds+

∫ t+∆t

t
σ(s,Xs)dWs.

Under the assumption that {σ(t,Xt)} ∈ L2 (recall from Chapter 2), it follows that at least
formally,

b(t, x) = lim
∆t↘0

1

∆t
E[Xt+∆t −Xt|Xt = x],

σ(t, x)2 = lim
∆t↘0

1

∆t
V[Xt+∆t −Xt|Xt = x].

(3.1.4)

The functions b and σ are called the drift and diffusion coefficients, respectively.

Black–Scholes model for stock prices

Let us consider a stock with price St at time t ≥ 0. Then the return rate Rt,t+∆t of this stock
between t and t+∆t is given by Rt,t+∆t = (St+∆t − St)/St. Using the normalization It,t+∆t of
Rt,t+∆t, i.e., It,t+∆t = (Rt,t+∆t − E[Rt,t+∆t])/

√
V(Rt,t+∆t), we have

Rt+∆t = E[Rt+∆t] +
√
V(Rt,t+∆t)It,t+∆t.

Now, assume that the expected return rate b = E[Rt+∆t]/∆t per time and the variance σ2 =
V(Rt,t+∆t)/∆t of the return rate per time are constant with respect to t. Then,

St+∆t − St
St

= b∆t+ σ
√
∆tIt,t+∆t.

Thus,

lim
∆t↘0

1

∆t
E[St+∆t − St|St = s] = bs,

lim
∆t↘0

1

∆t
V[St+∆t − St|St = s] = σ2s2.

So, assuming that {St} is described by an SDE and then using (3.1.4), we obtain

dSt = St(bdt+ σdWt). (3.1.5)

This SDE is called the Black–Scholes model. As remarked in the above, this equation should be
interpreted as the following integral form:

St = S0 + b

∫ t

0
Srdr + σ

∫ t

0
SrdWr.

Now suppose temporarily that there exists a solution St to the equation (3.1.5). Then,
applying Itô formula for log(St), formally we have

d(logSt) =
dSt
St
− 1

2S2
t

· S2
t σ

2dt = bdt+ σdWt −
1

2
σ2dt.

Thus the solution St of the Black–Scholes model is explicitly given by

St = S0 exp((b− σ2/2)t+ σWt).
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Figure 3.1.1: A sample path of Black–Scholes model in the case of b = 0.5 and σ = 0.2.

Predator-prey model

Consider a biological system consisting of two species where one is a predator and the other is a
prey, whose populations at time t are denoted by X1

t and X2
t , respectively. We assume that in a

small time interval [t, t+∆t], the probability of the predator being given a single birth without
death and the population of the prey remaining unchanged is

P(∆X1
t = 1,∆X2

t = 0 |X1
t = x1, X

2
t = x2) = b1x1∆t+ o(∆t).

Similarly, we assume

P(∆X1
t = 0,∆X2

t = 1 |X1
t = x1, X

2
t = x2) = b2x2∆t+ o(∆t),

P(∆X1
t = −1,∆X2

t = 0 |X1
t = x1, X

2
t = x2) = d1x1∆t+ o(∆t),

P(∆X1
t = 0,∆X2

t = −1 |X1
t = x1, X

2
t = x2) = d2x2∆t+ o(∆t).

In view of the predator-prey relation, we further assume that b2, d1 are positive constants and
that

b1 = c1x2, d2 = c2x1,

with some positive constants c1, c2. Moreover, the probabilities of multiple births or deaths are
assumed to be o(∆t). Then, it is straightforward to see

lim
∆t↘0

1

∆t
E[∆X1

t |X1
t = x1, X

2
t = x2] = (c1x2 − d1)x1,

lim
∆t↘0

1

∆t
E[∆X1

t |X1
t = x1, X

2
t = x2] = (b2 − c2x1)x2,

lim
∆t↘0

1

∆t
V[∆X1

t |X1
t = x1, X

2
t = x2] = (c1x2 + d1)x1,

lim
∆t↘0

1

∆t
V[∆X2

t |X1
t = x1, X

2
t = x2] = (b2 + c2x1)x2,

lim
∆t↘0

1

∆t
Cov[∆X1

t ,∆X
2
t |X1

t = x1, X
2
t = x2] = 0.
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By a multidimensional analog of (3.1.4), we derive the SDE

dX1
t = (c1X

2
t − d1)X1

t dt+
√

(c1X2
t + d1)X1

t dW
1
t ,

dX2
t = (b2 − c2X1

t )X
2
t dt+

√
(b2 + c2X1

t )X
2
t dW

2
t

for the predator-prey system, where (W 1
t ,W

2
t ) is a 2-dimensional Brownian motion.

Figure 3.1.2: A sample path of the predator-prey model in the case of d1 = 0.01, b2 = 0.05,
c1 = c2 = 0.005, and X1

0 = X2
0 = 100. Generated by the Euler-Maruyama method (see Section

3.4).

3.2 Existence and Uniqueness

In what follows, (Ω,F ,P) is a complete probability space equipped with filtration F satisfying
the usual conditions, and {Wt} is an m-dimensional F-Brownian motion on (Ω,F ,P). We fix a
time horizon T ∈ (0,∞).

Definition 3.1. Let b : [0, T ]×Rd → Rd and σ : [0, T ]×Rd → Rd×m be Borel measurable, and
let ξ be an F0-measurable random variable. We say that an Rd-valued process {Xt}0≤t≤T is a
solution of the stochastic differential equation (SDE)

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

with initial condition X0 = ξ if the following conditions are satisfied:

(i) {Xt} is a.s. continuous and F-adapted.

(ii)
∫ T
0 |b(s,Xs)|ds+

∫ T
0 |σ(s,Xs)|2ds <∞, a.s.

(iii) {Xt} is represented as

Xt = ξ +

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, a.s., 0 ≤ t ≤ T.

The following is the fundamental existence and uniqueness result for SDEs:

51



Theorem 3.2

Suppose that the functions b, σ and the random variable ξ in Definition 3.1 satisfy

(i) Lipschitz continuity: there exists K0 > 0 such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K0|x− y|, (t, x), (t, y) ∈ [0, T ]× Rd,

(ii) Linearly growth condition: there exists K1 > 0 such that

|b(t, x)|+ |σ(t, x)| ≤ K1(1 + |x|), (t, x) ∈ [0, T ]× Rd.

(iii) ξ ∈ L2.

Then, the stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt (3.2.1)

with initial condition X0 = ξ has a solution {Xt}t∈[0,T ] satisfying E
[
sup0≤t≤T |Xt|2

]
<∞.

Moreover, the existence of the solution is unique in the sense of the indistinguishability,
i.e., for any other solution {Yt} we have Xt = Yt, 0 ≤ t ≤ T , a.s.

We prove Theorem 3.2 with arguments similar to those in the existence proof for ordinary
differential equations. Recall that Gronwall lemma plays an important role in that case.

Lemma 3.3: Gronwall lemma

Suppose that a nonnegative, bounded and Borel function v : [0, T ]→ R satisfies

v(t) ≤ C +A

∫ t

0
v(s)ds, 0 ≤ t ≤ T

for some positive constants C,A. Then,

v(t) ≤ CeAt, 0 ≤ t ≤ T.

Proof. By an iterative application of the condition on v, we obtain

v(t) ≤ C + CAt+A2

∫ t

0

∫ s

0
v(r)dr

≤ C + CAt+
CA2t2

2
+ · · ·+ CAntn

n!
+An+1

∫ t

0

∫ s1

0
· · ·
∫ sn

0
v(sn+1)dsn+1dsn · · · ds1

for n ≥ 1. The last term is at most sup0≤t≤T v(t)(At)
n+1/(n+ 1)! and goes to zero as n→∞.

Thus the lemma follows.

Proof of Theorem 3.2. First we show the uniqueness. Let {Xt} and {Yt} be two solution, and put
at = b(t,Xt)− b(t, Yt), γt = σ(t,Xt)− σ(t, Yt). Then, from E[max0≤t≤T |Xt− Yt|2] <∞ and the
Lipschitz continuity, we have {γt} ∈ L2. This together with the inequality |x+y|2 ≤ 2(|x|2+|y|2)
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yields

E|Xt − Yt|2 = E
∣∣∣∣∫ t

0
asds+

∫ t

0
γsdWs

∣∣∣∣2 ≤ 2E
∣∣∣∣∫ t

0
asds

∣∣∣∣2 + 2E
∣∣∣∣∫ t

0
γsdWs

∣∣∣∣2
≤ 2tE

∫ t

0
|as|2ds+ 2E

∫ t

0
|γs|2ds

≤ 2(1 + t)K2
0

∫ t

0
E|Xs − Ys|2ds.

Hence the function v(t) := E|Xt−Yt|2 satisfies v(t) ≤ 2(1+T )K2
0

∫ t
0 v(s)ds. Gronwall lemma now

implies that v(t) = 0, which means that Xt and Yt are modifications of each other. Moreover,
since these two are continuous, by Proposition 1.19, Xt and Yt are indistinguishable.

Next we prove the existence. Put Y
(0)
t = X0, and then define Y

(k)
t , k = 1, 2, . . ., recursively

by

Y
(k+1)
t = X0 +

∫ t

0
b(s, Y (k)

s )ds+

∫ t

0
σ(s, Y (k)

s )dWs. (3.2.2)

Then by X0 ∈ L2 and the linearly growth condition for σ, we find {σ(s, Y (0)
s )} ∈ L2. From

this and Doob’s maximal inequality it follows that E[max0≤t≤T |Y (1)
t |2] < ∞. Applying this

argument recursively, we deduce that E[max0≤t≤T |Y (k)
t |2] <∞ for every k ≥ 0. Then, as in the

case of the uniqueness proof, for k ≥ 1,

E max
0≤s≤t

|Y (k+1)
s − Y (k)

s |2 ≤ (2 + 8T )K2
0E
∫ t

0
|Y (k)

s − Y (k−1)
s |2ds. (3.2.3)

Here, we can use Doob’s maximal inequality to estimate Emax0≤s≤t

∣∣∫ s
0 γudWs

∣∣2. Hence, by
repeating the estimation (3.2.3) recursively, we obtain

E max
0≤t≤T

|Y (k+1)
t − Y (k)

t |2 ≤ K2
Kk

3T
k

k!
, k ≥ 0,

where
K2 = E max

0≤t≤T
|Y (1)

t − Y (0)
t |2 <∞

and K3 = (2 + 8T )K2
0 . Chebyshev’s inequality then leads to

P
(

max
0≤t≤T

|Y (k+1)
t − Y (k)

t | > 2−k

)
≤ K2

(4K3T )
k

k!
.

The series for the sequence in the right-hand side of the inequality just above converges, whence
by Borel-Cantelli lemma, there exists Ω0 ∈ FT with P(Ω0) = 1 such that

max
0≤t≤T

|Y (k+1)
t (ω)− Y (k)

t (ω)| ≤ 2−k, k ≥ n0(ω), ω ∈ Ω0,

for some n0(ω) defined for each ω ∈ Ω0. From this
∑∞

k=n0(ω)
max0≤t≤T |Y (k+1)

t (ω)− Y (k)
t (ω)| <

∞ and so Y
(k)
t (ω) converges uniformly on [0, T ]. Therefore, there exists a limiting function

Xt(ω) such that sup0≤t≤T |Y
(k)
t (ω) − Xt(ω)| → 0 (see, e.g., [47, 定理 13.4]). Since a uni-

formly converging limit of continuous functions is also continuous, we deduce that {Xt}0≤t≤T

is adapted and a.s. continuous. Further, by Fatou’s lemma, E[max0≤t≤T |Xt|2] < ∞. Hence
in particular, {Xt} satisfies the conditions (i) and (ii) in Definition 3.1. Moreover, since∫ T
0 |σ(t, Y

(k)
t ) − σ(t,Xt)|2dt → 0, a.s. and there exists some subsequence kn ↗ ∞ such that∫ t

0 σ(s, Y
kn
s )dWs →

∫ t
0 σ(s,Xs)dWs a.s. On the other hand, we have Y kn+1

t → Xt, a.s. and∫ t
0 b(s, Y

kn
s )ds →

∫ t
0 b(s,Xs)ds, a.s. Thus, letting k = kn, n → ∞ in (3.2.2), we deduce that

{Xt} satisfies the condition (iii) in Definition 3.1.
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3.3 Explicit Solutions

We describe classes of SDEs having explicit solutions.

Linear cases

First assume that m = 1, i.e., consider the case of a scalar Brownian motion. It follows from
Example 2.19 and Theorem 3.2 that the unique solution of the SDE

dXt = bXtdt+ σdWt

is given by

Xt = ebtX0 +

∫ t

0
eb(t−s)dWs.

Then let us consider the more general SDE

dXt = [a(t) + b(t)Xt]dt+ σ(t)dWt, (3.3.1)

where a, b, σ : [0, T ] → R are bounded and Borel measurable. As in Example 2.19, using the
product Itô formula, we observe

d
(
e−

∫ t
0 b(s)dsXt

)
= e−

∫ t
0 b(s)ds(a(t)dt+ σ(t)dWt).

Thus, the unique solution of (3.3.1) is given by

Xt = e
∫ t
0 b(s)dsX0 +

∫ t

0
e
∫ t
s b(r)dr(a(s)ds+ σ(s)dWs).

Problem 3.4. Here consider general cases m ≥ 1 and the scalar SDE

dXt = [a(t) + b(t)Xt]dt+ [Xtγ(t) + σ(t)]TdWt, (3.3.2)

where a, b : [0, T ] → R and γ, σ : [0, T ] → Rm are bounded and Borel measurable. Show that
the unique solution of (3.3.2) is

Xt = Zt

[
X0 +

∫ t

0
Z−1
s (a(s)− γ(s)Tσ(s))ds+

∫ t

0
Z−1
s σ(s)TdWs

]
,

where

Zt = exp

[∫ t

0

(
b(s)− 1

2
|γ(s)|2

)
ds+

∫ t

0
γ(s)TdWs

]
.

Problem 3.5. Consider the d-dimensional SDE

dXt = (a(t) + b(t)Xt)dt+ σ(t)dWt, (3.3.3)

where a : [0, T ] → R, b : [0, T ] → Rd×d, and σ : [0, T ] → Rd×m, are bounded and Borel
measurable. Assume that X0 has a d-variate normal distribution with mean vector µ and
covariance matrix ρ. Then, show that {Xt}t≥0 is a Gaussian process with the representation

Xt = Φ(t)

(
X0 +

∫ t

0
Φ−1(s)a(s)ds+

∫ t

0
Φ−1(s)σ(s)dWs

)
,

and that the mean vector µ(t) = E[Xt] and the covariance matrix ρ(s, t) = E[(Xs −m(s))(Xt −
m(t))T], s, t ≥ 0, are given respectively by

µ(t) = Φ(t)

[
µ+

∫ t

0
Φ−1(s)a(s)ds

]
,

ρ(s, t) = Φ(s)

[
ρ+

∫ s∧t

0
Φ−1(r)σ(r)(Φ−1(r)σ(r))Tdr

]
Φ(t)T.
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Here, a process is said to be Gaussian if any finite dimensional distribution is jointly normal,
and Φ(t) is the unique solution of the matrix ODE

dΦ(t) = b(t)Φ(t)dt, Φ(0) = Id.

Problem 3.6. Solve 2-dimensional SDE

dXt =

(
0 −1
1 0

)
Xtdt+

(
0
σ2

)
dWt,

where {Wt}t≥0 is one-dimensional.

Reducible cases

Here assume m = 1. Consider the one-dimensional SDE

dXt =
1

2
σ(Xt)σ

′(Xt)dt+ σ(Xt)dWt, (3.3.4)

where σ(·) > 0. To obtain the solution, we use the function

g(x) =

∫ x

0

1

σ(ξ)
dξ, (3.3.5)

defined for x in a possible state space of {Xt}. Then, since

(g−1)′(x) = σ(g−1(x)), (g−1)′′(x) = σ(g−1(x))σ′(g−1(x)),

the process Xt := g−1(Wt + g(X0)) satisfies (g−1)′(Wt + g(X0)) = σ(Xt) and (g−1)′′(Wt +
g(X0)) = σ(Xt)σ

′(Xt). Thus, by Itô formula, we find that Xt is a solution to (3.3.4).

Problem 3.7. Solve

dXt =
1

2
a2Xtdt+ a

√
1 +X2

t dWt.

Problem 3.8. Solve

dXt =
1

2
a(a− 1)X

1−2/a
t dt+ aX

1−1/a
t dWt.

Next consider the SDE of the form

dXt =

(
ασ(Xt) +

1

2
σ(Xt)σ

′(Xt)

)
dt+ σ(Xt)dWt, (3.3.6)

As in the previous case, we observe the process Xt := g−1(αt +Wt + g(X0)) satisfies (3.3.6),
where g is given by (3.3.5).

Problem 3.9. Solve

dXt =

(
1

2
Xt +

√
1 +X2

t

)
dt+

√
1 +X2

t dWt.

Problem 3.10. Solve

dXt = −(α+ β2Xt)(1−X2
t )dt+ β(1−X2

t )dWt.
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Generalizing these results, we have the following. The proof is left to the reader.

Proposition 3.11

Suppose that b is Lipschitz continuous on R and σ is of class C2(R) with bounded first
and second derivatives. Then the unique solution {Xt}t≥0 of the one-dimensional SDE

dXt =

[
b(Xt) +

1

2
σ(Xt)σ

′(Xt)

]
dt+ σ(Xt)dWt (3.3.7)

is represented as Xt = u(Wt, Yt), where u : R2 → R is the solution of the ODE

∂xu(x, y) = σ(u(x, y)), u(0, y) = y,

and the process {Yt}t≥0 is the solution of the ODE

dYt = f(Wt, Yt)dt, Y0 = X0

with

f(x, y) = exp

(
−
∫ x

0
σ′(u(z, y))dz

)
b(u(x, y)).

3.4 Numerical Solutions

When explicit solutions of SDEs are unavailable, we need to approximate the equations to
generate the sample paths in computer simulations or to compute the expectation of quantities
involving the solutions. Here we present the Euler–Maruyama method, which is a most popular
one for the time discretization, and can be seen as a stochastic version of the Euler method in
ODEs.

Consider the SDE (3.2.1) with the drift coefficient b and the diffusion coefficient σ. We
impose the following conditions on b and σ:

Assumption 3.12

There exists a positive constant C0 such that

|b(t, x)− b(s, y)|+ |σ(t, x)− σ(s, y)| ≤ C0(|t− s|1/2 + |x− y|), t, s ∈ [0, T ], x, y ∈ Rd.

Assumption 3.12 means the conditions in Theorem 3.2. Thus, under Assumption 3.12, there
exists a unique solution {Xt} of (3.2.1).

First, set tk = kT/n, k = 0, . . . , n. We start with the representation

Xtk = Xtk−1
+

∫ tk

tk−1

b(s,Xs)ds+

∫ tk

tk−1

σ(s,Xs)dWs.

Since {Xt} has continuous sample paths, the approximation Xs ≈ Xtk−1
, s ∈ [tk−1, tk], is

reasonable for sufficiently large n. Applying this approximation, we have

Xtk ≈ Xtk−1
+

∫ tk

tk−1

b(tk−1, Xtk−1
)ds+

∫ tk

tk−1

σ(tk−1, Xtk−1
)dWs,

which is equivalent to

Xtk ≈ Xtk−1
+ b(tk−1, Xtk−1

)(tk − tk−1) + σ(tk−1, Xtk−1
)(Wtk −Wtk−1

).
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The random variable Wtk − Wtk−1
follows the normal distribution with mean vector 0 and

covariance matrix (T/N)Id, which can be generated by pseudo random numbers. Therefore, the
sequence {Yk}nk=0 defined by

Yk+1 = Yk + b(tk, Yk)(tk+1 − tk) + σ(tk, Yk)(Wtk+1
−Wtk) (3.4.1)

with Y0 = X0 is a candidate of an implementable numerical solution for (3.2.1).
Hereafter, we discuss a rate of convergence of {Yk} to {Xt}.
Lemma 3.13

Suppose that Assumption 3.12 hold. Let {Xt}0≤t≤T be as above. Then, there exists a
positive constant C such that

E|Xt −Xs|2 ≤ C(t− s), 0 ≤ s ≤ t ≤ T.

Proof. Using the inequality (a+ b)2 ≤ 2(a2 + b2), we see

E|Xt −Xs|2 ≤ 2E

[∣∣∣∣∫ t

s
b(r,Xr)dr

∣∣∣∣2
]
+ 2E

[∣∣∣∣∫ t

s
σ(r,Xr)dWr

∣∣∣∣2
]
. (3.4.2)

By the linear growth condition, the 1st term of the right-hand side in (3.4.2) is at most

2E
∣∣∣∣∫ t

s
b(r,Xr)dr

∣∣∣∣2 ≤ 2(t− s)
∫ t

s
E|b(r,Xr)|2dr ≤ C ′

(
1 + E

[
sup

0≤r≤T
|Xr|2

])
(t− s),

where C ′ is a positive constant. A similar estimation works for the 2nd term of the right-hand
side in (3.4.2).

Roughly speaking, the approximation error for the Euler-Maruyama methods is O(n−1/2).

Theorem 3.14

Suppose that Assumption 3.12 hold. Let {Xt}0≤t≤T be as above and let {Yk}nk=0, n ∈ N,
be the sequences defined by (3.4.1). Then, there exists a positive constant C1 such that

max
k=0,1,...,n

E|Xtk − Yk|
2 ≤ C1

n
.

Proof. By C we denote positive constants that do not depend on n and k = 0, 1, . . . , n and that
may vary from line to line.

First notice that Yk is Ftk -measurable and in L2 for each k = 0, 1, . . . , n. To confirm the
latter property, assume that Yk ∈ L2 for some k and observe

|Yk+1|2 ≤ 3|Yk|2 + 3|b(tk, Yk)|2(∆t)2 + 3|σ(tk, Yk)∆Wk+1|2, (3.4.3)

where ∆t = T/n and ∆Wk+1 = Wtk+1
−Wtk . From (3.4.3), the linearly growth conditions on

b, σ, and E|Yk|2|∆Wk+1|2 = E|Yk|2E|∆Wk+1|2 it follows that E|Yk+1|2 ≤ CE|Yk|2 <∞.
Next, observe

Xtk+1
− Yk+1 = Xtk − Yk +

∫ tk+1

tk

∆bsds+

∫ tk+1

tk

∆σsdWs,

where
∆bs = b(s,Xs)− b(tk, Yk), ∆σs = σ(s,Xs)− σ(tk, Yk), s ∈ [tk, tk+1).
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Furthermore we have

|Xtk+1
− Yk+1|2

= |Xtk − Yk|
2 +

∣∣∣∣∫ tk+1

tk

∆bsds

∣∣∣∣2 + ∣∣∣∣∫ tk+1

tk

∆σsdWs

∣∣∣∣2 + 2(Xtk − Yk)
T

∫ tk+1

tk

∆bsds

+ 2(Xtk − Yk)
T

∫ tk+1

tk

∆σsdWs + 2

(∫ tk+1

tk

∆bsds

)T ∫ tk+1

tk

∆σsdWs.

By Cauchy-Schwartz inequality, the Lipschitz continuity of b, and Lemma 3.13,

E
∣∣∣∣∫ tk+1

tk

∆bsds

∣∣∣∣2 ≤ ∆t

∫ tk+1

tk

E|∆bs|2ds

≤ C∆t
∫ tk+1

tk

E[s− tk + |Xs −Xtk |
2 + |Xtk − Yk|

2]ds

≤ C(∆t)3 + C(∆t)2E|Xtk − Yk|
2.

Using Itô isometry, similarly we have

E
∣∣∣∣∫ tk+1

tk

∆σsdWs

∣∣∣∣2 ≤ C(∆t)2 + C∆tE|Xtk − Yk|
2,

whence

2E
(∫ tk+1

tk

∆bsds

)T ∫ tk+1

tk

∆σsdWs ≤ E
∣∣∣∣∫ tk+1

tk

∆bsds

∣∣∣∣2 + E
∣∣∣∣∫ tk+1

tk

∆σsdWs

∣∣∣∣2
≤ C(∆t)2 + C∆tE|Xtk − Yk|

2.

Using Young’s inequality ab ≤ ca2/2 + b2/(2c) for a, b ∈ R and c > 0, we find

2E(Xtk − Yk)
T

∫ tk+1

tk

∆bsds ≤ ∆tE|Xtk − Yk|
2 +

1

∆t
E
∣∣∣∣∫ tk+1

tk

∆bsds

∣∣∣∣2
≤ C(∆t)2 + C∆tE|Xtk − Yk|

2.

As for the remaining term, we have

E(Xtk − Yk)
T

∫ tk+1

tk

∆σsdWs = E
[
(Xtk − Yk)

TE
[∫ tk+1

tk

∆σsdWs

∣∣∣∣Ftk

]]
= 0.

Collecting the estimates above, we deduce

E|Xtk+1
− Yk+1|2 ≤ (1 + C∆t)E|Xtk − Yk|

2 + C(∆t)2, k = 0, . . . , n− 1.

From this the theorem easily follows.

Example 3.15. Let us examine the Euler-Maruyama approximation for the SDE

dXt = Xt(0.5 dt+ 0.2 dWt), 0 ≤ t ≤ 1,

with X0 = 1. The time grids are set to be ti = i/n, i = 0, 1, . . . , n. We execute the simulation
M = 106 times and compute the resulting mean squared error

L2-error = max
i=1,...,n

1

M

M∑
k=1

(X
(k)
ti
− Y (k)

ti
)2,

where {X(k)
ti
} and {Y (k)

ti
} denotes the k-th sample paths of the true and approximate solutions,

respectively. See Figure 3.4.1 below.

Problem 3.16. As in Example 3.15, evaluate the performance of the Euler-Maruyama method
for the SDE in Problem 3.7.
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Figure 3.4.1: Sample paths of the true and approximate solutions in the case of n = 28 (left)
and plotting L2-errors for n = 23, 24, 25, 26, 27, 28 (right).

3.5 Fundamental Properties

We write {Xt,x
s }t≤s≤T for the solution of the SDE with initial condition Xt = x, i.e.,

Xt,x
s = x+

∫ s

t
b(r,Xt,x

r )dr +

∫ s

t
σ(r,Xt,x

r )dWr. (3.5.1)

Notice that we can ensure the existence and uniqueness of this SDE by considering the SDE on
[0, T ] with coefficients b̃(s, x) = b(s, x)1[t,T ](r) and σ̃(r, x) = σ(r, x)1[t,T ](r), provided that b and
σ satisfy the conditions (i) and (ii) imposed in Theorem 3.2.

In what follows, we often drop the superscripts t, x in (Xt,x
s ) and write Et,x[Z] for E[Z] when

Z depends on (Xt,x
s ). Using Itô formula, we observe

b(t, x) = lim
∆t→0

1

∆t
Et,x[Xt+∆t −Xt],

σ(t, x)σT(t, x) = lim
∆t→0

1

∆t
Et,x[(Xt+∆t −Xt)(Xt+∆t −Xt)

T].

(3.5.2)

Here, the expectations are taken to be component-wise. In general, the coefficients b(t, x) and
σ(t, x) of the SDE are called the drift term and the diffusion term, respectively.

Problem 3.17. Prove (3.5.2).

Markov property

We begin with Markov property.

Theorem 3.18

Suppose that b, σ, and ξ satisfy the assumptions in Theorem 3.2. Then the unique solution
{Xt}0≤t≤T of the SDE (3.2.1) is an F-Markov process.

Proof. We will give a proof in the case where b and σ satisfy Assumption 3.12. We refer to
standard textbooks on the stochastic analysis such as [31] for a proof of the general claim.

Fix t ∈ [0, T ] and s ∈ [0, T − t]. Then {Xr} satisfies.

Xt+s = Xt +

∫ s

t
b(r,Xr)dr +

∫ s

t
σ(r,Xr)dWr.
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Let tk = ks/n + t, k = 0, . . . , n, n ∈ N, and {Ytk}nk=0 the Euler-Maruyama approximation of
{Xr}t≤r≤t+s, i.e.,

Ytk = Ytk−1
+ b(tk−1, Ytk−1

)(tk − tk−1) + σ(tk−1, Ytk−1
)(Wtk −Wtk−1

), k = 1, . . . , n,

with Yt0 = Xt. Theorem 3.14 then yields Xt+s = limn→∞ Ytn a.s. possibly along subsequence.
Since Wtk −Wtk−1

= Wks/n+t −Wt − (W(k−1)s/n+t −Wt), by induction, we observe that Ytn is
σ(Xt,Wr+t −Wt : 0 ≤ r ≤ s)-measurable, whence so is lim supn→∞ Ytn . Therefore, by Theorem
1.9, Xt+s = Ft+s(Xt, (Wr+t −Wt)0≤r≤s) a.s. for some Borel function Ft+s on Rd × C([0, s];Rd)
for 0 ≤ s ≤ T − t. Since (Wr+t −Wt)0≤r≤s is independent of Ft, using Lemma 1.45, we have,
for every bounded Borel function f ,

E[f(Xt+s)|Ft] = E[f(Ft+s(Xt, (Wt+r −Wt)r≤s)|Ft] = E[f(Ft+s(x, (Wt+r −Wt)r≤s)]|x=Xt

= E[f(Xt+s)|Xt],

as required.

By arguments similar to that In the proof of Theorem 3.18, we have the following result:

Corollary 3.19

Let b, σ, and {Xt} be as above. Then,

E[f(Xt+s)|Ft] = E[f(Xt,x
t+s)]|x=Xt , a.s.

for any t, s ∈ [0, T ] with 0 ≤ t+ s ≤ T and any bounded Borel measurable function f .

Proof. Let f be a bounded Lipschitz continuous function. As in the proof the previous theorem,
there exists a sequence Gn of B(Rd)× C([0, s];Rd)-measurable functions such that

lim
n→∞

E|Xt,x
t+s −Gn(x, (Wr+t −Wt)0≤r≤s)|2 = 0, x ∈ Rd,

lim
n→∞

E|Xt,Xt
t+s −Gn(Xt, (Wr+t −Wt)0≤r≤s)|2 = 0,

and Xt,Xt
t+s = Xt, a.s. This means

lim
n→∞

E[f(Gn(x, (Wr+t −Wt)0≤r≤s)] = E[f(Xt,x
t+s)], x ∈ Rd,

and
lim
n→∞

E[f(Gn(Xt, (Wr+t −Wt)0≤r≤s)|Xt] = E[f(Xt,Xt
t+s )|Xt]

in L2, whence

lim
n→∞

E[f(Gn(x, (Wr+t −Wt)0≤r≤s)]|x=Xt = E[f(Xt,x
t+s)]|x=Xt ,

and
lim
k→∞

E[f(Gnk
(Xt, (Wr+t −Wt)0≤r≤s)|Xt] = E[f(Xt,Xt

t+s )|Xt], a.s.,

for some subsequence {nk}. Combining these observations and Theorem 3.18, we obtain

E[f(Xt+s)|Ft] = E[f(Xt,Xt
t+s )|Xt] = E[f(Xt,x

t+s)]|x=Xt . (3.5.3)

Using Lemma below, we can show that (3.5.3) holds true for any bounded Borel measurable
function f .
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Lemma 3.20

Let X,Y be Rd-valued random variables, and G a sub σ-algebra. Suppose that

E[f(X)|G] = E[f(Y )|G], a.s. (3.5.4)

for any bounded Lipschitz continuous function f . Then (3.5.4) holds for any bounded
Borel function f .

Proof*. Step (i). Let A ⊂ Rd be closed. Then

gn(x) := (1− nγ(x,A))+, x ∈ Rd,

where γ(x,A) = infy∈A |x−y|, is bounded and Lipschitz continuous. Indeed, for ε > 0 take z ∈ A
such that |y − z| ≤ γ(y,A) + ε. Then gn(x)− gn(y) ≤ n(|x− z| − |y − z|+ ε) ≤ n(|x− y|+ ε),
from which we find |gn(x) − gn(y)| ≤ n|x − y|. Further, 1A(x) ≤ gn(x) ≤ 1A1/n(x), where
A1/n = {x : γ(x,A) < 1/n}. Thus,

E[1A(X)|G] ≤ E[gn(X)|G] = E[gn(Y )|G] ≤ E[1A1/n(Y )|G].

Letting n → ∞, we obtain E[1A(X)|G] ≤ E[1A(Y )|G]. Changing the role of X and Y , we have
the converse inequality, whence the equality.

Step (ii). Let A ∈ B(Rd). We will use the fact that for each n there exists a closed set Fn

such that Fn ⊂ A and Leb(A\Fn) ≤ 1/2n, where Leb denotes the Lebesgue measure on Rd (see,
e.g., [43, Theorem 7.6] or [5, Theorem 1.1]). Then, we inductively define the sequence {An}
of closed sets by An+1 = An ∪ Fn. By this construction, 1An is monotone nondecreasing and
converges to 1A, Leb-a.e. Applying the monotone convergence theorem, we obtain (3.5.4) for
f = 1A.

Step (iii). Any bounded Borel function can be represented as the difference of bounded non-
negative Borel functions, and each part can be approximated by a monotonically nondecreasing
sequence of step functions. Thus the lemma follows.

Next consider the homogeneous case, i.e., the SDE of the form

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x. (3.5.5)

Here, b : Rd → R and σ : Rd → Rd×m are assumed to be Lipschitz continuous. Then, by
Theorem 3.2, the SDE (3.5.5) has a unique solution {Xt}t≥0. Then we have the following strong
Markov property for {Xt}:

Theorem 3.21

Let b, σ, and {Xt} be as above. Further, let θ be a stopping time with θ <∞, a.s. Then,
for any bounded Borel measurable function f on Rd, we have

E[f(Xt+θ)|Fθ] = E[f(Xt+θ)|Xθ], a.s.

Proof. Fix t ≥ 0. Let tk = θ + tk/n, k = 0, . . . , n, n ∈ N. Then consider the Euler-Maruyama
approximation {Yk}nk=0 of {Xs}θ≤s≤θ+t, defined by

Yk+1 = Yk + b(Yk)(tk+1 − tk) + σ(Yk)(Wtk+1
−Wtk), Y0 = Xθ.

Then, we see that Yn is σ(Xθ, (Ws+θ − Wθ)0≤s≤t)-measurable and Xt+θ = limn→∞ Yn, a.s.
possibly along subsequence. Thus, there exists a Borel measurable map Ft from Rd×C([0, s];Rd)
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into Rd such that Xt+θ = Ft(Xθ, (Ws+θ−Wθ)0≤s≤t) a.s. Since (Ws+θ−Wθ)0≤s≤t is independent
of Fθ by Theorem 1.46, we have

E[f(Xt+θ)|Fθ] = E[f(Ft(Xθ, (Ws+θ −Wθ)s≤t)|Fθ] = E[f(Ft(y, (Ws+θ −Wθ)s≤t)]|y=Xθ

= E[f(Xt+θ)|Xθ],

whence the claim.

• In the theory of Markov processes, a strong Markov process with continuous sample paths
is called a diffusion process.

Feynman-Kac formula

Let {Xt} be the unique solution of the SDE (3.2.1) with nonrandom initial condition. With the
coefficients b and σ, we consider the differential operator

(Atf)(x) :=

d∑
i=1

bi(t, x)∂xif(x) +
1

2

d∑
i,j=1

m∑
k=1

σik(t, x)σjk(t, x)∂
2
xixj

f(x), f ∈ C2(Rd).

We write (Atf)(t, x) = (Atf(t, ·))(x) when f also depends on the time variable t. Notice that
the term Atf appears in applying Itô formula to f(t,Xt).

Now, suppose that the partial differential equation (PDE)

∂tu+Atu = 0, on [0, T )× Rd,

u(T, ·) = g, on Rd
(3.5.6)

has a solution u(t, x) of C1,2 class. Then by Itô formula,

g(XT ) = u(T,XT )

= u(0, X0) +

∫ T

0
(∂tu+Atu)(t,Xt)dt+

d∑
i=1

m∑
k=1

∫ T

0
∂xiu(t,Xt)σik(t,Xt)dW

k
t .

Since u satisfies the PDE (3.5.6), the “dt term” turns out to be zero. Moreover, if the term of
the stochastic integral is a martingale, which is the case of the integrand belongs to L2, then by
taking the expectation, we get

E[g(XT )] = u(0, X0).

Let us generalize the argument above. Consider continuous functions g : Rd → R, f :
[0, T ]× Rd → R, ℓ : [0, T ]× Rd → R such that for any t ∈ [0, T ] and x ∈ Rd

|g(x)|+ |f(t, x)| ≤ C0(1 + |x|2),
ℓ(t, x) ≥ 0

(3.5.7)

for some constant C0 > 0. Further, consider the PDE

∂tu+Atu+ f − ℓu = 0, on [0, T )× Rd,

u(T, ·) = g, on Rd.
(3.5.8)
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Theorem 3.22: Feynman-Kac

Suppose that b, σ, and ξ satisfies the conditions in Theorem 3.2. Let {Xt}0≤t≤T be the
unique solution of (3.2.1). Suppose moreover that (3.5.7) holds and the PDE (3.5.8) has a
classical solution u(t, x) of C1,2-class. Further, assume that there exists a constantM > 0
such that

max
0≤t≤T

|u(t, x)| ≤M(1 + |x|2), x ∈ Rd.

Then,

u(t, x) = Et,x

[
g(XT )e

−
∫ T
t ℓ(r,Xr)dr +

∫ T

t
f(s,Xs)e

−
∫ s
t ℓ(r,Xr)drds

]
.

• This result and Corollary 3.19 imply

E
[
g(XT )e

−
∫ T
t ℓ(r,Xr)dr +

∫ T

t
f(s,Xs)e

−
∫ s
t ℓ(r,Xr)drds

∣∣∣∣Ft

]
= u(t,Xt).

• The condition (3.5.7) and the growth condition on u can be weakened. We refer to [21,
Chpater 5] for details on this point and for a sufficient condition for which the PDE (3.5.8)
has a classical solution.

Proof of Theorem 3.22. Consider the stopping times τn = inf{s ≥ t : |Xt,x
s | ≥ n}, n ≥ 1.

Applying Itô formula to e−
∫ s
t ℓ(r,Xt,x

r )dru(s,Xt,x
s ), we find

e−
∫ T∧τn
t ℓ(r,Xt,x

r )dru(T ∧ τn, Xt,x
T∧τn) = u(t, x)−

∫ T∧τn

t
e−

∫ s
t ℓ(r,Xt,x

r )drf(s,Xt,x
s )ds

+

d∑
i=1

m∑
k=1

∫ T∧τn

t
∂xiu(s,X

t,x
s )σik(s,X

t,x
s )dW k

s .

Since |Xt,x
s | ≤ n for s ≤ T ∧ τn, the process ∂xiu(s,X

t,x
s )σik(s,X

t,x
s )1{s≤τn}, t ≤ s ≤ T , belongs

to L2. Therefore,

u(t, x) = E
[
e−

∫ T∧τn
t ℓ(r,Xt,x

r )dru(T ∧ τn, Xt,x
T∧τn) +

∫ T∧τn

t
e−

∫ s
t ℓ(r,Xt,x

r )drf(s,Xt,x
s )ds

]
.

By (3.5.8), the growth condition on u, and max0≤s≤T |Xs|2 ∈ L2, we can use the dominated
convergence theorem to obtain the required result by letting n→∞.

Transition density

Suppose that b, σ, and ξ satisfies the conditions in Theorem 3.2. Let {Xt}0≤t≤T be the unique
solution of (3.2.1). By definition, the sample paths of X is almost surely continuous. In other
words, P(X ∈ Wd) = 1, where Wd = C([0, T ];Rd) is a Banach space with sup norm. Thus, X
induces the measure

µX(B) := P(X ∈ B), B ∈ B(Wd),

on (Wd,B(Wd)), which is the law of the solution {Xt} of the SDE as Wd-valued random variable.
Let C be the totality of sets of the form

B = {w ∈Wd : (w(t1), . . . , w(tn)) ∈ E}, 0 ≤ t1 ≤ · · · ≤ tn ≤ T, E ∈ B(Rnd), n ≥ 1.

An element of C is called a cylinder set. Since the mapping Wd 3 w 7→ (w(t1), . . . , w(tn))
is continuous, we have C ⊂ B(Wd). We say the family µt1,...,tn , 0 ≤ t1 ≤ · · · ≤ tn ≤ T ,
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n ≥ 1, of probability measures defined by µt1,...,tn(E) = P((Xt1 , . . . , Xtn) ∈ E), E ∈ Rnd, the
finite dimensional distributions of {Xt}. Thus, the finite dimensional distributions of {Xt} are
described by the values of µX on cylinder sets.

Proposition 3.23

The law of X is uniquely determined by its finite dimensional distributions.

Proof*. First note that there exists a countable base for the topology of Wd, consisting of sets
of the form {w : max0≤t≤T |w(t)− w0(t)| < δ}, w0 ∈Wd, δ > 0. Observe

{w : max
0≤t≤T

|w(t)− w0(t)| < δ} =
∞⋃
n=1

{
w : max

0≤t≤T
|w(t)− w0(t)| ≤ δ −

1

n

}

=

∞⋃
n=1

⋂
q∈Q∩[0,T ]

{
w : |w(q)− w0(q)| ≤ δ −

1

n

}
∈ σ(C),

from which we have B(Wd) ⊂ σ(C). Therefore B(Wd) = σ(C).
Suppose that µX = ν on C for some probability measure ν on (Wd,B(Wd)). Then, since C

is a π-system, we can apply π-system lemma (see Lemma A.44) to deduce µX = ν on σ(C) =
B(Wd).

A nonnegative Borel function p(t, x; s, y), 0 ≤ t < s ≤ T , x, y ∈ Rd, said to be the transition
probability density of {Xs} if it satisfies

P(Xt,x
s ∈ A) =

∫
A
p(t, x; s, y)dy, A ∈ B(Rd).

Now suppose that {Xt} has the transition density p(t, x; s, y). Then we will represent the finite
dimensional distribution of {Xt} by p. To this end, choose 0 < t1 < t2 < t3 ≤ T and a bounded
Borel function f on Rd. Then, by the Markov property (Corollary 3.19,

E[f(Xt3)|Ft2 ] = g(Xt2),

where

g(x2) = E[f(Xt2,x2
t3

)] =

∫
Rd

f(x3)p(t2, x2; t3, x3)dx3.

Hence, by the definition of the conditional expectation,

E[f(Xt3)1{X0∈B0,Xt1∈B1,Xt2∈B2}] = E[g(Xt2)1{X0∈B0,Xt1∈B1,Xt2∈B2}],

whence
E[g(Xt2)1{X0∈B0,Xt1∈B1,Xt2∈B2}] = E[h(Xt1)1{X0∈B0,Xt1∈B1}].

Here,

h(x1) = E[g(Xt1,x1
t2

)1{Xt2∈B2}] =

∫
B2

g(x2)p(t1, x1; t2, x2)dx2.

Consequently we obtain

E[f(Xt3)1{X0∈B0,Xt1∈B1,Xt2∈B2}] = E[h(Xt1)1{X0∈B0,Xt1∈B1}] =

∫
B0

∫
B1

h(x1)p(0, x0; t1, x1)dx1µ0(dx0)

=

∫
Rd

∫
B2

∫
B1

∫
B0

f(x3)p(t2, x2; t3, x3)p(t1, x1; t2, x2)p(0, x0; t1, x1)µ0(dx0)dx1dx2dx3,
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where µ0 denotes the distribution of µ0. Repeating this argument, we find that for 0 < t1 <
· · · < tn ≤ T the joint distribution of (X0, Xt1 , . . . , Xtn) is given by

P(X0 ∈ B0, Xt1 ∈ B1, . . . , Xtn ∈ Bn) =

∫
Bn

· · ·
∫
B1

∫
B0

n∏
i=1

p(ti−1, xi−1; ti, xi)µ0(dx0)dx1· · ·dxn

for B0, B1, . . . , Bn ∈ B(Rd).

Remark 3.24. A set of conditions sufficient for which {Xt} has a transition density is, in addition
to the Lipschitz continuity of b and σ,

(i) the uniform ellipticity: there exists a positive constant c such that

|σ(t, x)Tξ|2 ≥ c|ξ|2, ξ ∈ Rd, (t, x) ∈ [0, T ]× Rd;

(ii) the boundedness: the functions b and σ are bounded on [0, T ]× Rd.

In general, the transition probability density p of {Xt} can be seen as the fundamental solution
of the corresponding PDE. Indeed, under suitable conditions,

u(t, x) =

∫
Rd

p(t, x, T, y)g(y)dy, t ∈ [0, T ], x ∈ Rd,

turns out to be a classical solution of the PDE (3.5.6). We refer to [21, Chpater 5] for details.

3.6 Statistical Inference

In this section, we discuss estimation methods for the drift and diffusion coefficients in SDEs
with observed data. We refer to Prakasa Rao [33], Iacus [16] and the references therein for more
details.

Maximum Likelihood Estimation

Consider the following parametrized SDE:

dXt = b(Xt, θ)dt+ σ(Xt, θ)dWt, X0 = x0, (3.6.1)

where {Wt}t≥0 is a one-dimensional Brownian motion and x0 is a given constant. θ ∈ Rp denotes
some parameters of this system, and θ belongs to some parameter space Θ ⊂ Rp. We assume
that (3.6.1) admits a unique solution and do not impose explicit conditions on the coefficients
b : R×Θ→ R and σ : R×Θ→ (0,∞). Moreover, we assume here that there exists the transition
density pθ(t, y; s, x) of {Xt}.

Suppose that sample Xi is observed at time ti = i∆, i = 1, . . . , n, where ∆ ≡ ∆n,T = T/n.
Denote by θ0 a true parameter of the system to be estimated. The maximum likelihood estima-
tion (MLE) is an estimation method based on the hypothesis “most likely data are observed”.
Namely, MLE adopts parameters that maximize some likelihood function. In general, for the
sample Y1, . . . , Yn, the likelihood function is defined by the joint density of Y1, . . . , Yn as a func-
tion of θ. For example, let Y a random variable with density p(x, θ0), and consider the estimation
problem of the parameter θ0 from an IID sample Y1, . . . , Yn. Then, by the independence, the
joint density is given by the products of p’s. More precisely, the likelihood function L(θ) here is
given by

L(θ) =
n∏

i=1

p(Yi, θ).
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As an estimated parameter, we adopt a local maximizer of the logarithm of the likelihood
function, i.e., a solution θ of the equation

∂

∂θ
logL(θ) = 0

is adopted as an estimator.
In case of SDEs, as seen in Section 3.3, the finite dimensional distribution can be described

by the transition density. Thus we adopt it as the likelihood function and a maximizer θ of

L(θ) =

n∏
j=1

pθ(j∆, Xj ; (j − 1)∆, Xj−1)

as an estimator of θ0.

Example 3.25. Consider the following Ornstein-Uhlenbeck process

dXt = −bXtdt+ σdWt.

Recall from Example 2.19 that the unique solution with initial condition Xt = x is given by

Xt,x
s = e−b(s−t)x+ σ

∫ s

t
e−b(s−r)dWr.

Since Xt,x
s follows a Gaussian distribution with mean m(s − t, x) := xe−b(s−t) and variance

v(s− t, x) := σ2(1− e−2b(s−t))/(2b), the transition probability pθ with θ = (b, σ) is given by

pθ(t, x; s, y) =
exp

(
−(y −m(s− t, x))2/(2v(s− t, x))

)√
2πv(s− t, x)

.

Hence

logL(θ) =
n∑

j=1

log pθ(tj , Xj ; tj−1, Xj−1)

=
n∑

j=1

[
−(Xj −m(∆, Xj−1))

2

2v(∆, Xj−1)
− 1

2
log(2πv(∆, Xj−1))

]
.

Therefore, the maximum likelihood estimator b̂ for b is approximately given by

b̂ ≈ − 1

∆
log

(∑n
j=1Xj−1Xj∑n
j=1X

2
j−1

)
.

Note that this quantity can be defined only when
∑n

j=1Xj−1Xj > 0. Under this condition, it is
straightforward to see that the maximum likelihood estimator σ̂ for σ is given by

σ̂ =

√√√√ 2b̂

n(1− e−2b̂∆)

n∑
j=1

(Xj −Xj−1e−b̂∆)2.

Example 3.26. Consider the geometric Brownian motion

dXt = bXtdt+ σXtdWt,

where b ∈ R and σ ≥ 0. As seen in Section 3.1 in Chapter 3, we have

Xt,x
s = x exp

(
(b− σ2/2)(s− t) + σ(Ws −Wt)

)
, s ≥ t, x > 0,
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Figure 3.6.1: The difference of the stock prices of Tokyu Corp. and Keikyu Corp. from 2016/1/4
to 2018/9/4 (blue line), and a sample path of the Ornstein-Uhlenbeck process with estimated
parameter b̂ = 0.2111 and σ̂ = 372.6866 (red line).

whence

P(Xt,x
t+∆ ≤ y) = P((b− σ2/2)∆ + σW∆ ≤ log y − log x).

Thus the transition density pθ is given by

pθ(t+∆, y; t, x) =
1

σy
√
2π∆

exp

(
−1

2

(
log y − log x− (b− σ2/2)∆

σ
√
∆

)2
)
.

Hence,

logL(θ) = −
n∑

j=1

{
1

2

(
logXj − logXj−1 − (b− σ2/2)∆

σ
√
∆

)2

− log(σXj

√
2π∆)

}
.

Unfortunately, the transition probability density for diffusion processes are rarely available.
One of approximation methods for the likelihood functions is to apply the Euler-Maruyama
approximation

Xt+∆ −Xt = b(Xt, θ)∆ + σ(Xt, θ)(Wt+∆ −Wt)

to (3.6.1). The right-hand side in the equation just above follows a (conditional) Gaussian
distribution with mean b(Xt, θ)∆ and σ(Xt, θ)

2. Thus, the transition density pθ is approximated
with

p̃θ(t+∆, y; t, x) :=
1√

2π∆σ2(x, θ)
exp

{
−1

2

(y − x− b(x, θ)∆)2

∆σ2(x, θ)

}
.

Now, we will present a consistency result for the pseudo-likelihood methods. To this end,
we restrict ourselves to the case where the SDEs are described by

dXt = b(Xt, θ)dt+ σdWt, (3.6.2)

where θ ∈ Θ is as in above and σ > 0 is also a unknown parameter independent of θ. Then, the
maximization of L(θ) is equivalent to the least-squares problem

L1(θ) =
n∑

j=1

(Xj −Xj−1 − b(Xj−1, θ)∆)2.
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We denote by θ̂ its estimator, i.e.,

θ̂ = argmin
θ∈Θ

L1(θ).

With this θ̂, we adopt

σ̂2 :=
1

n∆

n∑
j=1

(Xj −Xj−1 − b(Xj−1, θ̂)∆)2

as an estimator for σ2.
To prove the consistency of the estimators above, we assume that∫ x

0
exp

{
− 2

σ2

∫ y

0
b(z)dz

}
dy → ±∞, as x→ ±∞,

c :=

∫ ∞

−∞
exp

{
2

σ2

∫ x

0
b(z)dz

}
dx <∞.

(3.6.3)

Then, it is known that {Xt}t≥0 is ergodic with invariant measure ν defined by

dν

dx
=

1

c
exp

{
2

σ2

∫ x

0
b(z)dz

}
for θ = θ0, i.e., for any Borel measurable function h on R that is integrable with respect to ν,

lim
T→∞

1

T

∫ T

0
h(Xt)dt =

∫ ∞

−∞
h(x)ν(dx), a.s.

Moreover, we assume that the following conditions are satisfied:

Assumption 3.27

(i) There exists a unique solution {Xt}t≥0 of (3.6.2) satisfying supt≥0 E|Xt|p < ∞ for
every p ≥ 1.

(ii) There exist a positive constant C0 and q such that for any x ∈ R and θ ∈ Θ,

|b(x, θ)| ≤ C0(1 + |x|q),
|b(x, θ)− b(y, θ)| ≤ C0|x− y|.

(iii) The function b(x, ·) ∈ C2(Θ) for any x ∈ R and

|∂θib(x, θ)|+ |∂
2
θiθj

b(x, θ)| ≤ C1(1 + |x|q1), x ∈ R,

for some constants C1, q1 > 0.

(iv) The function ∫
R
b(θ, x)

{
b(θ0, x)−

1

2
b(θ, x)

}
ν(dx)

has a unique maximum at θ = θ0 in Θ.

(v) The functions b and ∂θib, i = 1, . . . , p, are smooth in x and their derivatives are of
polynomial growth in x uniformly in θ ∈ Θ.

(vi) The matrix

Φ =

∫
R
Dθb(θ0, x)

TDθb(θ0, x)ν(dx)

is positive definite.
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Under the complicated conditions in Assumption 3.27, we can show the consistency of σ̂ and
θ̂. More precisely, we have the following result:

Theorem 3.28

Suppose that (3.6.3) and Assumption 3.27 holds. Then,

(
√
n(σ̂ − σ0),

√
T (θ̂ − θ0)) −→ N(0,H)

in distribution, provided that n, T →∞, ∆n,T → 0, and (∆n,T )
3n = o(1), where

H =

(
σ20 0
0 1

)
.

For a proof we refer to Yoshida [41] (see also Section 3.4 in [33]).

Nonparametric estimation

Let D be a domain in Rd. Here we consider a nonparametric estimation for the D-valued SDE

dXt = b(Xt)dt+ σ(Xt)dWt. (3.6.4)

Namely, we consider the problem of estimating the functions b and σ from observed data.
Accordingly, we assume that b and σ are Lipschitz continuous so that (3.6.4) has a unique
solution {Xt}t≥0. Moreover, assume that we observe Xi at time ti = i∆, i = 1, . . . , n, where
∆ ≡ ∆n,T = T/n.

Put a(x) = σ(x)σ(x)T, x ∈ D. By (3.5.2), the functions b and a can be represented as

E[Xt,x
t+∆t − x] = ∆tb(x) + o(∆t),

E[(Xt,x
t+∆t − x)(X

t,x
t+∆t − x)

T] = ∆ta(t) + o(∆t).
(3.6.5)

By (3.6.5), formally we have

b(x) ' 1

∆
E[Xt+∆ − x|Xt = x],

a(x) ' 1

∆
E[(Xt+∆ − x)(Xt+∆ − x)T|Xt = x].

Thus, by kernel regression, the functions

b̂(x) =

∑n−1
i=1 K((Xi − x)/h)(Xi+1 −Xi)

∆
∑n

i=1K((Xi − x)/h)
,

â(x) =

∑n−1
i=1 K((Xi − x)/h)(Xi+1 −Xi)(Xi+1 −Xi)

T

∆
∑n

i=1K((Xi − x)/h)

are adopted as estimators for b(x) and a(x), respectively. Here, K is a nonnegative function on
Rd, called a kernel, and a parameter h ≡ hn,T > 0 determines the smoothness of the estimators.
For examples, the function K can be

• the naive kernel: K(x) = 1{|x|≤1};

• the quadratic kernel: K(x) = (1− |x|2)+;

• the Gaussian kernel: K(x) = e−|x|2 .

We refer to, e.g., Györfi et.al [13] for the theory of nonparametric estimation of the conditional
expectations.
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Figure 3.6.2: The stock prices of Tokyu Corp. from 2016/1/4 to 2018/9/4 (blue line), and a
sample path of the SDE estimated by the kernel regression (red line). The quadratic kernel
K(x) = (1− |x|2)+ with h = 0.8 is used.

Problem 3.29. Perform the kernel-based estimation above using simulated paths from a geo-
metric Brownian motion as the sample data. Observe how different the original model and the
estimated one are.

Now let us see the theoretical side. To guarantee the consistency of the estimators, we impose
the following conditions on the coefficients of the SDE to be estimated:

Assumption 3.30

(i) There exists a positive constant C0 such that

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ C0|x− y|, x, y ∈ D.

(ii) For every open and bounded set A ⊂ D,

min
x∈A

aii(x) > 0

for some i ∈ {1, . . . , d}, where A is the closure of A.

(iii) There exists a function φ : Rd \ {0} → R of the class C2 such that

b(x)TDφ(x) +
1

2
tr(a(x)D2φ(x)) ≤ 0, x ∈ Rd \ {0},

and that the function r 7→ min|x|=r φ(x) is strictly increasing and diverges to infinity
as r →∞.

It is known that, under Assumption 3.30, there exists a σ-finite measure ν on (D,B(D))
such that

ν(A) =

∫
D
P(X0,x

t ∈ A)ν(dx), A ∈ B(D). (3.6.6)

We restrict ourselves to the case where the kernel K is of the form K(x) =
∏d

i=1 ρ(xi) for
x = (x1, . . . , xd)

T ∈ Rd. Moreover, we make the following conditions on ρ:
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Assumption 3.31

(i) The function ρ is nonnegative, bounded, continuous, symmetric function on R with∫
R ρ(s)ds = 1,

∫
R ρ

2(s)ds <∞, and
∫
R s

2ρ(s)ds <∞.

(ii) There exists a nonnegative function H on Rd × (0,∞) such that

|K(x)−K(ξ)| ≤ H(ξ, ε)|x− ξ|

for x, ξ ∈ Rd satisfying |x− ξ| < ε and that

lim
ε→0

∫
Rd

H(ξ, ε)dξ <∞,
∫
D
H(ξ, ε)ν(dξ) <∞

for any ε > 0.

Further, we introduce the quantity

L̂n,T (T, x) = ∆

n∑
i=1

Kh(Xi∆ − x), x ∈ D,

and impose the following conditions on this and the other parameters:

Assumption 3.32

When n, T →∞, we have ∆n,T → 0, hn,T → 0, and

L̂n,T (T, x)→ 0, (∆n,T log(1/∆n,T ))
1/2 h−d

n,T → 0, a.s.,

for any x ∈ D.

Under the assumptions above, we have the following consistency results:

Theorem 3.33

Suppose that Assumptions 3.30–3.32 hold. Then, for any x ∈ D, we have

b̂n,T (x)→ b(x), ân,T (x)→ a(x), a.s.,

as n, T →∞.

For a proof of this theorem we refer to Bandi and Moloche [1], where the asymptotic normality
of the estimators are also obtained under additional conditions.

3.7 Weak Solutions

Here we introduce the notion of weak solutions of SDEs, which differ from solutions of SDEs
appeared in previous sections in that a filtered probability space and a Brownian motion are
parts of the solution.

Let b : [0, T ]× Rd → Rd and σ : [0, T ]× Rd → Rd×m be Borel measurable.

Definition 3.34. A 6-tuple (Ω,F ,F,P,W,X) is said to be a weak solution of (3.1.3) if

(i) (Ω,F ,P) is a complete probability space with filtration F = {Ft}0≤t≤T satisfying the usual
conditions;

(ii) W = {Wt}0≤t≤T is an m-dimensional F-Brownian motion and X = {Xt}0≤t≤T is a d-
dimensional process defined on (Ω,F ,P);
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(iii) X is a solution of (3.1.3) in the sense of Definition 3.1, where W is the given Brownian
motion.

Solution of SDEs where a filtered probability space (Ω,F ,F) and a Brownian motion W are
fixed a priori, i.e., solutions introduced in Section 3.2, are actually called strong solutions for
SDEs. By definition, a strong solution of (3.1.3) is a weak solution of (3.1.3). The notion of
weak solutions is often natural in application since in many cases of modeling we cannot specify
a probability space and Brownian motion a priori, and is even useful in theory since we can
show the existence of solutions under weaker conditions on the drift term b(t, x).

We say that the weak solution of (3.1.3) is unique in the sense of probability law if any two
weak solutions (Ω,F ,F,P,W,X) and (Ω̃, F̃ , F̃, P̃, W̃ , X̃) of (3.1.3) with

P(X0 ∈ A) = P̃(X0 ∈ A), A ∈ B(Rd),

we have
P(X ∈ Γ) = P̃(X ∈ Γ), Γ ∈ B(Wd).

Thus, by Proposition 3.23, the uniqueness in this sense holds if two solutions have the same
finite dimensional distributions.

Example 3.35. Consider the one-dimensional SDE

dXt = sgn(Xt)dWt, X0 = 0, (3.7.1)

where sgn(x) = 1 for x > 0 and = −1 for x ≤ 0. Let us see that this SDE has a weak solution
but does not admit a strong solution. Let {Xt} be a one dimensional Brownian motion on a
given (Ω,F ,P). Then,

Wt :=

∫ t

0
sgn(Xs)dXs

is a martingale with respect to F = {Ft}, the augmented natural filtration generated by {Xt}.
Since {Wt} is an Itô process,∫ t

0
sgn(Xs)dWs =

∫ t

0
sgn(Xs)

2dXs = Xt.

Thus {Xt} and {Wt} satisfy (3.7.1). Observe dWtdWt = dt and so by Itô’s formula,

E[eiξ(Wt−Ws)|Fs] = 1− ξ2

2

∫ t

s
E[eiξ(Wu−Ws)|Fs]du,

for 0 ≤ s ≤ t ≤ T and ξ ∈ R, where i denotes the imaginary unit. Solving this equation, we
obtain

E[eiξ(Wt−Ws)|Fs] = e−ξ2(t−s)/2,

whence {Wt} is a {Ft}-Brownian motion. Therefore (Ω,F ,F,P,W,X) is a weak solution of
(3.7.1).

On the other hand, suppose that {Xt} satisfies (3.7.1) on a given filtered space (Ω,F ,F,P)
and for a given F-Brownian motion {Wt}. This means in particular that

σ(Xs : 0 ≤ s ≤ t) ⊂ σ(σ(Ws : 0 ≤ s ≤ t) ∪N ) (3.7.2)

where N denotes the P-null sets from F . Then, the above arguments shows that {Xt} is
necessarily a Brownian motion and

Wt =

∫ t

0
sgn(Xs)dXs.
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Applying Tanaka’s formula (see, e.g., [31, Chapter 4]) for the right-hand side, we have

Wt = |Xt| − lim
ε↘0

1

2ε
Leb(0 ≤ s ≤ t : |Xs| ≤ ε), 0 ≤ t ≤ T, P-a,s.,

where Leb denotes the Lebesgue measure on [0, T ]. This leads to

σ(Ws : 0 ≤ s ≤ t) ⊂ σ(σ(|Xs| : 0 ≤ s ≤ t) ∪N ) ⊊ σ(σ(Xs : 0 ≤ s ≤ t) ∪N ),

contradicting to (3.7.2).

Using Girsanov’s theorem (see Section 2.3), we can obtain the existence and uniqueness of
weak solutions for SDEs with measurable drift. Namely, we can remove the continuity condition
for the drift coefficients in the framework of weak solutions.

Suppose that σ is an Rd×d-valued function on [0, T ]× Rd satisfying the following condition:
the inverse σ−1(t, x) exists for all (t, x) ∈ [0, T ]×Rd; σ−1 is bounded on [0, T ]×Rd; the Lipschitz
continuity condition imposed in Theorem 3.2 holds. Further, let {Wt} be a d-dimensional
F = {Ft}-Brownian motion on a given (Ω,F ,P). Then there exists a unique strong solution
{Xt}0≤t≤T of the SDE

dXt = σ(t,Xt)dWt, X0 = ξ

for a given ξ ∈ L2(Ω,F0,P). Let b : [0, T ] × Rd → Rd be bounded and Borel mesurable. Then,
by Girsanov’s theorem (Theorem 2.23),

Bt :=Wt −
∫ t

0
(σ−1b)(s,Xs)ds, 0 ≤ t ≤ T,

is a d-dimensional Brownian motion under the probability measure Q on (Ω,F) defined by

dQ
dP

= exp

[∫ T

0
(σ−1b)(t,Xt)dWt −

1

2

∫ T

0
|(σ−1b)(t,Xt)|2dt

]
.

Since {Wt} and {Bt} are Itô-processes under both P and Q, we have∫ t

0
σ(Xs)dBs =

∫ t

0
σ(Xs)dWs −

∫ t

0
b(s,Xs)ds, 0 ≤ t ≤ T, P and Q-a.s.

Thus, (Ω,F ,F,Q, {Bt}, {Xt}) is a weak solution of (3.1.3).

Theorem 3.36

Let b : [0, T ] × Rd → Rd be bounded and Borel measurable, and σ : [0, T ] × Rd → Rd×d

satisfies the following condition: the inverse σ−1(t, x) exists for all (t, x) ∈ [0, T ] × Rd;
σ−1 is bounded on [0, T ]×Rd; the Lipschitz continuity condition imposed in Theorem 3.2
holds. Then (3.1.3) admits a weak solution that is unique in the sense of probability law.

Proof*. The existence is proved by the argument above. To show the uniqueness, let (Ω,F ,F,P,W,X)
be a weak solution (3.1.3) with initial distribution

µ0(A) := P(X0 ∈ A), A ∈ B(Rd),

Define the probability measures Q on (Ω,F) by

dQ
dP

= exp

[
−
∫ T

0
(σ−1b)(t,Xs)dWs −

1

2

∫ T

0
|(σ−1b)(t,Xt)|2dt

]
.
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Then,

Bt :=Wt +

∫ t

0
(σ−1b)(s,Xs)ds, 0 ≤ t ≤ T,

is an F-Brownian motion under Q. The process {Xt} is a unique strong solution of

dXt = σ(t,Xt)dBt

under Q, whence σ(Xs : 0 ≤ s ≤ t) ⊂ Gt := σ(X0, {Bs}s≤t,N ), where N denotes the collections
of Q-null sets. Thus, {(σ−1b)(t,Xt)} is a {Gt}-progressively measurable and so is {Wt}. Since the
integral

∫ t
0 (σ

−1b)(s,Xs)dWs is an L2-limit of some Gt-measurable random variables. Therefore,
X = F (X0, {Bt}0≤t≤T ) and dQ/dP = G(X0, {Bs}0≤s≤T ) a.s. for some measurable function F
and G on (Rd × C([0, T ];Rd),B(Rd)× B(Wd)), respectively. This means that for Γ ∈ B(Wd)

P(X ∈ Γ) = EQ

[
1{F (X0,{Bt}0≤t≤T )∈Γ}G(X0, {Bs}0≤s≤T )

]
=

∫
{F∈Γ}

G(x, ξ)µ0(dx)µW (dξ),

where µW denotes the Wiener measure. It is clear that F and G do not depend on a particular
choice of weak solution, whence the uniqueness in the sense of probability law follows.

3.8 Time Reversal

Consider a solution {Xt} of the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (3.8.1)

and the process Xt := XT−t. Our aim here is to find a reverse-time SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dW t

for Xt. More precisely, we aim to prove that {Xt} is a weak solution of the SDE above for
appropriate b and σ. Of course we want to give explicit representations for these functions.

In this section, we assume that {Wt}0≤t≤T is a d-dimensional F-Brownian motion. Let ξ be
an Rd-valued F0-measurable random variable such that

E|ξ|2 <∞.

Let F = {F t}0≤t≤T be the augmented natural filtration generated by X, i.e., F t = σ(σ(Xs; s ≤
t) ∪N ), 0 ≤ t ≤ T .

Assumption 3.37

The functions b and σ satisfy the following:

(i) The inverse matrix σ−1(t, x) exists for any t ∈ [0, T ] and x ∈ Rd.

(ii) There exists a positive constant C such that for φ = bi, σij , (σ−1)ij , i, j = 1, . . . , d,
t ∈ [0, T ], x, y ∈ Rd,

|φ(t, x)− φ(t, y)| ≤ C|x− y|,
|bi(t, x)| ≤ C(1 + |x|).

(iii) σ ∈ C1,2([0, T ]× Rd).

Under Assumption 3.37, by Theorem 3.2 there exists a unique strong solutionX = {Xt}0≤t≤T

of (3.8.1) with X0 = ξ.
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Assumption 3.38

The distribution of ξ has a continuous density ρ0. Moreover, There exists a transition
density p(t, x, s, y) of X that is everywhere positive such that the following hold:

(i) for any y ∈ Rd the function (t, x) 7→ p(t, x, T, y) is in C1,2([0, T )× Rd);

(ii) for any t < T and x ∈ Rd, the functions ∂tp(t, x, T, y), ∂xip(t, x, T, y),
∂2xixj

p(t, x, T, y), i, j = 1, . . . , d, are all continuous in y on Rd;

Under Assumption 3.38, the density p(t, x) of Xt exists and is given by

p(t, x) =

∫
Rd

p(0, y, t, x)ρ0(y)dy, 0 ≤ t ≤ T, x ∈ Rd.

Put a = (aij)1≤i,j≤d = σσT. We further make the following assumption:

Assumption 3.39

For any t ≤ T the function p(t, ·) is C1(Rd) and satisfies∫ T

0

∫
Rd

|∂yi(aij(t, y)p(t, y))|dydt <∞, i, j = 1, . . . , d.

Introduce another drift function b̃ = (b̃1, · · · , b̃d) defined by

b̃i(t, x) = bi(t, x)− 1

p(t, x)

d∑
j=1

∂xj

(
aij(t, x)p(t, x)

)
.

Further, define b(t, x) = (b
1
(t, x), · · · , bd(t, x)) and σ(t, x) = (σij(t, x))1≤i,j≤d by

b
i
(t, x) = −bi(T − t, x) + 1

p(T − t, x)

d∑
j=1

∂xj

(
aij(T − t, x)p(T − t, x)

)
,

σ(t, x) = σ(T − t, x)

for i = 1, . . . , d and (t, x) ∈ [0, T ]× Rd. Notice that by Assumption 3.39,∫ T

0
E
∣∣(p−1∂xi(a

ijp))(r,Xr)
∣∣ dr = ∫ T

0

∫
Rd

∣∣∂xi(a
ijp)(r, x)

∣∣ dxdr <∞.
This means ∫ T

0
|b(r,Xr)|dr <∞, a.s.

Here is a main result in this section.
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Theorem 3.40

Suppose that Assumptions 3.37–3.39 hold. Then there exists a d-dimensional F-Brownian
motion W = {W t}0≤t≤T such that

Xt = X0 +

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dW s.

Moreover, the process {Xt} is represented as

XT = Xt +

∫ T

t
b̃(s,Xs)ds+

∫ T

t
σ(s,Xs)

←−
dBs,

where Bt = (B1
t , . . . , B

d
t ) is given by

Bi
t =W i

t +

∫ t

0

1

p(s,Xs)

d∑
j=1

∂xj

(
σij(s,Xs)p(s,Xs)

)
ds, i = 1, . . . , d

and is a d-dimensional Brownian motion such that Bt−Bs is independent of σ(Xu;u ≥ t)
for any t > s.

Remark 3.41. Actually, the assumptions imposed in Theorem 3.40 can be slightly weakened.
More general analysis can be found in Haussmann and Pardoux [15].

The rest of this section is devoted to a proof of Theorem 3.40. From now on, we suppose
Assumptions 3.37–3.39 always hold. For simplicity we shall assume that T = 1 and d = 1. Thus
we suppress the superscript that used for d-dimensional vectors and d × d-matrices. E.g., we
write b(t, x) for b1(t, x).

We start by proving the Markovian property of X.

Proposition 3.42

The process {Xt}0≤t≤1 is Markov.

Proof. Let t > s. As a generalization of the Markov property of {Xt}, we actually have

E[G(X·∨(1−s))|F1−s] = E[G(X·∨(1−s)|X1−s] =: g(X1−s)

for any bounded Borel measurable function G on Wd. See, e.g. [31, Chapter 7]. Thus, for any
bounded Borel function f on Rd,

E[f(X1−t)G(X·∨(1−s))] = E[f(X1−t)g(X1−s)] = E [E[f(X1−t)|X1−s]g(X1−s)]

= E
[
E[f(X1−t)|X1−s]G(X·∨(1−s))

]
.

This leads to
E[f(Xt)1A] = E[E[f(Xt)|Xs]1A], A ∈ σ(Xu;u ≥ 1− s),

whence the proposition follows.

The following is a key result:
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Lemma 3.43

Let f ∈ C∞
c (R). For t > s we have

E[f(Xt)− f(Xs)|Xs] =

∫ t

s
E[Lrf(Xr)|Xs]dr,

where

Lr = b(r, x)f ′(x) +
1

2
σ2(r, x)f ′′(x).

Proof. Let t > s be fixed. Observe

f(Xt)− f(Xs) = −(f(X1−s)− f(X1−t))

= −
[∫ 1−s

1−t
Lrf(Xr)dr +

∫ 1−s

1−t
(σf ′)(r,Xr)dWr

]
.

where Lrf(x) = b(r, x)f ′(x) + (1/2)σ2(r, x)f ′′(x). Let ϕ ∈ C∞
c (R) be arbitrary. Consider the

function V (r, y) := E[ϕ(Xr,y
1−s)] defined for 0 ≤ r ≤ 1 − s and y ∈ R. By Assumption 3.38, the

function V is represented as

V (r, y) =

∫
Rd

ϕ(z)p(r, y, 1− s, z)dz

and in C1,2([0, 1− s)× R). Since X is F-Markov,

Vr := V (r,Xr) = E[ϕ(X1−s)|Fr]

and so {Vr}0≤r≤1−s is an F-martingale.
Choose ε > 0 so that 1− t ≤ 1− s− ε. Itô formula yields

V1−s−ε = V1−t +

∫ 1−s−ε

1−t
(∂r + Lr)V (r,Xr)dr +

∫ 1−s−ε

1−t
(∂xV σ)(r,Xr)dWr.

Applying Lemma 2.13, we get (∂r + Lr)V (r,Xr) = 0, a.e., whence

Vr = V1−t +

∫ r

1−t
(∂xV σ)(u,Xu)dWu, 0 ≤ r ≤ 1− s− ε.

The product Itô formula gives

df(Xr)Vr = Vr(Lrf(Xr)dr + (σf ′)(r,Xr)dWr) + f(Xr)dVr + (∂xV σ
2f ′)(r,Xr)dr.

Since f ∈ C∞
c (R), the Itô integral in the equality just above is a martingale. Thus,

E[f(X1−s−ε)V1−s−ε] = E[f(X1−t)V1−t] +

∫ 1−s−ε

1−t
E
[
VrLrf(Xr) + (∂xV σ

2f ′)(r,Xr)
]
dr.

The integration-by-parts formula yields

E
[
(∂xV σ

2f ′)(r,Xr)
]
= −

∫ ∞

−∞
V (r, x)∂x((σ

2pf ′)(r, x))dx

= −
∫ ∞

−∞
V (r, x)

(
∂x(σ

2p)f ′ + σ2pf ′′
)
(r, x)dx

= −E[(V p−1∂x(σ
2p)f ′)(r,Xr)]− E[(V σ2f ′′)(r,Xr)],
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whence

E[f(X1−s−ε)V1−s−ε] = E[f(X1−t)V1−t]−
∫ 1−s−ε

1−t
E
[
VrL1−rf(Xr)

]
dr.

Letting ε→ 0 and using the martingale property of V , we obtain

E[f(X1−s)ϕ(X1−s)] = E
[(
f(X1−t)−

∫ 1−s

1−t
L1−rf(Xr)dr

)
ϕ(X1−s)

]
,

Since ϕ is arbitrary, the lemma follows.

Proof of Theorem 3.40. Step (i). Define the process {Mt} by

Mt = Xt −X0 −
∫ t

0
b(r,Xr)dr, 0 ≤ t ≤ 1.

For N ≥ 1, take fN , gN ∈ C∞
c (R) such that fN (x) = x and gN (x) = x2 for |x| ≤ N . Consider

the stopping time τN = inf{t ≥ 0; |Xt| > N}. By Proposition 3.42 and Lemma 3.43, for t > s
and φ = fN , gN ,

E
[
φ(Xt)− φ(Xs)

∣∣Fs

]
−
∫ t

s
E
[
Lrφ(Xr)

∣∣Fs

]
dr

= E
[
Xt −Xs

∣∣Xs

]
−
∫ t

s
E
[
Lrφ(Xr)

∣∣Xs

]
dr = 0.

whence {φ(Xt)} is a continuous F-martingale. Since fN (Xt∧τN ) = Xt∧τN and LrfN (Xr) =
b(r,Xr) for r ≤ τN , the process {Mt} is an F-local martingale.

Similarly, with the function gN , by Proposition 3.42 and Lemma 3.43, we see that

M̃t := X
2
t −X

2
0 −

∫ t

0

(
2b(s,Xs)Xs + σ2(s,Xs)

)
ds

is an F-local martingale.
By the definition of the quadratic variation (Definition 2.35),

M̃t + 2

∫ t

0
b(s,Xs)Xsds = X

2
t −X

2
0 −

∫ t

0
σ2(s,Xs)ds

= 2

∫ t

0
XsdXs + 〈M〉t −

∫ t

0
σ2(s,Xs)ds

= 2

∫ t

0
b(s,Xs)Xsds+ 2

∫ t

0
XsdMs + 〈M〉t −

∫ t

0
σ2(s,Xs)ds.

From this,

〈M〉t −
∫ t

0
σ2(s,Xs)ds = M̃t − 2

∫ t

0
XsdMs.

The right-hand side in the equality just above is a local martingale. So by the uniqueness of
〈M〉 (Theorem 2.28),

〈M〉t =
∫ t

0
σ2(s,Xs)ds.

By Assumption 3.37, the process

W t :=

∫ t

0
σ−1(s,Xs)dMs, 0 ≤ t ≤ 1,
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is inMloc and satisfies

〈W 〉t =
∫ t

0

(
σ−1(s,Xs)

)2
d〈M〉s =

∫ t

0

(
σ−1(s,Xs)

)2
σ(s,Xs)

2ds = t.

So we can apply Lévy’s theorem (Theorem 2.45) to deduce that W is an F-Brownian motion.
With this W , we have the representation

Xt −X0 −
∫ t

0
b(s,Xs)ds =Mt =

∫ t

0
σ(s,Xs)dW s.

Step (ii). Define the process B = {Bt} by Bt = W 1−t −W 1. It is straightforward to see
that B is a Brownian motion. Let t > s. It follows from Bt − Bs = −(W 1−s −W 1−t) and
F1−t ⊃ σ(Xr; r ≥ t) that Bt −Bs is independent of σ(Xr; r ≥ t).

For a fixed t ≥, take an arbitrary partition {ti}ni=0 of [1− t, 1] such that 1− t = t0 < · · · <
tn = 1. Using the result from Problem 2.34, we find∫ 1

1−t
σ−1(r,Xr)dXr = lim

∆→0

n−1∑
i=0

σ−1(ti, Xti)(Xti+1 −Xti)

= − lim
∆→0

n−1∑
i=0

σ−1(1− ti, X1−ti)(X1−ti −X1−ti+1)

in probability, where ∆ = maxi(ti+1 − ti). Put si = 1 − tn−i. Then 0 = s0 < · · · < sn = 1 − t
and ∆ = maxi(si+1 − si). The observation just above means that the limit

lim
∆→0

n∑
i=1

σ−1(si, Xsi)(Xsi −Xsi−1)

exists in probability, whence by Definition 2.43∫ 1

1−t
σ−1(r,Xr)dXr = −

∫ t

0
σ−1(r,Xr)

←−
dXr.

Since we have assumed that σ is positive and a C1,2-function, we see

dσ−1(t,Xt) =

(
∂tσ

−1 + b∂xσ
−1 +

1

2
σ2∂2xxσ

−1

)
(t,Xt)dt+ (∂xσ

−1(t,Xt))σ(t,Xt)dWt

and so
d〈σ−1(·, X·), X〉t = (∂xσ

−1(t,Xt))σ
2(t,Xt)dt = −∂xσ(t,Xt)dt.

Therefore by Proposition 2.44,∫ t

0
σ−1(r,Xr)

←−
dXr =

∫ t

0
σ−1(r,Xr)dXr + 〈σ−1(·, X·), X〉t =Wt +

∫ t

0
(σ−1b− ∂xσ)(r,Xr)dr.

So,

Bt = −
∫ 1

1−t
σ−1(r,Xr)(dXr − b(r,Xr)dr) =

∫ t

0
σ−1(r,Xr)

←−
dXr −

∫ t

0
(σ−1b̃)(r,Xr)dr

=Wt +

∫ t

0
(p−1∂x(σp))(r,Xr)dr.

In particular, B is an F-semimartingale. Again by Proposition 2.44,∫ 1

t
σ(r,Xr)

←−
dBr =

∫ 1

t
σ(r,Xr)dBr+〈σ(·, X·), B〉t =

∫ 1

t
σ(r,Xr)dWr+

∫ 1

t
(p−1∂x(σ

2p))(r,Xr)dr.

From this we obtain

X1 = Xt+

∫ 1

t
b(r,Xr)dr+

∫ 1

t
σ(r,Xr)dWr = Xt+

∫ 1

t
(b−p−1∂x(σ

2p))(r,Xr)dr+

∫ 1

t
σ(r,Xr)

←−
dBr,

as wanted.

79



CHAPTER 4

Stochastic Controls

The term stochastic controls generally refers to the optimization problems defined for stochastic
dynamical systems with control inputs. Here we present a basic approach to stochastic controls
in the framework of SDEs. We refer to Øksendal [31], Fleming and Rishel [10], Bensoussan [4],
Fleming and Soner [11], Pham [32], Yong and Zhou [40], and to the lecture notes Touzi [36] and
van Handel [37] for more quick overviews and for more detailed accounts.

Throughout this chapter, T ∈ (0,∞) is a fixed constant representing a time maturity, and
we assume that {Wt}0≤t≤T is an m-dimensional Brownian motion unless stated otherwise.

4.1 Optimization Problems

We consider the stochastic dynamical systems with control input through the SDEs with exoge-
nous variables. Namely, we consider the controlled stochastic differential equations, described in
the form

dXs = b(s,Xs, αs)ds+ σ(s,Xs, αs)dWs. (4.1.1)

We call {αt} a control process. Suppose that our objective is to optimize a performance of
the controlled SDEs with suitable criterion over control processes. This leads to the following
optimization problem:

min
{αt}0≤t≤T

E
[∫ T

0
f(s,Xs, αs)ds+ g(XT )

]
. (4.1.2)

The function g evaluates the terminal value of the SDE and f indicates a running cost. The
problem (4.1.2) is generally called a stochastic control problem.

Before discussing the stochastic control problems rigorously, we shall present a few examples.

Example 4.1 (Merton Problem [26], [27]). Let St be the price of a stock at time t, and Bt the
price of a riskless bond at time t. Suppose that we are in a position to invest our wealth into
these two assets by dynamically changing the fraction of the wealth to the stock. Denote by Xt

our wealth at time t. If we have ϕt shares of the stock at time t, then the resulting fraction αt

to the stock is

αt =
ϕtSt
Xt

,

whence ϕt = αtXt/St. The remaining fraction 1 − αt is invested into the riskless bond, and so
the number of shares invested into the riskless bond at time t is (1−αt)Xt/Bt. Thus, assuming
there is neither income nor consumption in the period [t, t+∆t], we obtain

Xt+∆t −Xt =
αtXt

St
(St+∆t − St) +

(1− αt)Xt

Bt
(Bt+∆t −Bt).
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This leads to the SDE
dXt

Xt
= αt

dSt
St

+ (1− αt)
dBt

Bt
(4.1.3)

for the wealth process. In the simplest case, the price dynamics of the two assets are assumed
to be described respectively by

dSt = St(bdt+ σdWt),

dBt = rBtdt,

where m = 1, and b, σ, r are constants with σ > 0 and r ≥ 0. Then (4.1.3) turns out to be

dXt = Xt[r + (b− r)αt]dt+XtαtdWt. (4.1.4)

The investor’s problem here is to maximize the expected utility of the wealth

E[U(XT )] (4.1.5)

over all portfolio proportion processes {αt}. Here U : (0,∞) → R satisfies U ′ > 0 and U ′′ < 0,
which is called a utility function.

Example 4.2 (Aircraft trajectory planning [25]). Consider an aircraft’s motion in the 2-dimensional
horizontal plane. We assume that the local navigation frame is described by the 2-dimensional
Euclidean plane where x-axis points the east and y-axis points the north. Then, the state Xt

of the aircraft is described by a vector in R2. We further assume that the current heading of
the aircraft is determined by the control variable αt ∈ A = [0, 2π). With these assumptions, the
dynamic of Xt can be described by

dXt =

(
cos(αt)
sin(αt)

)
vcdt+ dYt.

where vc is the aircraft’s cruise speed, assumed to be constant, and Yt = Yt(x) describes the
wind disturbance at the position x. A simple model for the wind disturbance is

dYt(x) = y(t, x)dt+ σ(t, x)dWt.

Here y(t, x) describes a mean behavior of the wind, which is a deterministic vector field, and
σ(t, x) is a magnitude of random fluctuations at (t, x), both of which are estimated by weather
charts. Further, Wt is a 2-dimensional Brownian motion. Thus, the controlled process Xt is
given by

dXt =

[(
cos(αt)
sin(αt)

)
vc + y(t,Xt)

]
dt+ σ(t,Xt)dWt.

The objective of the trajectory planning here is to control the movement of the airplane so as
to enter a given area S0 at the terminal time T while avoiding a forbidden area S1. Then the
problem is

min
{αt}

E
[
d(XT , S0) + λ

∫ T

0
e−γd(Xt,S1)dt

]
,

where λ, γ > 0 and d(x, S1) denotes a distance between a point x ∈ Rd and a set S ⊂ R2.

We turn to the rigorous formulation. In what follows, we fix an F0-measurable random
variable X0 ∈ L2 and a closed subset A of Rd1 . We assume that the evaluation functions g on
Rd and f on [0, T ]× Rd × A are Borel measurable. Denote by A the collection of all processes
α = {αt}0≤t≤T such that

(i) α is A-valued and F-adapted;
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(ii) the SDE (4.1.1) has a unique solution {Xα
t }0≤t≤T with initial condition Xα

0 = X0;

(iii) The criterion is finite, i.e.,

E
[∫ T

0
f(s,Xα

s , αs)ds+ g(Xα
T )

]
is finite.

We call elements in A control processes. Then, given a subset Ã ⊂ A, our stochastic control
problem is describe by

inf
α∈Ã

E
[∫ T

0
f(s,Xα

s , αs)ds+ g(Xα
T )

]
. (4.1.6)

• We say that (4.1.6) is a finite time horizon problem.

• The stochastic control problem

inf
α∈Ã

E
[∫ τα

0
f(s,Xα

s , αs)ds+ g(Xα
τα)

]
,

where τα is the first exit time of {X0,x,α
s } from a given set S ⊂ Rd, is called an indefinite

time horizon problem, and the one

inf
α∈Ã

E
∫ ∞

0
e−λsf(s,Xα

s , αs)ds,

where λ ≥ 0, is called an infinite time horizon problem. The both problems have many
important applications. However, we omit to deal with them for simplicity of the presen-
tation.

• Suppose that {X∗
t }0≤t≤T is a unique solution of

dX∗
t = b(t,X∗

t , a(t,X
∗
t ))dt+ σ(t,X∗

t , a(t,X
∗
t ))dWt

for some Borel function a and that α∗
t := a(t,X∗

t ), 0 ≤ t ≤ T , is in A. Then, by the
uniqueness, Xα∗

t = X∗
t . We call such α∗ a Markov control.

• Of course αt := a(t,max0≤s≤tX
∗
s ), 0 ≤ t ≤ T , is not a Markov control. Thus, in general,

the controlled SDEs (4.1.1) differ from those considered in Chapter 3 in that the former
depends on possibly non-Markovian processes.

To discuss the existence and uniqueness of (4.1.1), we assume here that b : [0, T ]×Rd×A→
Rd and σ : [0, T ]×Rd×A→ Rd×m continuous functions and that there exists a positive constant
C0 such that for (t, x, y, a) ∈ [0, T ]× Rd × Rd ×A,

|b(t, x, a)− b(t, y, a)|+ |σ(t, x, a)− σ(t, y, a)| ≤ C0|x− y|, (4.1.7)

and that

E
∫ T

0

(
|b(t, 0, αt)|2 + σ(t, 0, αt)|2

)
dt <∞ (4.1.8)

for a given A-valued and adapted process α.
We can apply the same argument as in the proof of Theorem 3.2 to obtain the following:

Theorem 4.3

Suppose that the conditions (4.1.7) and (4.1.8) hold. Then, there exists a unique solution
{Xα

t }0≤t≤T of (4.1.1) with initial condition Xα
0 = X0.
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Actually, Theorem 4.3 is a corollary of the following result:

Theorem 4.4

Let t ∈ [0, T ]. Consider the equation

Xs = ξ +

∫ s

t
b̄(s,Xs)ds+

∫ s

t
σ̄(s,Xs)dWs, t ≤ s ≤ T, (4.1.9)

where ξ, b̄ : Ω× [t, T ]× Rd and σ̄ : Ω× [t, T ]× Rd×m satisfy

(i) ξ is an Rd-valued and Ft-measurable random variable with E|ξ|2 <∞.

(ii) b̄(s, x) and σ̄(s, x) are adapted for each (s, x) ∈ [t, T ]× Rd.

(iii) There exists a positive constant C1 such that

|b̄(s, x)− b̄(s, y)| ≤ C1|x− y|, s ∈ [t, T ], x, y ∈ Rd.

(iv) The processes {b̄(s, 0)} and {σ̄(s, 0)} are in L2, i.e.,

E
∫ T

t

(
|b̄(s, 0)|2 + |σ̄(s, 0)|2

)
dt <∞.

Then, there exists a unique solution {Xs}t≤s≤T of (4.1.9) satisfying E supt≤s≤T |Xs|2 <∞.

• As in Chapter 3, we write {Xt,ξ,α
s }t≤s≤T for the unique solution of (4.1.1) with initial

condition Xt,ξ,α
t = ξ.

4.2 Verification Theorem

Consider the following nonlinear second order PDE, called the Hamilton-Jacobi-Bellman (HJB)
equation:

∂tV (t, x) + inf
a∈A

Ha(t, x,DV (t, x), D2V (t, x)) = 0, (t, x) ∈ [0, T )× Rd,

V (T, x) = g(x), x ∈ Rd.
(4.2.1)

A central tool for solving stochastic control problems is the HJB equation, which character-
izes the value function of the stochastic control problems. Once a candidate value function is
identified, one needs to verify that it indeed represents the optimal cost. The purpose of this
section is to provide a rigorous formulation of this verification step. The verification theorem
establishes sufficient conditions under which a suitably smooth solution of the HJB equation
coincides with the value function and yields an optimal control.
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Theorem 4.5: Verification theorem

Suppose that there exists a C1,2-function V on [0, T ] × Rd that is a solution of (4.2.1).
Suppose moreover that the following are satisfied:

(i) For every α ∈ Ã,

E

[
sup

0≤t≤T
|V (t,Xα

t )|+
∫ T

0
|f(t,Xα

t , αt)|dt

]
<∞.

(ii) There exists a Borel function a∗ on [0, T ]× Rd such that

inf
a∈A

Ha(t, x,DV (t, x), D2V (t, x)) = Ha∗(t,x)(t, x,DV (t, x), D2V (t, x)), (t, x) ∈ [0, T ]×Rd.

(iii) There exists a unique solution {X∗
t }0≤t≤T of the SDE

dX∗
t = b(t,X∗

t , a
∗(t,X∗

t ))dt+ σ(t,X∗
t , a

∗(t,X∗
t ))dWt, X∗

0 = X0.

(iv) The process α∗
t := a∗(t,X∗

t ), 0 ≤ t ≤ T , belongs to Ã.

Then α∗ is optimal for the problem (4.1.6).

Proof. For α ∈ Ã and n ∈ N define the stopping time ταn by

ταn = inf{t ∈ [0, T ] : |Xα
t | > n} ∧ T.

Then, using Itô formula and (4.2.1), we have

E
[∫ ταn

0
f(s,Xα

s , αs)ds+ V (ταn , X
α
ταn
)

]
≥ E[V (0, X0)].

Then, by the dominated convergence theorem,

E
[∫ T

0
f(s,Xα

s , αs)ds+ g(Xα
T )

]
≥ E[V (0, X0)],

whence

inf
α∈Ã

E
[∫ T

0
f(s,Xα

s , αs)ds+ g(Xα
T )

]
≥ E[V (0, X0)].

On the other hand, by the uniqueness, Xα∗
t = X∗

t , 0 ≤ t ≤ T , a.s. Thus, using the conditions
in Theorem 4.5 and the localizing argument as in above,

E
[∫ T

0
f(s,Xα∗

s , α∗
s)ds+ g(Xα∗

T )

]
= E[V (0, X0)]

≤ inf
α∈Ã

E
[∫ T

0
f(s,Xα

s , αs)ds+ g(Xα
T )

]
.

Since α∗ ∈ Ã, we deduce that α∗ is optimal.

• It is straightforward to see that V coincides with the value function

v(t, x) := inf
α∈Ã

E
[∫ T

t
f(s,Xt,x,α

s , αs)ds+ g(Xt,x,α
T )

]
, (t, x) ∈ [0, T ]× Rd,
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where {Xt,x,α
s }t≤s≤T is a unique solution of

dXt,x,α
s = b(s,Xt,x,α

s , αs)ds+ σ(s,Xt,x,α
s , αs)dWs,

with initial condition Xt,x,α
t = x. That is, we have

v(t, x) = V (t, x), (t, x) ∈ [0, T ]× Rd,

provided that v is well-defined and the conditions in Theorem 4.5 hold.

Example 4.6 (Linear regulator problem). Consider the controlled SDE

dXα
t = (b(t)Xα

t + c(t)αt) dt+ σ(t)dWt, (4.2.2)

where b : [0, T ] → Rd×d, c : [0, T ] → Rd×d1 , and σ : [0, T ] → Rd×m, all of which are continuous.
The problem is to minimize

E
[
(Xα

T )
TRXα

T +

∫ T

0

{
(Xα

t )
TP (t)Xα

t + (αt)
TQ(t)αt

}
dt

]
over all Rd1-valued process α = {αt}0≤t≤T with each component belonging to L2. Here, R ∈ Sd
and the functions P : [0, T ]→ Sd, Q : [0, T ]→ Sd1 are assumed to be continuous and nonnegative
definite. Further, Q(t) is assumed to be positive definite for any t ∈ [0, T ]. By Theorem 4.3 (and
Theorem 4.4 or by a direct esitmation), there exists a unique solution {Xα

t }0≤t≤T of (4.2.2) for
any α = {αt}0≤t≤T as in above and initial condition X0 ∈ L2 such that E sup0≤t≤T |Xα

t |2 <∞.

Thus the criterion is always finite. So we take Ã to be the set of all Rd1-valued processes α such
that each component is in L2. Then Ã ⊂ A.

Theorem 4.5 suggests that if the HJB equation has an explicit solution then the solution
gives a candidate of an optimal solution. In our case,

Ha(t, x,Dv(t, x), D2v(t, x))

= (b(t)x+ c(t)a)TDV (t, x) +
1

2
tr(σ(t)σ(t)TD2V (t, x)) + xTP (t)x+ aTQ(t)a.

Therefore, the infimum of Ha’s is attained by

a∗(t, x) = −1

2
Q(t)−1DV (t, x)Tc(t).

In view of the linear-quadratic structure of the problem, we look for a solution V of the HJB
equation by assuming V (t, x) = xTF (t)x+G(t) for some deterministic functions F : [0, T ]→ Sd
and G : [0, T ]→ R. Substituting this form into the HJB equation, we see

xT
[
F ′(t)− F (t)c(t)Q(t)−1c(t)TF (t) + P (t) + b(t)TF (t) + F (t)b(t)

]
x

+G′(t) + tr(σ(t)σ(t)TF (t)) = 0

for (t, x) ∈ [0, T )× Rd, where L̇(t) = dL(t)/dt. This leads to the ODEs

F ′(t)− F (t)c(t)Q(t)−1c(t)TF (t) + P (t) + b(t)TF (t) + F (t)b(t) = 0, F (T ) = R, (4.2.3)

G′(t) + tr(σ(t)σ(t)TF (t)) = 0, G(T ) = 0.

It is known that there exists a solution of the matrix Riccati differential equation (4.2.3) (see
Theorem 5.2 in [10]). With this F , the function G is explicitly determined and so V (t, x) =
xTF (t)x+G(t) is a solution of the HJB equation. Consequently, a∗(t, x) = −Q(t)−1c(t)TF (t)x.
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Problem 4.7. In Example 4.6, complete the remaining arguments to be done and obtain an
optimal control using Theorem 4.5.

Problem 4.8. Try to find an optimal control for a more general problem than that in Example
4.6.

Before turning to next example, we observe that the following theorem holds:

Theorem 4.9

Let {bt}0≤t≤T and {σt}0≤t≤T be R-valued and Rm-valued adapted processes such that∫ T

0
|bt|dt+

∫ T

0
|σt|2dt <∞, a.s.,

respectively. Then there exists a unique solution {Zt}0≤t≤T of the SDE

dZt = Zt(btdt+ σTt dWt), Z0 = 1. (4.2.4)

Proof. Put

Yt =

∫ t

0

(
bs −

1

2
|σs|2

)
ds+

∫ t

0
σTs dWs, 0 ≤ t ≤ T.

Then, with Itô formula, it is straightforward to see that Zt := eYt , 0 ≤ t ≤ T , is a solution of
(4.2.4). Let Z ′

t, 0 ≤ t ≤ T , be another solution. Then, Itô formula yields dZ ′
te

−Yt = 0. Thus
Zt = Z ′

t, 0 ≤ t ≤ T .

Example 4.10 (Merton problem). Recall the investment problem in Example 4.1. By Theorem
4.9 there exists a unique solution {Xα

t }0≤t≤T of (4.1.4) for any R-valued adapted process α ∈
L2,loc, given by

Xt = X0 exp

[∫ t

0

(
r + (b− r)αs −

1

2
σ2α2

s

)
ds+ σ

∫ t

0
αsdWs

]
, 0 ≤ t ≤ T.

Here we take U(x) = xq, x > 0, for some q ∈ (0, 1), and then define Ã by the set of all R-valued
processes α ∈ L2,loc such that E sup0≤t≤T U(Xα

t ) < ∞. Moreover, we assume that X0 is a
positive constant.

To solve the control problem, we consider

Y α
t := q

∫ t

0

(
r + (b− r)αs −

1

2
σ2α2

s

)
ds+ qσ

∫ t

0
αsdWs, 0 ≤ t ≤ T.

as a state variable. Then the corresponding HJB equation is

∂tv(t, y) + sup
a∈R

Ha(y,Dv(t, y), D2v(t, y)) = 0, (t, y) ∈ [0, T )× R,

v(T, y) = ey, y ∈ R.
(4.2.5)

where

Ha(x, p, γ) = q(r + (b− r)a− 1

2
σ2a2)p+

1

2
q2σ2a2γ.

We look for a solution of (4.2.5) of the form v(t, y) = w(t)ey, where w is a positive deterministic
function. Substituting this form into (4.2.5), we observe

0 = ey
{
w′(t) + qw(t) sup

a∈R

[
r + (b− r)a− 1

2
(1− q)σ2a2

]}
= ey

{
w′(t) + qw(t)

[
r +

q(b− r)2

2σ2(1− q)

]}
,
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where the supremum is attained by a∗ := (b− r)/(σ2(1− q)). Thus, v(t, y) = exp(qθ(T − t)+ y)
with θ = r + (b− r)2/(2σ2(1− q)) is a solution of (4.2.5), and the constant control α∗

t := a∗ is
a candidate of an optimal portfolio proportion. By the verification theorem, we can show that
α∗ is indeed optimal.

Problem 4.11. In Example 4.10, check the conditions in Theorem 4.5 hold to confirm the
optimality of α∗. Doob’s maximal inequality will help you.

• As we have seen so far, the verification theorem gives a way of constructing an optimal
control. In particular, Theorem 4.5 gives sufficient conditions for which optimal control
exists.

• To apply Theorem 4.5 for applications, we need to obtain an explicit solution of the HJB
equation, which is rarely available, however. Even more, a classical solution may not exist.

As for the existence of optimal Markovian controls, we have the following result:

Theorem 4.12

Suppose that A is compact, b, σ, g are all bounded continuous functions, and f = 0.
Suppose moreover that the set

{(σ(t, x, a)σ(t, x, a)T, b(t, x, a)) : a ∈ A}

is convex for all (t, x) ∈ [0, T ] × Rd. Then, there exist a filtered probability space
(Ω∗,F∗,F∗,P∗), a process α∗ ∈ A, and a Borel function a∗ on [0, T ] × Rd such that
α∗ is optimal for the stochastic control problem (4.1.6) defined on this filtered probability
space, where A = Ã is defined by the set of all A-valued adapted processes, and that

α∗
t = a∗(t,Xα∗

t ), a.s., 0 ≤ t ≤ T.

For a proof of this theorem, we refer to Haussmann [14].
We close this section by giving an example of HJB equations having no classical solutions.

Example 4.13. Consider the case where the controlled SDE {Xα
t } is given by

dXα
t = αtdWt,

with a nonrandom initial condition, and then the optimal control problem

sup
α∈Ã

E[g(Xα
T )]

where Ã is the set of all R-valued processes in L2, and

g(x) =

{
sinx (x ≥ 0),

x (x < 0).

Suppose that there exists a C1,2([0, T ]× R)-solution V of the corresponding HJB equation

∂tV (t, x) +
1

2
sup
a∈R

[a2D2V (t, x)] = 0, (t, x) ∈ [0, T )× R,

V (T, x) = g(x), x ∈ R.

Then, D2V (t, x) ≤ −2∂tV (t, x)/a2 for a 6= 0, and so letting a → ∞ we have D2V (t, x) ≤ 0 for
every (t, x) ∈ [0, T )×R. Hence, V (t, ·) is concave on R and V (t, ·) = g, which is a contradiction.
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4.3 Problems with Terminal Time Constraints

This section is devoted to a special class of control problems described by the following:

Problem (S). Given two Borel probability measures µ0, µ1 on Rd and a positive constant σ,
minimize

E
∫ 1

0
|ut|2dt

over all Rd-valued control processes {ut} such that the corresponding controlled diffusions

Xt = X0 +

∫ t

0
usds+ σWt

satisfy P(X0 ∈ dx) = µ0(dx) and P(X1 ∈ dy) = µ1(dy), where {Wt} is a d-dimensional Brownian
motion.

We shall adopt a weak formulation of the control problems above, i.e., the minimization are
taken over all possible probability measures, Brownian motions and control processes. We will
present a rigorous formulation below.

When there is no terminal time constraint P(X1 ∈ dy) = µ1(dy) and µ0 is a Gaussian
distribution, then the problem (S) is a special case of the linear regulator problem (see Example
4.6). Our problem here is to find a controlled diffusion dXt = utdt + σdWt that starts from
the initial distribution µ0 and arrives at a predetermined final distribution µ1, with minimum
“energy” E

∫ 1
0 |ut|

2dt.

Background

In the two papers [34] and [35], Erwin Schrödinger considered the following thought experiment:
for N -independent Brownian particles X(1), . . . , X(N), suppose that at time t = 0, this cloud
approximately follows µ0(dx) and at time t = 1 the observed distribution of the could follows
µ1(dy). Then, what is a could evolution that most likely occurs?

The law of large numbers tells us that the above transition is a rare event. To be precise, if
the initial distribution of each particle X(j) follows µ0 then by the strong law of large number,
the empirical measure (1/N)

∑
j=1 δX(j)

1

of this could at terminal time converges to∫
p(0, x, 1, y)µ0(dx)dy 6= µ1(dy),

almost surely as N →∞, where p is the transition density of a Brownian motion. To determine
a reasonable cloud transition probability among these unlikely possibilities, Schrödinger used
a particle migration model with space discretization, exactly computed the distribution of the
random variable of the particle migrations under the initial and terminal time constrains, and
then adopted the maximum entropy principle. Then, after taking the continuous limit, he
derived a system of partial differential equations for the optimal transition probability, the so
called Schrödinger system or Schrödinger’s functional equation (see (4.3.5) below). We refer to
an english translation [7] of [34] for an exposition of the Schrödinger’s original approach.

Föllmer [12] discovers the Schrödinger’s problem is nothing but the one of large deviation.
By Sanov’s theorem (see, e.g., [9]) for the large deviation principles on empirical measures, the
problem of computing

1

N
logP

 1

N

N∑
j=1

δ
X

(j)
t

follows µt, t = 0, 1


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is nearly equivalent to the minimization problem of the relative entropy

H(Q|P ) :=

{
EQ

[
log dQ

dP

]
, (Q� P ),

+∞, (otherwise).

over all Borel probability measures Q on Wd such that the initial and terminal marginals are
given by µ0 and µ1, respectively, where P is the a priori law of Brownian particles. An optimal
measure Q that solves this minimization problem is called the Schrödinger’s bridge between µ0
and µ1.

Assume here that Ω = Wd and X is the coordinate process: Xt(ω) = ω(t). Under P , the
process X is represented as Xt = X0 +Wt, where X0 follows µ0 and W is a Brownian motion
that is independent of X0. Roughly speaking, by the martingale representation theorem, every
Q above can be represented as

dQ

dP
= exp

[∫ 1

0
uTt dWt −

1

2

∫ 1

0
|ut|2dt

]
for some process {ut} adapted to the canonical filtration. By Girsanov’s theorem, the process
W̃t := Wt −

∫ t
0 usds is a Brownian motion under Q, whence X is represented as a controlled

diffusion given by

Xt = X0 +

∫ t

0
usds+ W̃t

under Q. Assuming the square integrability for {ut} formally, we obtain

H(Q|P ) = 1

2
EQ

∫ 1

0
|ut|2dt.

Consequently, finding a Schrödinger’s bridge is roughly equivalent to solving the problem (S)
with σ = 1. For this reason, we will call (S) the Schrödinger’s bridge problem. We refer to, e.g.,
[6] and [24] for surveys of Schrödinger’s bridges.

Connections with optimal transport

Let Q01 be the law of (X0, X1) under Q, where Q is a Borel probability measure on Ω = Wd.
Then, one can prove that the problem

inf
Q∈P(µ0,µ1)

H(Q|P ),

where P(µ0, µ1) is the set of all Borel probability measure Q on Ω such that QX−1
0 = µ0 and

QX−1 = µ1, is equivalent to the static problem

inf
R∈Ps(µ0,µ1)

H(R|P01), (4.3.1)

where Ps(µ0, µ1) is the totality of all Borel probability measures R on Rd × Rd satisfying

R(A× Rd) = µ0(A), R(Rd ×A) = µ1(A), A ∈ B(Rd)

(see Proposition 4.19 below).
Let us slightly generalize the situation to the case σ > 0, i.e., Xt = X0 + σWt, 0 ≤ t ≤ 1. It

is straightforward to show the same results as above, where P01 is now given by

P01(A×B) =

∫
A

∫
B
p(0, x, 1, y)µ0(dx)dy
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with the transition density

p(t, x, s, y) =
e−|y−x|2/(2σ2(s−t))

(2πσ2(s− t))d/2
, 0 ≤ t < s ≤ 1, x, y ∈ Rd. (4.3.2)

Assume here that µ0 has a positive density ρ0. In this case, for R(dxdy) = ρ(x, y)dxdy,

log
dR

dP01
(x, y) =

1

2σ2
|y − x|2 + d

2
log(2πσ2) + log

ρ(x, y)

ρ0(x)
, a.e.,

whence the static problem (4.3.1) is roughly equivalent to the minimization problem∫
Rd×Rd

|y − x|2R(dxdy) + 2σ2
∫
Rd×Rd

(
log

ρ(x, y)

ρ0(x)

)
ρ(x, y)dxdy + Cσ

over such R’s, where Cσ is a constant independent of R, satisfying Cσ → 0 as σ → 0. This
means that the problem (4.3.1) can be seen as an entropic regularization of the so-called Monge-
Kantorovich optimal mass transport problem

inf
R∈Ps(µ0,µ1)

∫
Rd×Rd

|y − x|2R(dxdy).

It is known that under some regularity conditions there exists a measurable map T : Rd → Rd

such that R∗ := (Id × T )♯µ0 is optimal to the Monge-Kantorovich problem, where Id is the
identity map and f♯µ0 denotes the pushforward of µ0 with f .

Consequently, solving the Schrödinger’s bridge problem with small σ is amount to giving an
approximation of the displacement interpolation µt = (Tt)♯µ0 where Tt(x) = (1 − t)x + tT (x),
0 ≤ t ≤ 1, by the marginal distributions of a controlled diffusion {Xt}0≤t≤1. We refet to [29] for
a rigorous convergence analysis in the zero-noise limit of Schrödinger’s bridges.

Rigorous formulation

Let (Ω,F ,P) be a complete probability space. Let {Wt}0≤t≤1 be a d-dimensional Brownian
motion on (Ω,F ,P) with respect to a given filtration F satisfying the usual conditions. Then
consider the process

Xt = X0 + σWt, 0 ≤ t ≤ 1.

Assume that X0 follows µ0 under P, i.e., that P(X0 ∈ A) = µ0(A) for any A ∈ B(Rd).

Definition 4.14. We say that a triple π = (Q, B, u) is an admissible control system if

(i) Q is a probability measure on (Ω,F) such that Q ∼ P;

(ii) B = {Bt}0≤t≤1 is a d-dimensional F-Brownian motion on (Ω,F ,Q);

(iii) u = {ut}0≤t≤1 is an Rd-valued F-adapted process such that

EQ

[∫ 1

0
|us|2ds

]
<∞,

EQ

[
exp

(
−
∫ 1

0
uTs dBs −

1

2

∫ 1

0
|us|2ds

)]
= 1,

and the controlled process

Xu
t := X0 +

∫ t

0
usds+ σBt, 0 ≤ t ≤ 1,

satisfies Q(Xu
0 ∈ A) = µ0(A) and Q(Xu

1 ∈ A) = µ1(A) for all A ∈ B(Rd).
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We write Π for the set of all admissible control systems.

Note that Xu
t = Xt for the admissible control system (P,W, u) where u ≡ 0. For any

admissible control system π = (Q,W, u) ∈ Π, define the control criterion by

J(π) := EQ

[∫ 1

0
|us|2ds

]
.

Then consider the optimal control problem

J∗ := inf
π∈Π

J(π). (4.3.3)

We shall reformulate the problem (S) by (4.3.3). Namely, we redefine the problem (S) by the
one of finding an admissible control system that attains the infimum in (4.3.3).

Solutions

As a first step, we consider the static Schrödinger’s problem (4.3.1), and derive a first or-
der optimality condition. To this end, first assume that µ0 and µ1 have the densities ρ0
and ρ1, respectively. Then, the measure P01(dxdy) = P((X0, X1) ∈ dxdy) has the density
ρ0(x)p(0, x, 1, y), where p is the transition density of {Xt} under P, defined by (4.3.2). Further,
for any R ∈ Ps(µ0, µ1) such that its density qρ0 exists, we have

H(R|P01) =

∫
Rd×Rd

(
log

q(x, y)

p(0, x, 1, y)

)
q(x, y)ρ0(x)dxdy.

Introduce Lagrange multipliers λ(x) and η(y), and then consider the functional

L(q, λ, η) :=

∫
Rd×Rd

[
q(x, y)ρ0(x) log

q(x, y)

p(0, x, 1, y)
+ (λ(x) + η(y))(ρ1(y)− q(x, y))ρ0(x)

]
dxdy.

Assume here that R(dxdy) = q(x, y)ρ0(x)dxdy is optimal. Let q′ be an arbitrary such that∫
Rd q

′(x, y)dy = 0. By an elementary computation, the first order condition

d

dε
L(q + εq′))

∣∣∣∣
ε=0

= 0

leads to
q(x, y) = p(0, x, 1, y)eλ(x)+η(y).

Now put φ(x) = ρ0(x)e
λ(x) and φ̂(y) = eη(y). The constraint R ∈ Rs(µ0, µ1) can be written as

φ(x)

∫
Rd

p(0, x, 1, y)φ̂(y)dy = ρ0(x), x ∈ Rd,

φ̂(y)

∫
Rd

φ(x)p(0, x, 1, y)dx = ρ1(y), y ∈ Rd.

(4.3.4)

Then, consider a generalized version

µ∗0(dx)

∫
Rd

p(0, x, 1, y)µ∗1(dy) = µ0(dx),

µ∗1(dy)

∫
Rd

p(0, x, 1, y)µ∗0(dx) = µ1(dy),

(4.3.5)

of (4.3.4). The system (4.3.5) of equations is called the Schrödinger’s system or Schrödinger’s
functional equation. A solution of the Schrödinger’s system is thus a pair (µ∗0, µ

∗
1) of σ-finite
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measures on Rd satisfying (4.3.5). Note that if a solution (µ∗0, µ
∗
1) of the Schrödinger’s system

exists then it satisfies µ0 � µ∗0 and µ1 � µ∗1, and (λµ∗0, λ
−1µ∗1) is also a solution for any λ > 0.

Actually the Schrödinger’s system admits a solution. A proof of the following result can be
found in [23].

Theorem 4.15

There exists a solution (µ∗0, µ
∗
1) of the Schrödinger’s system (4.3.5) such that µ∗0 ∼ µ0 and

µ∗1 ∼ µ1. Moreover, (µ∗0, µ
∗
1) is uniquely determined up to positive transformation, i.e., if

(µ̄∗0, µ̄
∗
1) is another solution, then µ

∗
0 = λµ̄∗0 and µ∗1 = λ−1µ̄∗1 for some λ > 0.

Hereafter, denote by (µ∗0, µ
∗
1) the unique solution of (4.3.5) in sense of the theorem above.

Further, assume that µ1 is equivalent to the Lebesgue measure. Then, since µ∗1 ∼ µ1, the Radon-
Nikodym derivative of µ∗1 with respect to the Lebesgue measure exists. So define the functions
φ1 on Rd by

φ1(y) =
dµ∗1
dy

(y), y ∈ Rd.

We further assume that φ1 is continuous on Rd. Then,

h(t, x) = EP[φ1(X
t,x
1 )], (t, x) ∈ [0, 1]× Rd

solves the Cauchy problem

∂th(t, x) +
1

2
σ2∆h(t, x) = 0, (t, x) ∈ [0, 1)× Rd,

h(1, x) = φ1(x), x ∈ Rd
(4.3.6)

(see Section 1.3). By (4.3.5), we have

h(0, x) =

∫
Rd

p(0, x, 1, y)φ1(y)dy =

∫
Rd

p(0, x, 1, y)µ∗1(dy) =
dµ0
dµ∗0

(x) > 0, (4.3.7)

whence

EP

[
h(1, X1)

h(0, X0)

]
=

∫
Rd

∫
Rd

φ1(y)

h(0, x)
p(0, x, 1, y)dyµ0(dx) =

∫
Rd

∫
Rd

p(0, x, 1, y)µ∗1(dy)µ
∗
0(dx)

= µ0(Rd) = 1.
(4.3.8)

Thus, we define the probability measure P∗ on (Ω,F) by

dP∗

dP
=
h(1, X1)

h(0, X0)
.

Let u∗ = {u∗t }0≤t≤1 and W ∗ = {W ∗
t }0≤t≤1 be the processes defined respectively by

u∗t = σ2D log h(t,Xt), W ∗
t =Wt −

1

σ

∫ t

0
u∗sds.

Theorem 4.16

Suppose that µ1 is equivalent to the Lebesgue measure and φ1 is a bounded continuous
function on Rd. Moreover, suppose that

H(R∗|P01) <∞,

where R∗(dxdy) = p(0, x, 1, y)µ∗0(dx)µ
∗
1(dy). Then, π

∗ := (P∗,W ∗, u∗) ∈ Π and is optimal
to the problem (S).

92



Proof. Step (i). By (4.3.6) and Itô formula,

dh(t,Xt) = σDh(t,Xt)
TdWt = σh(t,Xt)D log h(t,Xt)

TdWt =
1

σ
h(t,Xt)(u

∗
t )

TdWt.

Thus,
dP∗

dP
= exp

[
1

σ

∫ 1

0
(u∗t )

TdWt −
1

2σ2

∫ 1

0
|u∗t |2dt

]
.

This together with Girsanov’s theorem yields that {W ∗
t } is a d-dimensional F-Brownian motion

under P∗. Further, the controlled process Xu∗
t , 0 ≤ t ≤ 1, is given by

Xu∗
t = X0 +

∫ t

0
u∗sds+ σW ∗

t = Xt.

Hence, the underlying process {Xt} is seen as the controlled diffusion with input u∗ under P∗.
By (4.3.5) and (4.3.6), for A ∈ B(Rd),

P∗(X0 ∈ A) = EP

[
1{X0∈A}

h(1, X1)

h(0, X0)

]
=

∫
A

1

h(0, x)

(∫
Rd

φ1(y)p(0, x, 1, y)dy

)
µ0(dx)

= µ0(A),

and

P∗(X1 ∈ A) = EP

[
1{X1∈A}

h(1, X1)

h(0, X0)

]
=

∫
A

∫
Rd

dµ∗0
dµ0

(x)p(0, x, 1, y)µ0(dx)µ
∗
1(dy)

= µ1(A).

Therefore the controlled process {Xu∗
t } satisfies the distribution constraints.

Next we will prove EP∗
∫ 1
0 |u

∗
t |2dt < ∞, which leads to π∗ ∈ Π. To do so, consider the

stopping times τn := inf{t > 0; |u∗t | > n}, n ∈ N. Then, for each n define the probability
measure Pn by

dPn

dP
: =

h(1 ∧ τn, X1∧τn)

h(0, X0)
= exp

[∫ 1

0
(ψ

(n)
t )TdWt −

1

2

∫ 1

0
|ψ(n)

t |2dt
]

= exp

[∫ 1

0
(ψ

(n)
t )TdW ∗

t +
1

2

∫ 1

0
|ψ(n)

t |2dt
]
,

where ψ
(n)
t = (1/σ)u∗t 1{t≤τn}. By the monotone convergence theorem,

EP∗

∫ 1

0
|u∗t |2dt = σ2 lim

n→∞
EP∗

[∫ 1

0
|ψ(n)

t |2dt
]
= σ2 lim

n→∞
EP∗

[
log

dPn

dP

]
. (4.3.9)

On the other hand, since the relative entropy is nonnegative, we obtain

EP∗

[
log

dPn

dP

]
≤ EP∗

[
log

dPn

dP

]
+ EP∗

[
log

dP∗

dPn

]
= EP∗

[
log

dP∗

dP

]
=

∫
Rd×Rd

dµ∗0
dµ0

(x)φ1(y) log

(
dµ∗0
dµ0

(x)φ1(y)

)
p(0, x, 1, y)dyµ0(dx)

= H(R∗|P01) <∞.

From this and (4.3.9) the announced result follows.
Step (ii). We will prove the optimality of π∗. Let π = (Q, B, u) ∈ Π be arbitrary. Then the

process

Ŵt := Bt +
1

σ

∫ t

0
usds, 0 ≤ t ≤ 1,
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is a d-dimensional F-Brownian motion under P̂ defined by

dP̂
dQ

= exp

[
− 1

σ

∫ 1

0
uTt dBt −

1

2σ2

∫ 1

0
|ut|2dt

]
.

Since the controlled process Xu
t satisfies Xu

t = X0 + σŴt, the distribution of Xu under P̂ is the
same as that of X under P. Hence,

1 = EP

[
h(1, X1)

h(0, X0)

]
= EP̂

[
h(1, Xu

1 )

h(0, Xu
0 )

]
= EQ

[
h(1, Xu

1 )

h(0, Xu
0 )

exp

[
− 1

σ

∫ 1

0
uTt dBt −

1

2σ2

∫ 1

0
|ut|2dt

]]
≥ exp

{
EQ

[
log

h(1, Xu
1 )

h(0, Xu
0 )
− 1

σ

∫ 1

0
uTt dBt −

1

2σ2

∫ 1

0
|ut|2dt

]}
,

where we have used Jensen’s inequality in the last inequality. Therefore,

1

2σ2
EQ

[∫ 1

0
|ut|2dt

]
≥ EQ

[
log

h(1, Xu
1 )

h(0, Xu
0 )

]
= EQ

[
log

dµ0
dµ∗0

(X0) + logφ1(X
u
1 )

]
=

∫
Rd

(
log

dµ0
dµ∗0

(x)

)
µ∗0(dx) +

∫
Rd

(logφ1(y))µ1(dy)

=

∫
Rd

∫
Rd

(
log

dµ0
dµ∗0

(x)

)
p(0, x, 1, y)µ∗0(dx)µ

∗
1(dy) +

∫
Rd

∫
Rd

(logφ1(y)) p(0, x, 1, y)µ
∗
0(dx)µ

∗
1(dy)

= H(R∗|P01) =
1

2σ2
EP∗

[∫ 1

0
|u∗t |2dt

]
.

Consequently, we deduce that π∗ is optimal to (S).

Proposition 4.17

Suppose that µ0(dx) = δx0(dx) for some x0 ∈ Rd and µ1(dy) = ρ(y)dy for some positive,
bounded, and continuous function ρ satisfying∫

Rd

ρ(y)
{
|y|2 + log ρ(y)

}
dy <∞. (4.3.10)

Then, the pair (µ∗0, µ
∗
1) of σ-finite measures defined respectively by

µ∗0(dx) = µ0(dx), µ∗1(dy) =
ρ(y)

p(0, x0, 1, y)
dy

is a solution of the Schrödinger’s system (4.3.5). Moreover,

J∗ = H(R∗|P01) =

∫
Rd

ρ(y) log

(
ρ(y)

p(0, x0, 1, y)

)
dy <∞.

Proof. By definition, we have

dµ∗0
dµ0

(x) = 1,
dµ∗1
dµ1

(y) =
1

p(0, x0, 1, y)
.

Thus, for any A ∈ B(Rd) with A 3 x0,∫
A

∫
Rd

p(0, x, 1, y)µ∗1(dy)µ
∗
0(dx) =

∫
Rd

p(0, x0, 1, y)
µ1(dy

p(0, x0, 1, y)
= 1 = µ0(A).
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Further, for any B ∈ B(Rd),∫
B

∫
Rd

p(0, x, 1, y)µ∗0(dx)µ
∗
1(dy) =

∫
B
p(0, x0, 1, y)

µ1(dy)

p(0, x0, 1, y)
= µ1(B).

Therefore (µ∗0, µ
∗
1) satisfies (4.3.5).

As confirmed in the proof of the theorem above, J∗ = H(R|P01). Under the present assump-
tions,

H(R∗|P01) =

∫
Rd×Rd

ρ(y)

p(0, x0, 1, y)
log

(
ρ(y)

p(0, x0, 1, y)

)
p(0, x, 1, y)dyδx0(dx)

=

∫
Rd

ρ(y) log ρ(y)dy −
∫
Rd

ρ(y) log p(0, x0, 1, y)dy <∞.

Thus the proposition follows.

Example 4.18. Consider the one dimensional case where µ0(dx) = δ0(dx) and µ1(dy) = ρ(y)dy
with

ρ(y) = θρ1(y) + (1− θ)ρ2(y), y ∈ R.

Here, 0 ≤ θ ≤ 1 and

ρi(y) =
e−|y−mi|2/(2vi)
√
2πvi

, i = 1, 2,

with mi ∈ R, 0 < vi < σ2. Namely, ρ is the density of a Gaussian mixture distribution.
Let us confirm that ρ satisfies the integrability condition (4.3.10). Since the function F (y) :=
y log y − y + 1 is nonnegative and convex, we find

0 ≤
∫
R
ρ(y) log ρ(y)dy =

∫
R
F (ρ(y))dy ≤ θ

∫
R
ρ1(y) log ρ1(y)dy + (1− θ)

∫
R
ρ2(y) log ρ2(y)dy.

It is easy to check that each ρi satisfies (4.3.10). Thus ρ satisfies (4.3.10).
Let us give an explicit representation of the drift term u∗t of the optimal controlled diffusion.

Since φ1(y) = ρ(y)/p(0, 0, 1, y), we have

h(t, x) = EP[φ1(X
t,x
1 )]

= θ

∫
R

ρ1(x+ σ
√
1− tz)

p(0, 0, 1, x+ σ
√
1− tz)

e−z2/2

√
2π

dz + (1− θ)
∫
R

ρ2(x+ σ
√
1− tz)

p(0, 0, 1, x+ σ
√
1− tz)

e−z2/2

√
2π

dz.

A tedious computation gives

d

dx
log h(t, x) = −

θα1(t)((
1
v1
− 1

σ2 )x+ m1
v1

)γ1(t)e
−g1(t,x) + (1− θ)α2(t)((

1
v2
− 1

σ2 )x+ m2
v2

)γ2(t)e
−g2(t,x)

θα1(t)e−g1(x) + (1− θ)α2(t)e−g2(x)
,

where

γi(t) =
1(

1
vi
− 1

σ2

)
σ2(1− t) + 1

,

αi(t) =
1√
viγi(t)

,

gi(t, x) =
1

2

(
1

vi
− 1

σ2

)
γi(t)x

2 − mi

vi
γi(t)x+

m2
i

2vi
− m2

i

2vi
σ2(1− t)γi(t).
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Finally, we prove the auxiliary result that claims the equivalence between the dynamic and
static Schrödinger’s problems.

Proposition 4.19

Assume that P is the law of the process Xt = X0 + σWt, where σ > 0. Suppose that
infR∈Ps(µ0,µ1)H(R|P01) <∞. Then,

inf
Q∈P(µ0,µ1)

H(Q|P ) = inf
R∈Ps(µ0,µ1)

H(R|P01). (4.3.11)

Proof*. First we will show that for Q� P ,

dQ01

dP01
(X0, X1) = EP

[
dQ

dP

∣∣∣∣X0, X1

]
, P -a.s. (4.3.12)

To this end, take an arbitrary A ∈ σ(X0, X1). Then A = {(X0, X1) ∈ B} for some B ∈
B(Rd × Rd). We observe

EP

[
dQ01

dP01
(X0, X1)1A

]
=

∫
B

dQ01

dP01
(z)P01(dz) = Q01(B) = EQ[1{(X0,X1)∈B}] = EP

[
1A
dQ

dP

]
,

leading to (4.3.12).
Next, represent the probability measure P by the disintegration formula

P (Γ) =

∫
Rd×Rd

(P01)z(Γ)P01(dz), Γ ∈ B(Wd),

where {(P01)z}z∈Rd×Rd is the family of probability measures on (Wd,B(Wd)) as in Theorem
1.10. Then, take R ∈ Ps(µ0, µ1) and consider

Q(Γ) :=

∫
Rd×Rd

(P01)z(Γ)R(dz), Γ ∈ B(Wd).

Note that Q ∈ P(µ0, µ1). For Γ ∈ B(Wd), by R� P01 and Theorem 1.10,

Q(Γ) = EP

[
(P01)z(Γ)

dR

dP01
(z)

∣∣∣∣
z=(X0,X1)

]
= EP

[
EP [1Γ|X0, X1]

dR

dP01
(X0, X1)

]
= EP

[
1Γ

dR

dP01
(X0, X1)

]
.

This means that Q� P and

dQ

dP
(w) =

dQ01

dP01
(w(0), w(1)), w = (w(t))0≤t≤1 ∈Wd, P -a.e.

Hence H(Q|P ) = H(R|P01). Therefore,

inf
Q′∈P(µ0,µ1)

H(Q′|P ) ≤ inf
R′∈Ps(µ0,µ1)

H(R′|P01). (4.3.13)

On the other hand, for Q ∈ P(µ0, µ1) with H(Q|P ) < ∞, applying Jensen’s inequality for
the conditional expectation for the convex function f(y) = y log y − y + 1, y ∈ (0,∞), we have

H(Q|P ) = EQ

[
f

(
dQ

dP

)]
= EQ

[
EQ

[
f

(
dQ

dP

)∣∣∣∣X0, X1

]]
≥ E

[
f

(
EQ

[
dQ

dP

∣∣∣∣X0, X1

])]
= EQ01

[
log

dQ01

dP01

]
≥ inf

R∈Ps(µ0,µ1)
H(R|P01).

The last inequality and (4.3.13) leads to (4.3.11).
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CHAPTER 5

Controlled Diffusions and Viscosity Solutions

As seen at the end of Chapter 4, in general we cannot expect the existence of smooth solutions of
HJB equations. The viscosity solutions are the most useful and elegant notion for weak solutions
of nonlinear elliptic and parabolic partial differential equations (PDEs), as well as open up the
possibility of rigorous numerical analysis of HJB equations whose classical solutions might not
exist. In this chapter, we describe basic parts in the theory of viscosity solutions. We refer to
Crandall et.al [8], [11], [32], and [36] for more detailed accounts.

5.1 Dynamic Programming Principle

The dynamic programming principle (DPP) by Bellman [3] gives a recursive method of solving
optimal control problems. In discrete-time framework, by the dynamic programming, we can
directly obtain optimal control processes at least theoretically. In continuous-time, the situa-
tion is slightly different, and the DPP leads to nonlinear partial differential equations for the
stochastic control problems, so-called Hamilton-Jacobi-Bellman (HJB) equations. This section
is devoted to the statement and the proof of the DPP under mild assumptions, and in the next
section, the connection between the DPP and HJB equations is discussed.

Consider the stochastic control problem (4.1.6). Here we assume that the following is satis-
fied:

Assumption 5.1

(i) The set A is compact and convex in Rd1 .

(ii) For each ϕ = b, σ, f , the function ϕ is continuous on [0, T ]× Rd ×A.

(iii) There exists a positive constant C0 such that for each ϕ = b, σ, f and for every
(t, t′, x, x′, a, a′) ∈ [0, T ]2 × (Rd)2 ×A2,

|ϕ(t, x, a)− ϕ(t′, x′, a′)| ≤ C0|t− t′|1/2 + C0|x− x′|+ C0|a− a′|,
|ϕ(t, x, a)| ≤ C0.

(iv) The function g is bounded and uniformly continuous on Rd.

• It follows from Assumption 5.1 that (4.1.7) and (4.1.8) holds. Thus, by Theorem 4.3, there
exists a unique solution {Xt,x,α

s }t≤s≤T of (4.1.1) with initial condition Xt,x,α
t = x for any
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(t, x) ∈ [0, T ]× Rd and for any A-valued and adapted process α.

• The above fact together with the boundedness of g and f shows that A is the set of all
A-valued and adapted processes.

• We take here Ã = A.

The preceding arguments show that the value function

v(t, x) := inf
α∈A

E
[
g(Xt,x,α

T ) +

∫ T

t
f(s,Xt,x,α

s , αs)ds

]
, (t, x) ∈ [0, T ]× Rd, (5.1.1)

is real-valued. Moreover, Lemma 5.4 below means that v is bounded and Borel measurable.
In addition to Assumption 5.1, we make the following assumption:

Assumption 5.2

The filtration F is the augmented one generated by {Wt}0≤t≤T .

Now the DPP is stated as follows:

Theorem 5.3

Suppose that Assumptions 5.1 and 5.2 hold. Let v be as in (5.1.1). Then, for any
t, s ∈ [0, T ] with t ≤ s and x ∈ Rd we have

v(t, x) = inf
α∈A

E
[
v(s,Xt,x,α

s ) +

∫ s

t
f(r,Xt,x,α

r , αr)dr

]
.

• Assumptions 5.1 and 5.2 can be weakened. See Krylov [22] for the DPP under a more
general setting.

The rest of this section is devoted to the proof of Theorem 5.3. There are several variations
for the proof of the DPP and all of them are lengthy and technical. Our proof is close to the
one in Nisio [30] and can be skipped on a first reading.

To obtain Theorem 5.3, we need several preliminary results. First we show the uniform
continuity of the value function.

Lemma 5.4

Under Assumptions 5.1 and 5.2, the value function v is uniformly continuous on [0, T ]×Rd.

Proof. Let s, t ∈ [0, T ] with s ≥ t, x, y ∈ Rd and α ∈ A. We write C for positive constants that
do not depends on particular points in [0, T ] × Rd × A and may vary from line to line. First
observe, for r ≥ s,

Xt,x,α
r −Xs,y,α

r = x− y +
∫ s

t
b(u,Xt,x,α

u , αu)du+

∫ s

t
σ(u,Xt,x,α

u , αu)dWu

+

∫ r

s

[
b(u,Xt,x,α

u , αu)− b(u,Xs,y,α
u , αu)

]
du

+

∫ r

s

[
σ(u,Xt,x,α

u , αu)− σ(u,Xs,y,α
u , αu)

]
dWu.

From this and Assumption 5.1, we obtain

E|Xt,x,α
r −Xs,y,α

r |2 ≤ C|x− y|2 + C(s− t) + C

∫ r

s
E
∣∣Xt,x,α

u −Xs,y,α
u

∣∣2 du.
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Thus, by Gronwall’s lemma,

sup
s≤r≤T

E|Xt,x,α
r −Xs,y,α

r |2 ≤ C|x− y|2 + C|s− t|. (5.1.2)

Now, by Assumption 5.1,

|v(t, x)− v(s, y)|

≤ sup
α∈A

E
[
|g(Xt,x,α

T )− g(Xs,y,α
T )|+

∫ s

t
|f(r,Xt,x,α

r , αr)|dr

+

∫ T

s
|f(r,Xt,x,α

r , αr)− f(r,Xs,y,α
r , αr)|dr

]
≤ C sup

α∈A

[
E|g(Xt,x,α

T )− g(Xs,y,α
T )|+ (s− t) +

∫ T

s
E|Xt,x,α

r −Xs,y,α
r |dr

]
.

Since g is uniformly continuous, for ε > 0 there exists δ0 > 0 such that |g(z) − g(z′)| < ε
whenever z, z′ ∈ Rd satisfy |z − z′| < δ0. Thus, by (5.1.2),

E|g(Xt,x,α
T )− g(Xs,y,α

T )| = E
[
|g(Xt,x,α

T )− g(Xs,y,α
T )|1{|Xt,x,α

T −Xs,y,α
T |<δ0} + 1{|Xt,x,α

T −Xs,y,α
T |≥δ0}

]
≤ ε+ C

δ20
E|Xt,x,α

T −Xs,y,α
T |2 ≤ ε+ C

δ20
(|s− t|+ |x− y|2),

whence

|v(t, x)− v(s, y)| ≤ C
(
ε+

1

δ20
(|s− t|+ |x− y|2) + |s− t|+ |x− y|

)
≤ Cε

whenever |x− y|, |s− t| < δ1 := δ0
√
ε ∧ δ20ε ∧ ε. Thus the lemma follows.

Lemma 5.5

Suppose that Assumptions 5.1 and 5.2 hold. For any s, t ∈ [0, T ] with s ≥ t, Ft-measurable
random variable ξ ∈ L2, and α ∈ A, there exists a Borel measurable map Fs,t on L

2 ×
L2 × C([t, s];Rd) such that

Xt,ξ,α
s = Fs,t(ξ, α, (Wr −Wt)t≤r≤s), a.s.

Proof. Fix s, t ∈ [0, T ] with s > t, Ft-measurable random variable ξ ∈ L2, and α ∈ A.
Step (i). For any n ∈ N, put

An = {β ∈ A : β(r) = α(tk,n) for r ∈ [tk,n, tk+1,n), k = 0, 1, . . . , 2n − 1} ,

where tk,n = t + (s − t)k2−n, and Ã = ∪∞n=1An. Here we have denoted βr = β(r) just for
notational convenience. Then, as in the proof of Lemma 2.3 we can show that there exists
{α(n)} ⊂ Ã such that

lim
n→∞

E
∫ s

t
|αr − α(n)

r |2dr = 0. (5.1.3)

To prove (5.1.3), put αr = α0 for r ≤ 0. Then define the adapted process {β(N)
r }0≤r≤T with

continuous paths by

β(N)
r = 2N

∫ r

r−2−N

αudu, N ∈ N.
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Notice that β(N) ∈ A since A is assumed to be compact and convex. Moreover, since β(N) is

differentiable a.e., we have β
(N)
r → αr, dt × P-a.e. This together with the boundedness of α

yields

E
∫ T

t
|αr − β(N)

r |2 → 0, N →∞.

Further, put β
(N,ℓ)
r = β(N)(tk,ℓ) for r ∈ [tk,n, tk+1,n) and β

(N,ℓ)
r = β

(N)
r for r ∈ [0, t) ∪ [s, T ],

ℓ ∈ N. Then, again β(N,ℓ) ∈ A for each N, ℓ and limℓ→∞ βN,ℓ
r = β

(N)
r for any r and N by the

continuity of β(N). Consequently, we obtain

lim
N→∞

lim
ℓ→∞

E
∫ s

t
|αr − β(N,ℓ)

r |2dr = 0.

This means that there exists a sequence {(Nn, ℓn)}∞n=1 such that Nn, ℓn → ∞ as n → ∞ and
that

lim
n→∞

E
∫ s

t
|αr − β(Nn,ℓn)

r |2dr = 0.

Thus the process α
(n)
r := β

(Nn,ℓn)
r , 0 ≤ r ≤ T , is the one we aim to construct.

Step (ii). Consider the sequence {Y (n)
k }Kn

k=0 of the random variables defined by

Y
(n)
k+1 = Y

(n)
k + b(tk, Y

(n)
k , αtk)(tk+1 − tk) + σ(tk, Y

(n)
k , αtk)(Wtk+1

−Wtk)

for k = 0, 1, . . . ,Kn − 1 with Y
(n)
0 = ξ. Here we have denoted Kn = 2ℓn and tk = tk,2ℓn

for notational simplicity. That is, {Y (n)
k } is the Euler-Maruyama approximation of {Xt,x,α(n)

r }.
Then, as in the proof of Theorem 3.14,

lim
n→∞

E[Xt,ξ,α(n)

s − Y (n)
Kn
|2 = 0.

Further, it is now straightforward to see

E|Xt,ξ,α
s −Xt,ξ,α(n)

s |2 ≤ CE
∫ s

t
|αr − α(n)

r |2dr

for some constant C > 0. Therefore, using (5.1.3), we obtain

lim
n→∞

Y
(n)
Kn

= Xt,x,α
s , a.s., (5.1.4)

possibly along a subsequence.

On the other hand, by an inductive argument, Y
(n)
Kn

turns out to be σ(ξ, α, (Wr−Wt)t≤r≤s)-
measurable. This and (5.1.4) together with Theorem 1.9 lead to the claim.

For (t, x, α) ∈ [0, T ]× Rd ×A we write

J(t, x, α) = E
[
g(Xt,x,α

T ) +

∫ T

t
f(s,Xt,x,α

s , αs)ds

]
.

Then of course v(t, x) = infα∈A J(t, x, α), (t, x) ∈ [0, T ] × Rd. Further, consider the set At of
the controls α ∈ A such that αs = Gs((Wr −Wt)t≤r≤s) a.s. for some Borel measurable map Gs

on C([t, s];Rd) for each s ∈ [t, T ]. Then we have the following:

Lemma 5.6

Under Assumptions 5.1 and 5.2,

v(t, x) = inf
α∈At

J(t, x, α), (t, x) ∈ [0, T ]× Rd.
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Proof. By Assumption 5.2 and Theorem 1.9, any α ∈ A can be represented as αs = α̃s :=
Gα,s({Wr}0≤r≤s) a.s., s ∈ [0, T ], for some Borel function Gα,s on C([t, s];Rd). Using the Itô
isometry, we find∫ s

t
σ(r,Xt,x,α

r , αr)dWr =

∫ s

t
σ(r,Xt,x,α

r , α̃r)dWr, t ≤ s ≤ T, a.s.

for any t ∈ [0, T ]. This means that Xt,x,α
s = Xt,x,α̃

s , t ≤ s ≤ T , a.s. Further, by Lemma 5.5, we
find that for any s ∈ [t, T ], there exists a Borel function Fs,t on Rd ×L2 ×C([t, s];Rd) and G̃α,r

on C([0, t];Rd)× C([t, s];Rd), t ≤ r ≤ s, such that

Xt,x,α
s = Fs,t(x, G̃α,·({Wr}0≤r≤t, {Wr −Wt}t≤r≤·), {Wr −Wt}t≤r≤s), a.s.

This together with the tower property of the conditional expectations yields

E[g(Xt,x,α
T )] = E

[
E
[
g(Xt,x,α̃

T )
∣∣∣Ft

]]
= E

[
E
[
g(FT,t(x, G̃α,·({Wr}0≤r≤t, {Wr −Wt}t≤r≤·), {Wr −Wt}t≤r≤T ))

∣∣∣Ft

]]
= E

[
E
[
g(FT,t(x, G̃α,·(ϕ, {Wr −Wt}t≤r≤·), {Wr −Wt}t≤r≤T ))

]∣∣∣
ϕ={Wr}0≤r≤t

]
= E

[
E
[
g(X

t,x,β(ϕ)
T )

]∣∣∣
ϕ={Wr}0≤r≤t

]
,

where β(ϕ) = G̃α,·(ϕ, {Wr −Wt}t≤r≤·). Similarly, we obtain

E[f(s,Xt,x,α
s , αs)] = E

[
E[f(s,Xt,x,β(ϕ)

s , β(ϕ)s)]
∣∣∣
ϕ={Wr}0≤r≤t

]
.

Thus, since β(ϕ) ∈ At, we deduce

J(t, x, α) = E
[
E[J(t, x, β(ϕ))]|ϕ={Wr}0≤r≤t

]
≥ E

[
inf

α′∈At

J(t, x, α′)

]
= inf

α′∈At

J(t, x, α′),

whence v(t, x) ≥ infα′∈At J(t, x, α
′). The converse inequality is obvious from At ⊂ A. Thus the

lemma follows.

Proof of Theorem 5.3. Fix s, t ∈ [0, T ] with s ≥ t, and x ∈ Rd. By the uniqueness, Xt,x,α
r =

Xs,Xt,x,α
s ,α

r a.s. for r ∈ [s, T ] and for α ∈ A. As in the proof of Lemma 5.6,

E[g(Xt,x,α
T )] = E

[
E
[
g(Xs,Xt,x,α

s ,α
T )

∣∣∣Fs

]]
= E

[
E
[
g(FT,s(ξ, G̃α,·(ϕ, {Wr −Ws}s≤r≤·), {Wr −Ws}s≤r≤T ))

]∣∣∣
ξ=Xt,x,α

θ ,ϕ={Wr}t≤r≤s

]
= E

[
E[g(Xs,ξ,β(ϕ)

T )]

∣∣∣∣
ξ=Xt,x,α

s ,ϕ={Wr}t≤r≤s

]
.

where β(ϕ) = G̃α,·(ϕ, (Wr −Ws)s≤r≤·). Similarly,

E
[
f(r,Xt,x,α

r , αr)
]
= E

[
E
[
f(r,Xs,ξ,β(ϕ)

r , β(ϕ)r)
] ∣∣∣∣

ξ=Xt,x,α
s ,ϕ={Wr}t≤r≤s

]
.
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Hence, for α ∈ A,

J(t, x, α) = E[g(Xt,x,α
T )] + E

∫ s

t
f(r,Xt,x,α

r , αr)dr +

∫ T

s
E[f(r,Xt,x,α

r , αr)]dr

= E
[
E[J(s,Xt,x,β(ϕ)

s ]|ϕ={Wr}t≤r≤s

]
+ E

∫ s

t
f(r,Xt,x,α

r , αr)dr

≥ E
[
v(s,Xt,x,α

s )
]
+ E

∫ s

t
f(r,Xt,x,α

r , αr)dr,

whence

v(t, x) ≥ inf
α∈A

E
[
v(s,Xt,x,α

s ) +

∫ s

t
f(r,Xt,x,α

r , αr)dr

]
.

To prove the converse inequality, let ε > 0 be arbitrary and take δ > 0 so that

|v(s, y)− v(s, y′)| ≤ ε, sup
α∈As

|J(s, y, α)− J(s, y′, α)| ≤ ε (5.1.5)

whenever y, y′ ∈ Rd satisfy |y − y′| ≤ δ. This is possible due to Lemma 5.4 and its proof.
Let {Bn}∞n=1 ⊂ B(Rd) be a disjoint partition of Rd such that diam(Bn) ≤ δ. Then, for every

n, take xn ∈ Bn arbitrary. For this xn there exists αn ∈ As such that

v(s, xn) ≥ J(s, xn, αn)− ε.

From this and (5.1.5) it follows that, for each n,

J(s, y, αn) ≤ v(s, y) + 3ε, y ∈ Bn. (5.1.6)

Now, fix α ∈ A and define ᾱ ∈ As by

ᾱr = αr1{r≤s} + 1{r>s}

∞∑
n=1

αn
r 1Bn(X

t,x,α
s ), 0 ≤ r ≤ T.

Since each αn is independent of Fs, as in the proof of Lemma 5.6,

J(t, x, ᾱ) =
∞∑
n=1

E
[
J(s,Xt,x,α

s , αn)1Bn(X
t,x,α
s )

]
+ E

∫ s

t
f(r,Xt,x,α

r , αr)dr.

This and (5.1.6) yield

v(t, x) ≤ E
[
v(s,Xt,x,α

s ) +

∫ s

t
f(r,Xt,x,α

r , αr)dr

]
+ 3ε,

leading to the inequality we wanted.

5.2 Definition

Let F be a real-valued function on [0, T ]× Rd × R× R× Rd × Sd, and consider the PDE

F (t, x, v(t, x), ∂tv(t, x), Dv(t, x), D
2v(t, x)) = 0, (t, x) ∈ [0, T )× Rd. (5.2.1)

We are mainly interested with the case where F is of the form

F (t, x, u, q, p,M) = −q + sup
a∈A

[
−b(t, x, a)Tp− 1

2
tr(σ(t, x, a)σ(t, x, a)TM)− f(t, x, a)

]
, (5.2.2)

which is the case of HJB equations.
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• The function F is assumed to satisfy the ellipticity condition:

F (t, x, u, q, p,M1) ≥ F (t, x, u, q, p,M2), (t, x, u, q, p) ∈ [0, T ]×Rd×R×R×Rd, (5.2.3)

for M1,M2 ∈ Sd with M1 ≤M2.

• For A,B ∈ Sd we write A ≤ B if B −A is positive semi-definite.

• The function F is also assumed to satisfy the parabolicity condition:

F (t, x, u, q1, p,M) ≥ F (t, x, u, q2, p,M), (t, x, u, p,M) ∈ [0, T ]×Rd×R×Rd×Sd, (5.2.4)

for q1, q2 ∈ R with q1 ≤ q2.

• The nonlinearity F defined by (5.2.2) clearly satisfies (5.2.3) and (5.2.4).

To motivate the notion of viscosity solutions, let us assume that a classical subsolution
v of (5.2.1) exists, i.e., (5.2.1) holds with = replaced by ≤. Let φ ∈ C1,2([0, T ] × Rd) and
(t, x) ∈ [0, T )× Rd be a global maximum point of v − φ. By adding a constant if necessary, we
can always assume that (v − φ)(t, x) = 0. Then, we have the three conditions

∂t(v − φ)(t, x) ≥ 0, D(v − φ)(t, x) = 0, D2(v − φ)(t, x) ≤ 0.

Note that the first inequality holds with equality if t > 0. From these conditions, (5.2.3) and
(5.2.4) it follows that

F (t, x, φ(t, x), ∂tφ(t, x), Dφ(t, x), D
2φ(t, x)) ≤ F (t, x, v(t, x), ∂tv(t, x), Dv(t, x), D2v(t, x)) ≤ 0.

Thus the subsolution property holds at (t, x) for the test function φ.
Similarly, let v be a classical supersolution of (5.2.1), i.e., v satisfy (5.2.1) with = replaced by

≥. Then for any φ ∈ C1,2([0, T ]×Rd) such that min(s,y)∈[0,T )×Rd(v−φ)(s, y) = (v−φ)(t, x) = 0,

F (t, x, φ(t, x), ∂tφ(t, x), Dφ(t, x), D
2φ(t, x)) ≥ 0.

Definition 5.7. Let F : [0, T ] × Rd × R × Rd × Sd → R satisfy (5.2.3) and (5.2.4), and let
u ∈ C([0, T ]× Rd).

(i) We say that u is a viscosity subsolution of (5.2.1) if

F (t, x, φ(t, x), ∂tφ(t, x), Dφ(t, x), D
2φ(t, x)) ≤ 0

for all φ ∈ C1,2([0, T ]×Rd) and (t, x) ∈ [0, T )×Rd such that max(s,y)∈[0,T )×Rd(v−φ)(s, y) =
(v − φ)(t, x) = 0.

(ii) We say that u is a viscosity supersolution of (5.2.1) if

F (t, x, φ(t, x), ∂tφ(t, x), Dφ(t, x), D
2φ(t, x)) ≥ 0

for all φ ∈ C1,2([0, T ]×Rd) and (t, x) ∈ [0, T )×Rd such that min(s,y)∈[0,T )×Rd(v−φ)(s, y) =
(v − φ)(t, x) = 0.

(iii) We say that v is a viscosity solution if it is both a viscosity subsolution and a viscosity
supersolution.

5.3 Comparison Principle

The comparison principle is a key property for uniqueness of viscosity solutions, and is an
important ingredient in numerical analysis of fully nonlinear parabolic PDEs.
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An equivalent definition of viscosity solutions

We need an alternative definition of viscosity solutions in terms of superjets and subjets.
Observe that for U ∈ C([0, T ] × Rd), φ ∈ C1,2([0, T ] × Rd), and (t, x) ∈ [0, T ) × Rd with
max(s,y)∈[0,T )×Rd(U − φ)(s, y) = (U − φ)(t, x), the Taylor expansion up to second order terms
yields

U(s, y) ≤ U(t, x) + φ(s, y)− φ(t, x)
= U(t, x) + ∂tφ(t, x)(s− t) +Dφ(t, x)T(y − x)

+
1

2
(y − x)TD2φ(t, x)(y − x) + o(|s− t|+ |y − x|2).

This leads to the following definition: for U ∈ C([0, T ] × Rd) and (t, x) ∈ [0, T ) × Rd, the set
P2,+U(t, x) is defined by

P2,+U(t, x) =

{
(q, p,M) ∈ R× Rd × Sd :

lim inf
(h,y)→0

U(t+ h, x+ y)− U(t, x)− qh− pTy − 1
2y

TMy

|h|+ |y|2
≥ 0

}
.

Similarly, we define the set P2,−U(t, x) by the

P2,−U(t, x) =

{
(q, p,M) ∈ R× Rd × Sd :

lim sup
(h,y)→0

U(t+ h, x+ y)− U(t, x)− qh− pTy − 1
2y

TMy

|h|+ |y|2
≤ 0

}
.

• The sets P2,+U(t, x) and P2,−U(t, x) are called the superjet and subjet of U at (t, x),
respectively.

• Compare the definitions of the super/sub-jets with that of the subdifferential in convex
analysis, if you are familiar with it.

• By definition, for U ∈ C([0, T ] × Rd), φ ∈ C1,2([0, T ] × Rd), and (t, x) ∈ [0, T ) × Rd with
max(s,y)∈[0,T )×Rd(U − φ)(s, y) = (U − φ)(t, x),(

∂tφ(t, x), Dφ(t, x), D
2φ(t, x)

)
∈ P2,+U(t, x).

• The converse implication of the claim just above holds true, i.e., for any (t, x) ∈ [0, T )×Rd

and (q, p,M) ∈ P2,+U(t, x), there exists φ ∈ C1,2([0, T ]×Rd) satisfying max(s,y)∈[0,T )×Rd(U−
φ)(s, y) = (U − φ)(t, x) such that

(q, p,M) =
(
∂tφ(t, x), Dφ(t, x), D

2φ(t, x)
)
.

See [11, Lemma 4.1] for an explicit construction of such φ.

• A similar characterization holds for the subjet. Consequently, for given (t, x) ∈ [0, T )×Rd,
a point (q, p,M) ∈ P2,−U(t, x) if and only if there exists φ ∈ C1,2([0, T ] × Rd) satisfying
min(s,y)∈[0,T )×Rd(U − φ)(s, y) = (U − φ)(t, x) such that

(q, p,M) =
(
∂tφ(t, x), Dφ(t, x), D

2φ(t, x)
)
.

• The closures of the subjets and superjets are theoretically useful. We define P̄2,+U(t, x)
by the set of the points (q, p,M) ∈ R×Rd×Sd for which there exists (tn, xn, qn, pn,Mn) ∈
[0, T ) × Rd × P2,+U(t, x), n ∈ N, satisfying (tn, xn, qn, pn,Mn) → (t, x, q, p,M). The set
P̄2,−U(t, x) is defined similarly.
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With the preliminaries above, we have the following:

Proposition 5.8

Let F : [0, T ]×Rd×R×Rd×Sd → R be continuous and satisfy (5.2.3) and (5.2.4). Then
u ∈ C([0, T ]×Rd) is a viscosity subsolution (resp. supersolution) of (5.2.1) if and only if
for any (t, x) ∈ [0, T )× Rd and (q, p,M) ∈ P̄2,+u(t, x) (resp. (q, p,M) ∈ P̄2,−u(t, x))

F (t, x, u(t, x), q, p,M) ≤ 0 (resp. ≥ 0).

Comparison principle

The Ishii’s lemma is a key to the proof of the comparison principle. Since the proof of this result
is lengthy and technical for our introductory notes, we refer to Theorem 8.3 in [8] and [36] for
details.

Lemma 5.9: Ishii’s Lemma

Assume that F : [0, T ]× Rd × R× Rd × Sd → R is continuous and satisfies (5.2.4), and

F (t, x, u, q, p,M) = F (t, x, u, 0, p,M)− q

for any (t, x, u, q, p,M) ∈ [0, T ] × Rd × R × R × Rd × Sd. Let U, V ∈ Cb([0, T ] × Rd)
be a viscosity subsolution and a viscosity supersolution of (5.2.1), respectively. Let ϕ ∈
C1,1,2,2([0, T ]×[0, T ]×Rd×Rd) and (t̄, s̄, x̄, ȳ) ∈ [0, T )×[0, T )×Rd×Rd be a local maximum
of U(t, x) − V (s, y) − ϕ(t, s, x, y). Then, for every η > 0, there exist M1,M2 ∈ Sd such
that

(∂tϕ(t̄, s̄, x̄, ȳ), Dxϕ(t̄, s̄, x̄, ȳ),M1) ∈ P̄2,+U(t̄, x̄),

(−∂sϕ(t̄, s̄, x̄, ȳ),−Dyϕ(t̄, s̄, x̄, ȳ),M2) ∈ P̄2,−U(t̄, x̄),

and (
M1 0
0 −M2

)
≤ D2

x,yϕ(t̄, s̄, x̄, ȳ) + η
(
D2

x,yϕ(t̄, s̄, x̄, ȳ)
)2
.

• The space C1,1,2,2([0, T ]× [0, T ]×Rd×Rd) is defined similarly as in the case of C1,2([0, T ]×
Rd).

Hereafter, we assume that the function F : [0, T ]× Rd × R× Rd × Sd → R is represented as

F (t, x, u, q, p,M) = −q + βu+ sup
a∈A

[
−b(t, x, a)Tp− 1

2
tr(σ(t, x, a)σ(t, x, a)TM)− f(t, x, a)

]
(5.3.1)

for (t, x, u, q, p,M) ∈ [0, T ] × Rd × R × R × Rd × Sd, where β ∈ [0,∞), the set A is a subset of
Rd1 , and each ϕ = b, σ, f satisfies that there exists a constant C0 > 0 such that

|ϕ(t, x, a)− ϕ(s, y, a)| ≤ C0|t− s|+ C0|x− y|

for (t, s, x, y, a) ∈ [0, T ]× [0, T ]× Rd × Rd ×A.
Now we are ready to prove the comparison principle.

Theorem 5.10: Comparison principle

Suppose that (5.3.1) holds. Let U, V ∈ Cb([0, T ] × Rd) be a viscosity subsolution and a
viscosity supersolution of (5.2.1), respectively. If U(T, ·) ≤ V (T, ·) on Rd, then U ≤ V on
[0, T ]× Rd.
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Proof*. Step (i). Notice that for any κ > 0, the function Ũ(t, x) := eκtU(t, x), (t, x) ∈ [0, T ]×Rd,
is a viscosity subsolution of (5.2.1) with F replaced by

F̃ (t, x, u, q, p,M) = −q+(β+κ)u+sup
a∈A

[
−b(t, x, a)Tp− 1

2
tr(σ(t, x, a)σ(t, x, a)TM)− eκtf(t, x, a)

]
.

Indeed, let φ̃ ∈ C1,2([0, T ] × Rd) and (t, x) ∈ [0, T ) × Rd be such that max(s,y)∈[0,T )×Rd(Ũ −
φ̃)(s, y) = (Ũ − φ̃)(t, x) = 0, and put φ(s, y) = e−κsφ̃(s, y), (s, y) ∈ [0, T ]× Rd. Then,

(U − φ)(s, y) = eκs(Ũ − φ̃)(s, y) ≤ eκs(Ũ − φ̃)(t, x) = 0 = (U − φ)(t, x).

Thus, (t, x) is also a global minimum point of U − φ, whence by the subsolution property,

F (t, x, φ(t, x), Dφ(t, x), D2φ(t, x)) ≤ 0.

This together with ∂tφ(t, x) = e−κt(∂tφ̃(t, x)− κφ̃(t, x)) yields

F̃ (t, x, φ̃(t, x), Dφ̃(t, x), D2φ̃(t, x)) ≤ 0.

Hence Ũ is a viscosity subsolution of F̃ = 0. A similar relation holds for V , and so we may
assume that β > 0 without loss of generality.

Step (ii). Set ψ(t, x) = e−λt(1 + |x|2), (t, x) ∈ [0, T ] × Rd, where λ > 0. Then, it is
straightforward to see that for (t, x) ∈ [0, T )× Rd,

∂tψ(t, x)− βψ(t, x) + sup
a∈A

[
b(t, x, a)TDψ(t, x) +

1

2
tr(σ(t, x, a)σ(t, x, a)TD2ψ(t, x))

]
≤ e−λt(1 + |x|2)(−λ− β + c1), (5.3.2)

for some positive constant c1. Further, for δ > 0 the function Vδ := V + δψ is a viscos-
ity supersolution of (5.2.1). Indeed, let φ ∈ C1,2([0, T ] × Rd) and (t, x) ∈ [0, T ) × Rd be
such that min[0,T )×Rd(Vδ − φ)(s, y) = (Vδ − φ)(t, x) = 0. Then min[0,T )×Rd(V − φδ)(s, y) =
(V − φδ)(t, x) = 0, where φδ = φ − δψ. The viscosity supersolution property means that
F (t, x, φδ(t, x), Dφδ(t, x), D

2φδ(t, x)) ≥ 0. This and (5.3.2) with the choice λ ≥ −β + c1 yield

0 ≤ F (t, x, φδ(t, x), Dφδ(t, x), D
2φδ(t, x))

≤ F (t, x, φ(t, x), Dφ(t, x), D2φ(t, x) + e−λt(1 + |x|2)(−λ− β + c1)

≤ F (t, x, φ(t, x), Dφ(t, x), D2φ(t, x)),

whence the claim.
Step (iii). We will show that U(t, x) ≤ Vδ(t, x) for all (t, x) ∈ [0, T ] × Rd and δ > 0, which

leads to the claim of the theorem. To this end, assume that c := sup(t,x)∈[0,T ]×Rd(U−Vδ)(t, x) > 0
for some δ > 0. Since

lim
|x|→∞

sup
t∈[0,T ]

(U − Vδ)(t, x) = −∞,

there exists a bounded open subset O of Rd such that

c = max
(t,x)∈[0,T )×O

(U − Vδ)(t, x). (5.3.3)

Take a sequence (tn, sn, xn, yn) ∈ [0, T ]× [0, T ]×O×O, n ∈ N, that maximizes the function Φn

on [0, T ]× [0, T ]×O ×O by

Φn(t, s, x, y) = U(t, x)− Vδ(s, y)− ϕn(t, s, x, y)
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with
ϕn(t, s, x, y) =

n

2

(
|t− s|2 + |x− y|2

)
for any n ∈ N, where O denotes the closure of O. Further, we write cn for the maximum of Φn.
Then we have

(cn, ϕn(tn, sn, xn, yn))→ (c, 0), n→∞. (5.3.4)

To prove this, note that the bounded sequence {(tn, sn, xn, yn)}n∈N converges to some (t̄, s̄, x̄, ȳ) ∈
[0, T ] × [0, T ] × O × O possibly along a subsequence. Since U(tn, xn) − Vδ(sn, yn), n ≥ 1, is
bounded, it follows from

c ≤ cn ≤ U(tn, xn)− Vδ(sn, yn)− ϕn(tn, sn, xn, yn) ≤ U(tn, xn)− Vδ(sn, yn)

that ϕn(tn, sn, xn, yn), n ≥ 1, is also bounded. This means that t̄ = s̄ and x̄ = ȳ, whence

c ≤ lim
n→∞

(U(tn, xn)− Vδ(sn, yn)) = U(t̄, x̄)− Vδ(t̄, x̄) ≤ c.

From this and (5.3.3) it follows that c = U(t̄, x̄)− V (t̄, x̄) and (t̄, x̄) ∈ [0, T )×O, which leads to
(5.3.4).

Step (iv). Since (tn, sn, xn, yn) converges to (t̄, t̄, x̄, x̄) ∈ [0, T )× [0, T )×O×O possibly along
a subsequence, we may assume that (tn, sn, xn, yn) ∈ [0, T )× [0, T )×O×O for all n. We apply
Lemma 5.9 with these points, ϕn’s, and η = 1/n. Direct computation gives ∂tϕn(tn, sn, xn, yn) =
−∂sϕn(tn, sn, xn, yn) = n(tn−sn) and Dxϕn(tn, sn, xn, yn) = −Dyϕn(tn, sn, xn, yn) = n(xn−yn).
Thus there exist M1,M2 ∈ Sd such that (n(tn − sn), n(xn − yn),M1) ∈ P̄2,+U(xn, yn) and
(n(tn − sn), n(xn − yn),M2) ∈ P̄2,−Vδ(xn, yn). Proposition 5.8 now implies that

−n(tn − sn) + βU(tn, xn) + F (tn, xn, 0, 0, n(xn − yn),M1) ≤ 0,

−n(tn − sn) + βVδ(sn, yn) + F (sn, yn, 0, 0, n(xn − yn),M2) ≥ 0,

so that

β(U(tn, xn)− Vδ(sn, yn))
≤ F (sn, yn, 0, 0, n(xn − yn),M2)− F (tn, xn, 0, 0, n(xn − yn),M1)

≤ Cϕn(tn, sn, xn, yn) +
1

2
sup
a∈A

[
tr(σ(sn, yn, a)σ(sn, yn, a)

TM2)− tr(σ(tn, xn, a)σ(tn, xn, a)
TM1)

]
for some constant C > 0. Here we have used (5.3.1) to derive the last inequality. By the Ishii’s
lemma and

D2
x,yϕn(t̄, s̄, x̄, ȳ) = n

(
Id −Id
−Id Id

)
,

we obtain (
M1 0
0 −M2

)
≤ 3n

(
Id −Id
−Id Id

)
.

This and (5.3.1) yield

tr(σ(sn, yn, a)σ(sn, yn, a)
TM2)− tr(σ(tn, xn, a)σ(tn, xn, a)

TM1)

= tr

(
Σ

(
M1 0
0 −M2

))
≤ 3ntr

(
Σ

(
Id −Id
−Id Id

))
= 3ntr

(
(σ(sn, yn, a)− σ(tn, xn, a))(σ(sn, yn, a)− σ(tn, xn, a))T

)
= 3n|σ(sn, yn, a)− σ(tn, xn, a)|2 ≤ Cϕn(tn, sn, xn, yn)
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for some constant C ′ > 0 uniformly on A, where

Σ =

(
σ(sn, yn, a)σ(sn, yn, a)

T σ(sn, yn, a)σ(tn, xn, a)
T

σ(tn, xn, a)σ(sn, yn, a)
T σ(tn, xn, a)σ(tn, xn, a)

T

)
.

Therefore,
β(U(tn, xn)− Vδ(sn, yn)) ≤ C ′′ϕn(tn, sn, xn, yn)

for some C ′′ > 0, whence by (5.3.4) we have c ≤ 0, a contradiction.

5.4 HJB Equations in the Viscosity Sense

Recall that the value function v of the stochastic control problem in Section 5.1 is given by

v(t, x) = inf
α∈A

E
[
g(Xt,x,α

T ) +

∫ T

t
f(s,Xt,x,α

s , αs)ds

]
, (t, x) ∈ [0, T ]× Rd.

The corresponding HJB equation is

−∂tV (t, x) + sup
a∈A

[
−b(t, x, a)TDV (t, x)− 1

2
tr((σσT)(t, x)D2V (t, x))− f(t, x, a)

]
= 0, (5.4.1)

on [0, T )× Rd with terminal condition v(T, x) = g(x), x ∈ Rd.

Theorem 5.11

Suppose that Assumptions 5.1 and 5.2 hold. Let v be defined by (5.1.1). Then v is a
unique viscosity solution of (5.4.1) satisfying v(T, ·) = g on Rd.

Proof. First note that v ∈ Cb([0, T ] × Rd) by Assumption 5.1 and Lemma 5.4. Let φ ∈
C1,2([0, T ]×Rd) and (t, x) ∈ [0, T )×Rd that is a global maximum of v−φ with v(t, x) = φ(t, x).
For this φ we define the function ϕ on [0, T ]× Rd by

ϕ(s, y) = φ(s, y)ζ(s, y) + 2 sup
(s′,y′)∈[0,T ]×Rd

|v(s′, y′)|(1− ζ(s, y)), (s, y) ∈ [0, T ]× Rd,

where ζ ∈ C∞
0 ([0, T ] × Rd) is such that 0 ≤ ζ ≤ 1 on [0, T ] × Rd, ζ = 1 on B1(t, x), and ζ = 0

on Rd \B2(t, x). Then, ϕ ∈ C1,2
b ([0, T ]× Rd) and

(v − ϕ)(s, y) = (v − φ)(s, y)ζ(s, y) +

(
v − 2 sup

[0,T ]×Rd

|v|

)
(s, y)(1− ζ(s, y)) ≤ 0 = (v − ϕ)(t, x).

Applying Theorem 5.3 and Itô formula for ϕ, we see

ϕ(t, x) = v(t, x) ≤ E
[
ϕ(t+ h,Xt,x,a

t+h ) +

∫ t+h

t
f(s,Xt,x,a

s , a)ds

]
= E

[
ϕ(t, x) +

∫ t+h

t

[
∂tϕ(s,X

t,x,a
s ) +Ha(s,Xt,x,a

s , Dϕ(s,Xt,x,a
s ), D2ϕ(s,Xt,x,a

s ))
]
ds

+

∫ t+h

t
Dϕ(s,Xt,x,a

s )Tσ(s,Xt,x,a
s )dWs

]
for any a ∈ A. Since σ is bounded and ϕ ∈ C1,2

b ([0, T ]×Rd), the expectation of the Itô integral
term in the inequality just above vanishes. Then, dividing the both side by h and letting h→ 0,
we obtain

∂tϕ(t, x) +Ha(t, x,Dϕ(t, x), D2ϕ(t, x) ≤ 0, a ∈ A,
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whence
−∂tφ(t, x)− inf

a∈A
Ha(t, x,Dφ(t, x), D2φ(t, x)) ≤ 0.

Thus v is a viscosity subsolution.
Let φ ∈ C1,2([0, T ] × Rd) and (t, x) ∈ [0, T ) × Rd that is a global minimum of v − φ with

v(t, x) = φ(t, x). As in above, we can modify φ to be in C1,2
b ([0, T ]× Rd). By Theorem 5.3, for

any ε > 0 there exists αε ∈ A such that

v(t, x) + hε ≥ E
[
v(t+ h,Xt,x,αε

t+h ) +

∫ t+h

t
f(s,Xt,x,αε

s , αε
s)ds

]
.

The condition on φ and the Itô formula yield

ε ≥ 1

h
E
∫ t+h

t

[
∂tφ(s,X

t,x,αε

s ) +Hαε
(s,Xt,x,αε

s , Dφ(s,Xt,x,αε

s ), D2φ(s,Xt,x,αε

s ))
]
ds

≥ 1

h
E
∫ t+h

t

[
∂tφ(s,X

t,x,αε

s ) + inf
a∈A

Ha(s,Xt,x,αε

s , Dφ(s,Xt,x,αε

s ), D2φ(s,Xt,x,αε

s ))

]
ds.

Since D2φ is uniformly continuous by the modification as in above, the function

s 7→ E inf
a∈A

Ha(s,Xt,x,αε

s , Dφ(s,Xt,x,αε

s ), D2φ(s,Xt,x,αε

s ))

is continuous on [t, t + h]. Indeed, by Assumption 5.1, φ ∈ C1,2
b ([0, T ] × Rd) and the uniform

continuity of D2φ, for ε1 > 0 there exits δ > 0 such that∣∣∣∣ infa∈A
Ha(s, y,Dφ(s, y), D2φ(s, y))− inf

a∈A
Ha(s′, y′, Dφ(s′, y′), D2φ(s′, y′))

∣∣∣∣ < ε1

whenever |s− s′|+ |y − y′| < δ. From this and the arguments as in the proof of Lemma 5.4 we
find ∣∣∣∣E inf

a∈A
Ha(s,Xt,x,a

s , Dφ(s,Xt,x,a
s ), D2φ(s,Xt,x,a

s ))

− E inf
a∈A

Ha(s′, Xt,x,a
s′ , Dφ(s′, Xt,x,a

s′ ), D2φ(s′, Xt,x,a
s′ ))

∣∣∣∣
≤ ε1 + C

1

δ2
sup
a∈A

E|Xt,x,a
s −Xt,x,a

s′ |2 ≤ ε1 +
C ′

δ2
|s− s′| ≤ (1 + C ′)ε1

whenever |s−s′| < δ1 := δ2ε∧δ, where C and C ′ are some positive constants. Thus the required
continuity follows.

Then using the mean-value theorem and letting h→ 0, we have

ε ≥ ∂tφ(t, x) + inf
a∈A

Ha(t, x,Dφ(t, x), D2φ(t, x)),

whence letting ε→ 0,

−∂tφ(t, x)− inf
a∈A

Ha(t, x,Dφ(t, x), D2φ(t, x)) ≥ 0.

Thus v is a viscosity supersolution.
The uniqueness immediately follows from the comparison principle and the boundary con-

dition.

Theorem 5.11 and the definition of viscosity solutions lead to the following corollary:

Corollary 5.12

Suppose that Assumptions 5.1 and 5.2 hold. If the function v defined by (5.1.1) is in
C1,2([0, T ]× Rd), then v is a unique classical solution of the HJB equation (4.2.1).
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5.5 Approximation of Viscosity Solutions

Suppose that we want to prove that a given family {vn} of functions converges to a solution
v of the nonlinear PDE (5.2.1). In that case, of course we cannot execute a routine error
analysis by assuming a smoothness of v. Thus we are led to work in the framework of viscosity
solutions. Then, it is often difficult to know a priori that the limit limn→∞ vn indeed exists and
is continuous if it exists. The notion of discontinuous viscosity solution is useful in handling
these technical problems.

Discontinuous Viscosity Solutions

Let u be bounded function on [0, T ]× Rd. We define the upper semi-continuous envelope u∗ of
u by

u∗(t, x) = lim sup
(s,y)→(t,x)

(s,y)∈[0,T ]×Rd

u(s, y), (t, x) ∈ [0, T ]× Rd,

and the lower semi-continuous envelope u∗ of u by

u∗(t, x) = lim inf
(s,y)→(t,x)

(s,y)∈[0,T ]×Rd

u(s, y), (t, x) ∈ [0, T ]× Rd.

• u∗ is the smallest upper semi-continuous (u.s.c.) function that is greater than or equal to
u.

• u∗ is the largest lower semi-continuous (l.s.c.) function that is smaller than or equal to u.

Definition 5.13. Let F : [0, T ] × Rd × R × Rd × Sd → R satisfy (5.2.3) and (5.2.4), and let
u : [0, T ]× Rd → R be bounded.

(i) We say that u is a discontinuous viscosity subsolution of (5.2.1) if

F (t, x, φ(t, x), ∂tφ(t, x), Dφ(t, x), D
2φ(t, x)) ≤ 0

for all φ ∈ C1,2([0, T ]×Rd) and (t, x) ∈ [0, T )×Rd such that max(s,y)∈[0,T )×Rd(v∗−φ)(s, y) =
(v∗ − φ)(t, x) = 0.

(ii) We say that u is a discontinuous viscosity supersolution of (5.2.1) if

F (t, x, φ(t, x), ∂tφ(t, x), Dφ(t, x), D
2φ(t, x)) ≥ 0

for all φ ∈ C1,2([0, T ]×Rd) and (t, x) ∈ [0, T )×Rd such that min(s,y)∈[0,T )×Rd(v∗−φ)(s, y) =
(v∗ − φ)(t, x) = 0.

(iii) We say that v is a discontinuous viscosity solution if it is both a discontinuous viscosity
subsolution and a discontinuous viscosity supersolution.

Under the framework of the discontinuous viscosity solutions, we still have the comparison
principle.

Theorem 5.14: Comparison principle

Suppose that (5.3.1) holds. Let U, V : [0, T ] × Rd → R be a bounded discontinuous
viscosity subsolution and a bounded discontinuous viscosity supersolution of (5.2.1), re-
spectively. If U(T, ·) ≤ V (T, ·) on Rd, then U ≤ V on [0, T ]× Rd.

Suppose that (5.3.1) holds. Suppose moreover that for a given bounded function u the
upper semi-continuous envelope u∗ is discontinuous viscosity subsolutions of (5.3.1) satisfying
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u∗(T, ·) ≤ g on Rd and the lower semi-continuous envelope u∗ is discontinuous viscosity super-
solutions of (5.3.1) satisfying u∗(T, ·) ≥ g on Rd. Then by the comparison theorem, u∗ ≤ u∗ on
[0, T ]×Rd. However, by definition, u∗ ≤ u∗, and so u∗ = u∗. This means that u := u∗ = u∗ is a
continuous viscosity solution of (5.2.1). Further by the comparison theorem for continuous vis-
cosity solutions (Theorem 5.10), the uniqueness follows. Consequently, u is a unique continuous
viscosity solution.

Barles–Souganidis Method

The abstract method given in Barles and Souganidis [2] is a powerful tool for checking the
convergence of a given family of functions to a unique viscosity solution. Let F : [0, T ] × Rd ×
R × Rd × Sd → R. Further, let C be a class of bounded functions such that C2

b (Rd) ⊂ C, and
{Φh}h∈(0,1] a family of operators such that Φh : C → C, h ∈ (0, 1].

Assume that F satisfies (5.2.3) and (5.2.4), and that the comparison principle holds.

Assumption 5.15

Let U, V : [0, T ]×Rd → R be a bounded discontinuous viscosity subsolution and a bounded
discontinuous viscosity supersolution of (5.2.1), respectively. If U(T, ·) ≤ V (T, ·) on Rd,
then U ≤ V on [0, T ]× Rd.

Now consider the terminal value problem (5.2.1) with v(T, ·) = g on Rd, where g ∈ C.
Suppose that we construct the family {vh(tk, ·)}h∈(0,1] ⊂ C, k = 0, . . . , n, such that

vh(tk, x) = Φh[vh(tk+1, ·)](x), k = 0, . . . , n− 1, x ∈ Rd,

vh(tn, x) = g(x), x ∈ Rd.
(5.5.1)

Here, tk = kT/n for k = 0, . . . , n. We assume that {tk}nk=0 is described by the parameter h and
that ∆t := T/n→ 0, as h→ 0.

Then we make the following conditions on our scheme:

Assumption 5.16

(i) Monotonicity:
Φh[ϕ](x) ≤ Φh[ψ](x), x ∈ Rd

for any ϕ, ψ ∈ C with ϕ ≤ ψ on Rd.

(ii) Stability:
sup

h∈(0,1]
sup
x∈Rd

|vh(tk, x)| <∞, k = 0, . . . , n.

(iii) Consistency I: for any (t, x) ∈ [0, T )× Rd and ϕ ∈ C1,2
b ([0, T ]× Rd), we have

lim
(s,y)→(t,x)
h→0, c→0

1

∆t

(
ϕ(s, y) + c− Φh[ϕ(s+∆t, ·) + c](y)

)
= F (t, x, ∂tϕ(t, x), ϕ(t, x), Dϕ(t, x), D

2ϕ(t, x)) = 0.

(iv) Consistency II: for x ∈ Rd,

lim
(tk,y)→(T,x)

h→0

vh(tk, y) = g(x).

Here is our main result in this section.
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Theorem 5.17

Suppose that Assumptions 5.16 and 5.15 hold. Let vh, h ∈ (0, 1], be as in (5.5.1). Then,
there exists a unique continuous viscosity solution v of (5.2.1), and for any t ∈ [0, T ],

lim
h→0, tk→t

vh(tk, x) = v(t, x),

uniformly on any compact subset of Rd.

Proof. We consider

v(t, x) = lim sup
(tk,y)→(t,x)

h↘0

vh(tk, y), (t, x) ∈ [0, T ]× Rd

and show that v is a discontinuous viscosity subsolution of (5.2.1). Let φ ∈ C1,2([0, T ] × Rd)
such that v − φ has a global maximum at (t, x) ∈ [0, T )× Rm with v(t, x) = φ(t, x). As in the
proof of Theorem 5.11, we may assume that φ ∈ C1,2

b ([0, T ]× Rd). Then, take r > 0 such that

(v − φ)(s, y) ≤ (v − φ)(t, x), (s, y) ∈ Br(t, x) ⊂ [0, T )× Rd.

where Br(t, x) denote the closed ball at (t, x) with radius r. For (s, y) ∈ Br(t, x) set

φ̃(s, y) = φ(s, y) + |s− t|2 + |y − x|2.

It follows that (t, x) is a strict maximum of v − φ̃ on Br(t, x). Also, for (s, y) outside the ball,
we choose φ̃ so that φ̃(s, y) ≥ 2 suph∈(0,1] |vh(s, y)| and that φ̃ is still in C1,2

b ([0, T ]× Rd). Thus
(t, x) is a global strict maximum of v − φ̃. By abuse of notation, we write φ for φ̃.

By definition of v, there exist hm, k̃m, ỹm, m ≥ 1, such that (tk̃m , ỹm) ∈ Br(t, x) and as
m→∞,

hm → 0, (tk̃m , ỹm)→ (t, x), vhm(tk̃m , ỹm)→ v(t, x).

Take km and ym so that

(vhm − φ)(tkm , ym) ≥ max
k=0,1,...,n

sup
y∈Rd

(vhm − φ)(tk, y)− (∆t)2m, (5.5.2)

where (∆t)m = ∆t for h = hm. The sequence (tkm , ym), m ≥ 1, can be taken from the bounded
set Br(t, x), so there exists a limit point (t̃, x̃) ∈ Br(t, x) possibly along a subsequence. Thus,
denoting cm = (vhm − φ)(tkm , ym), we have

0 = (v − φ)(t, x) = lim
m→∞

(vhm − φ)(tk̃m , ỹm) ≤ lim inf
m→∞

cm ≤ lim sup
m→∞

cm ≤ (v̄ − φ)(t̃, x̃).

Since (t, x) is a strict maximum, we deduce that (t̃, x̃) = (t, x). Therefore, it follows that
(tkm , ym)→ (t, x) and cm → 0.

By (5.5.2), for any y ∈ Rd,

φ(tkm+1, y) + cm + (∆t)2m ≥ vhm(tkm+1, y).

Thus, using the monotonicity property in Assumption 5.16,

1

∆t
Φhm [φ(tkm +∆t, ·) + cm + (∆t)2m](tkm , ym)

≥ 1

∆t
vhm(tkm , ym) ≥ 1

∆t
(φ(tkm , ym) + cm + (∆t)2m)− 2(∆t)m.
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Combining this with the consistency property in Assumption 5.16, we find that

F (t, x, ∂tφ(t, x), φ(t, x), Dφ(t, x), D
2φ(t, x)) ≥ 0.

Thus v is a discontinuous viscosity subsolution of (5.2.1).
By a similar argument, we can show that

v(t, x) = lim inf
(tk,y)→(t,x)

h↘0

vh(tk, y), (t, x) ∈ [0, T ]× Rd

is a discontinuous viscosity supersolution of (5.2.1). Since v(T, ·) = v(T, ·) = g, Assumption
5.15 now implies that v ≤ v. However, by definition, v ≥ v. Hence we obtain v = v.
This means that v := v = v is a discontinuous viscosity solution of (5.2.1). From v(t, x) =
lim(tk,y)→(t,x) limh→0 v

h(tk, y), the continuity of v follows. Hence v is a continuous viscosity
solution of (5.2.1).

Now take an arbitrary compact set K ⊂ Rd. Further fix t ∈ [0, T ] and ε > 0. Then, by the
uniform continuity of v(t, ·) on K, there exists δ0 > 0 such that |v(t, y)− v(t, z)| < ε whenever
|y − z| < δ0. Moreover, for any x ∈ K there exist δ(x) > 0 and h(x) ∈ (0, 1] such that

|vh(tk, y)− v(t, x)| < ε, y ∈ Bδ(x)(x), h ≤ h(x),

where tk → t as h→ 0. We may assume δ(x) ≤ δ0 for all x ∈ K. Since {Bδ(x)(x)}x∈K is an open

coverage of K, there exist x1, . . . , xk ∈ K such that K ⊂ ∪ki=1Bδ(xi)(xi). Thus for any x ∈ K we

have |vh(tk, x)− vh(t, xi)| < ε for some i = 1, . . . , k whenever h ≤ h0 := min{h(x1), . . . , h(xk)}.
This means that |vh(tk, x)−v(t, x)| ≤ |vh(tk, x)−v(t, xi)|+|v(t, xi)−v(t, x)| < 2ε. Consequently,

sup
x∈K
|vh(tk, x)− v(t, x)| ≤ 2ε, h ≤ h0.

Thus the required uniform convergence follows.
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CHAPTER 6

Numerical Methods for Nonlinear PDEs

6.1 Introduction

The objective of this chapter is to discuss numerical methods for the terminal value problems
of the parabolic PDEs:

−∂tv(t, x) + F (t, x, v(t, x), Dv(t, x), D2v(t, x)) = 0, (t, x) ∈ [0, T )× Rd,

v(T, x) = f(x), x ∈ Rd,
(6.1.1)

where F : [0, T ] × Rd × R × Rd × Sd → R. As seen in the previous chapter, under suitable
conditions including the ellipticity condition on F , the terminal value problem (6.1.1) has a
unique viscosity solution v.

Most popular numerical method is the finite difference method . This is powerful and math-
ematically harmless in the case of d = 1. However, its time complexity is growing exponentially
as d becomes large, and strong conditions need to ensure the rigorous convergence for d ≥ 2.
We refer to [11] and Ieda [17] for the analysis of the finite difference method.

As an alternative, we present kernel-based collocation methods. To explain a basic idea, let
O ⊂ Rd be a set on which functions to be approximated, Γ = {x(1), · · · , x(N)} be a finite subset
of O, and Φ : O × O → R. Suppose that the matrix A := {Φ(x(i), x(j))}i,j=1,...,N is invertible.
Then for any f : O → R, the linear equation

Aα = f |Γ

has a unique solution α = (α1, . . . , αN )T ∈ RN , where f |Γ = (f(x(1)), . . . , f(x(N))T ∈ RN .
Namely, for f : O → R, the function

I(f)(x) =
N∑
j=1

(A−1f |Γ)jΦ(x, x(j)), x ∈ O,

interpolates f on Γ, where (ξ)j denotes the j-th component of ξ ∈ RN . This suggests

f(x) ≈ I(f)(x), x ∈ O.

Now, by a time-discretization of (6.1.1),

v(tk, x) ' v(tk+1, x)−∆tF (tk+1, x, v(tk+1, x), Dv(tk+1, x), D
2v(tk+1, x)), x ∈ O,

114



where tk = kT/n, k = 0, 1, . . . , n, and ∆t = T/n. Then by replacing the derivatives of v(tk+1, ·)
with those of I(v(tk+1, ·)), we obtain

v(tk, x) ' v(tk+1, x)−∆tF (tk+1, x, v(tk+1, x), DI(v(tk+1, ·)(x), D2I(v(tk+1, ·))(x)), x ∈ O.

This leads to a recursive equation backward in time that is determined by the collocation points
{t0, . . . , tn} × Γ. We analyze this method in details in Section 6.3.

As preliminaries, the next section is devoted to the review of the theory of the function
approximations above. We refer to [38] for a complete account.

6.2 Function Approximations with Reproducing Kernels

Let O = {x ∈ Rd : |x − x̃|0 < R}, an open ball centered at some x̃ ∈ Rd with a radius R > 0
defined by some Euclidean norm | · |0 in Rd.

Definition 6.1. We say that Φ : Rd → R is a positive definite function if for every ℓ ∈ N, for
all pairwise distinct y1, . . . , yℓ ∈ Rd and for all α = (αi) ∈ Rℓ \ {0}, we have

ℓ∑
i,j=1

αiαjΦ(yi − yj) > 0.

Moreover, Φ is said to be a radial function if Φ(·) = ϕ(| · |) for some ϕ : [0,∞)→ R.

For f ∈ L1(Rd) the Fourier transform of f is defined by

f̂(ξ) = (2π)−d/2

∫
Rd

f(x)e−
√
−1xTξdx, ξ ∈ Rd.

Theorem 6.2

Suppose that Φ ∈ C(Rd)∩L1(Rd). If Φ̂(ξ) > 0 for any ξ ∈ Rd, then Φ is positive definite.

Proof. Since Φ ∈ C(Rd)∩L1(Rd), we can apply the Fourier inversion formula (see, e.g., [43]) to
obtain

Φ(x) = (2π)−d/2

∫
Rd

Φ̂(ξ)e
√
−1xTξdξ, x ∈ Rd.

Thus, for every ℓ ∈ N, for all pairwise distinct y1, . . . , yℓ ∈ O and for all α = (αi) ∈ Rℓ, we have

ℓ∑
i,j=1

αiαjΦ(yi − yj) = (2π)−d/2

∫
Rd

ℓ∑
i,j=1

αiαje
√
−1(yi−yj)

TξΦ̂(ξ)dξ

= (2π)−d/2

∫
Rd

∣∣∣∣∣
ℓ∑

i=1

αie
√
−1yTi ξ

∣∣∣∣∣
2

Φ̂(ξ)dξ.

Now suppose that
∑ℓ

i,j=1 αiαjΦ(yi− yj) = 0. Then, since Φ̂ > 0, we have
∑ℓ

i=1 αie
√
−1yTi ξ =

0, dξ-a.e. Hence, by continuity,
∑ℓ

i=1 αie
√
−1yTi ξ = 0 for any ξ ∈ Rd. Fix an arbitrary i ∈

{1, . . . , ℓ} and consider f ∈ C∞
0 (Rd) satisfying f = 1 on {x : |x − yi| < ε/2} and f = 0 on

{x : |x− yi| > ε}, where ε > 0 is sufficiently small such that f(yj) = 0 for every j 6= i. Then by
the Fourier inversion,

αi =

ℓ∑
j=1

αjf(yj) = 0.

Thus the theorem follows.
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Example 6.3 (Gaussian kernel). Consider the case where Φ(x) = e−α|x|2 , x ∈ Rd, α > 0. It is
straightforward to see that G(x) := e−|x|2/2, x ∈ Rd, satisfies Ĝ = G on Rd. From this it follows
that Φ̂(ξ) = Ĝ(1/

√
2α)(2α)−d/2 > 0. Hence Φ is positive definite on Rd.

Example 6.4 (Inverse multiquadric kernel). Consider the case where Φ(x) = (c2+|x|2)−β, x ∈ Rd,
c > 0, β > d/2. Then we confirm by an elementary analysis that

Φ̂(ξ) = γ

(
|ξ|
c

)β−d/2

Kd/2−β(c|ξ|) > 0, x ∈ Rd,

where

1/γ = 2β−1

∫ ∞

0
tβ−1e−tdt,

and Kν(z), z > 0, is the modified Bessel function of 3rd (2nd) kind given by

Kν(z) =

∫ ∞

0
e−z cosh(t) cosh(νt)dt.

Hence Φ positive definite on Rd.

Example 6.5 (Wendland kernel). Consider the case where Φ(x) = ϕd,τ (|x|). Here,

ϕd,τ (r) =


∫ 1

r
s(1− s)ℓ(s2 − r2)τ−1ds, 0 ≤ r ≤ 1,

0, r > 1,

where ℓ = max{k ∈ Z : k ≤ d/2} + τ + 1. It is known that Φ is positive definite on Rd and in
C2τ (Rd). See [38]. For example,

ϕ1,2(r)
.
= max{1− r, 0}5(8r2 + 5r + 1),

ϕ1,3(r)
.
= max{1− r, 0}7(21r3 + 19r2 + 7r + 1),

ϕ1,4(r)
.
= max{1− r, 0}9(384r4 + 453r3 + 237r2 + 63r + 7),

ϕ2,4(r)
.
= max{1− r, 0}10(429r4 + 450r3 + 210r2 + 50r + 5),

ϕ2,5(r)
.
= max{1− r, 0}12(2048r5 + 2697r4 + 1644r3 + 566r2 + 108r + 9),

where
.
= denotes equality up to a positive constant factor.

• One of advantages in using Wendland kernel, which is complicatedly constructed and has
a limited smoothness, is that the corresponding interpolation matrix A is sparse.

• Another advantage is that a function space where the approximation works is relatively
easy to handle.

In what follows, let Φ : Rd → R be a fixed positive definite function, and we provide a
theoretical validation of the approximation I(f) ' f .

Theorem 6.6

There exists a unique Hilbert space NΦ(O) ⊂ C(O) with inner product 〈·, ·〉NΦ(O) such
that

(i) Φ(· − y) ∈ NΦ(O) for all y ∈ O.

(ii) f(y) = 〈f,Φ(· − y)〉NΦ(O) for all f ∈ NΦ(O) and y ∈ O.
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• We call NΦ(O) the native space.

• Φ is said to be a reproducing kernel for NΦ(O).

Example 6.7 (Gaussian kernel). In the case where Φ is given by the Gaussian kernel,

NΦ(Rd) =

{
f : Rd → R

∣∣∣∣ ∫
Rd

|f̂(ξ)|2e|ξ|2/(4α)dξ <∞
}

and there exist c1, c2 > 0 such that for f ∈ NΦ(Rd),

c1

∫
Rd

|f̂(ξ)|2e|ξ|2/(4α)dξ ≤ ‖f‖2NΦ(Rd) ≤ c2
∫
Rd

|f̂(ξ)|2e|ξ|2/(4α)dξ.

Here, for f ∈ L1(Rd), the function f̂ is the Fourier transform of f , defined as usual by

f̂(ξ) = (2π)−d/2

∫
Rd

f(x)e−
√
−1xTξdx, ξ ∈ Rd.

Example 6.8 (Inverse multiquadric kernel). In the case where Φ is given by the inverse multi-
quadric kernel,

NΦ(Rd) =

{
f : Rd → R

∣∣∣∣ ∫
Rd

|f̂(ξ)|2|ξ|d−2β/Kd/2−β(c|ξ|2)dξ <∞
}

and there exist c1, c2 > 0 such that for f ∈ NΦ(Rd),

c1

∫
Rd

|f̂(ξ)|2|ξ|d−2β/Kd/2−β(c|ξ|2)dξ ≤ ‖f‖2NΦ(Rd) ≤ c2
∫
Rd

|f̂(ξ)|2|ξ|d−2β/Kd/2−β(c|ξ|2)dξ.

Here, Kν is the modified Bessel function of the third kind of the order ν.

Example 6.9 (Wendland kernel). In the case where Φ is given by the Wendland kernel,

NΦ(Rd) =

{
f : Rd → R

∣∣∣∣ ∫
Rd

|f̂(ξ)|2(1 + |ξ|2)τ+(d+1)/2dξ <∞
}

and there exist c1, c2 > 0 such that for f ∈ NΦ(Rd),

c1

∫
Rd

|f̂(ξ)|2(1 + |ξ|2)τ+(d+1)/2dξ ≤ ‖f‖2NΦ(Rd) ≤ c2
∫
Rd

|f̂(ξ)|2(1 + |ξ|2)τ+(d+1)/2dξ.

That is, the native space is given by the L2-Sobolev space of the order τ with equivalent norm.
Moreover, if τ + (d+ 1)/2 is a positive integer, then

NΦ(Rd) =

f : Rd → R

∣∣∣∣∣∣
∑

|α|≤τ+(d+1)/2

∫
Rd

|Dαf(x)|2dx <∞

 .

We will show that the approximation I(f) ' f works on the native space and the error can

be described in terms of ‖f‖NΦ(O) := 〈f, f〉
1/2
NΦ(O) and

∆x := sup
x∈O

min
j=1,...,N

|x− x(j)|.

That is, ∆x is the Hausdorff distance between Γ and O.
Theorem 6.10

Suppose that Φ ∈ C2(Rd). Then there exists a positive constant CΦ,O, only depending
on Φ and O, such that for any f ∈ NΦ(O),

|f(x)− I(f)(x)| ≤ CΦ,O∆x‖f‖NΦ(O), x ∈ O.
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Figure 6.2.1: Approximation of e−|x1| (d = 1). Gaussian kernel with α = 1, N = 11 and
Wendland kernel ϕ1,3 for N = 11, 21, 41. Γ is set to be the uniform grid on [−2, 2] including the
boundary.

Figure 6.2.2: Approximation errors of e−|x1|−|x2| (d = 2). Wendland kernel ϕ2,4 for N =
1000, 2000, . . . , 10000. Γ is generated by the quasi random number of Halton type on [−2, 2]2.
The evaluations are done at 441 uniform grid points on [−1, 1]2 including the boundary.
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Outline of the proof.
Step (i). Observe

sup
x∈O
|f(x)| ≤ max

j=1,...,N
|f(x(j))|+Kf∆x

for any Lipschitz continuous function f on O where

Kf := sup
x,y∈O
x ̸=y

|f(x)− f(y)|
|x− y|

.

Step (ii). We will see that for any f ∈ NΦ(O) we have ‖f − I(f)‖NΦ(O) ≤ ‖f‖NΦ(O) and there
exists a constant C > 0 such that

Kf ≤ C‖f‖NΦ(O).

If Φ is of Gaussian or inverse multiquadric types, then we can obtain an arbitrary order of
convergence.

Theorem 6.11

Suppose that Φ is one of the Gaussians or the inverse multiquadrics. Let ℓ ∈ N. Then
there exist a positive constants δ0 and C such that for any f ∈ NΦ(O), x ∈ O, and
∆x ≤ δ0,

|f(x)− I(f)(x)| ≤ C(∆x)ℓ‖f‖NΦ(O).

In the case of Wendland kernels, we have the following:

Theorem 6.12

Suppose that Φ = ϕd,τ (| · |) is the Wendland kernel. Then there exist positive constant δ0
and C such that for any f ∈ NΦ(O), x ∈ O, and ∆x ≤ δ0,

|f(x)− I(f)(x)| ≤ C(∆x)τ+1/2‖f‖NΦ(O).

6.3 Kernel-Based Collocation Methods

Construction

In this section, the function Φ is assumed to be the Wendland kernel Φd,τ divided by some
positive constant with fixed τ ≥ 2. Let h > 0 be a parameter that describes approximate
solutions, Γ = {x(1), . . . , x(N)} ⊂ (−R,R)d with R > 1, and {t0, . . . , tn} the set of time grid
points such that tk = kT/n, k = 0, . . . , n. Then think of the interpolant

vh(tk, x) =

N∑
j=1

(A−1vhk )jΦ(x− x(j)), x ∈ Rd, (6.3.1)

of vhk = (vhk,1, . . . , v
h
k,N )T ∈ RN to be specified below. Substituting this into the time discretized

equation
v(tk+1, x)− v(tk, x)

tk+1 − tk
' F (tk+1, x; v(tk+1, ·)),

we derive the following equation for {vhk}:

vhk+1,j − vhk,j = (tk+1 − tk)Fk+1,j(v
h
k+1), k = 0, . . . , n− 1, j = 1, . . . , N.
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Here, for any C2-function φ on Rd,

F (t, x;φ) = F (t, x, φ(x), Dφ(x), D2φ(x)), x ∈ Rd,

and Fk,j(v
h
k ) = F (tk, x

(j); vh(tk, ·)). The terminal condition leads to vhn,j = f(x(j)), j = 1, . . . , N .

Thus, denoting Fk(v
h
k ) = (Fk,1(v

h
k ), . . . , Fk,N (vhk ))

T, we get{
vhk = vhk+1 − (tk+1 − tk)Fk+1(v

h
k+1), k = 0, . . . , n− 1,

vhn = f |Γ.
(6.3.2)

Consequently, we define the function vh(tk, x), a candidate of an approximate solution of (6.1.1),
by (6.3.1) with {vhk} determined by the equation (6.3.2).

Remark 6.13. The linearity of the interpolant yields, for x ∈ Rd,

vh(tk, x) = vh(tk+1, x)− (tk+1 − tk)I(Fk+1(v
h
k+1))(x),

where by abuse of notation we denote I(ξ)(x) =
∑N

j=1(A
−1ξ)jΦ(x− x(j)) for ξ ∈ RN .

Let us describe our collocation methods in a matrix form. To this end, we assume here that
the nonlinearity F can be written as

F (t, x;φ) = sup
π∈K

H(t, x, φ(x), b(x, π)TDφ(x), tr(a(x, π)D2φ(x))),

where K is a set, b : Rd ×K → Rd, a : Rd ×K → Sd, and H : [0, T ]× Rd × R× R× R→ R. It
should be noted that the nonlinearities corresponding to Hamilton-Jacobi-Bellman equations are

represented in this form. Then, consider the function ϕ
(1)
d,τ (r) := ϕ′d,τ (r)/r, r ≥ 0. By definition

of ϕd,τ , the function ϕ
(1)
d,τ is continuous on [0,∞) and supported in [0, 1]. With this function, we

have
∂xmΦ(x) = ϕ(1)(|x|)xm, x = (x1, . . . , xd) ∈ Rd.

Thus,

Bℓ(π) :=
(
bℓ(x

(i), π)∂xℓ
Φ(x(i) − x(j))

)
1≤i,j≤N

= Qℓ(π)(GℓA1 −A1Gℓ),

where Qℓ(π) = diag(bℓ(x
(1), π), . . . , bℓ(x

(N), π)), A1 = {ϕ(1)d,τ (|x
(i) − x(j)|)}1≤i,j≤N and Gℓ =

diag(x
(1)
ℓ , . . . , x

(N)
ℓ ). Hence,

RN 3 (bℓ(x
(i), π)(∂/∂xℓ

)I(ξ)(x(i)))1≤i≤N = Bℓ(π)A
−1ξ.

Similarly,

∂2xmxℓ
Φ(x) =

{
ϕ
(1)
d,τ (|x|) + ϕ

(2)
d,τ (|x|)x

2
m, (ℓ = m),

ϕ
(2)
d,τ (|x|)xmxℓ, (ℓ 6= m),

where

ϕ
(2)
d,τ (r) =

1

r

dϕ
(1)
d,τ

dr
(r), r ≥ 0.

Notice that ϕ
(2)
d,τ is also continuous on [0,∞) and supported in [0, 1]. Thus,

Bmℓ(π) :=
{
amℓ(x

(i), π)∂2xmxℓ
Φ(x(i) − x(j))

}
1≤i,j≤N

is given by
Bmm(π) = Qmm(π)(A1 +G2

mA2 − 2GmA2Gm +A2G
2
m)
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and for m 6= ℓ,

Bmℓ = Qmℓ(π)(GmGℓA2 −GmA2Gℓ −GℓA2Gm +A2GmGℓ)

with A2 = {ϕ(2)d,τ (|x
(i) − x(j)|)}1≤i,j≤N and Qmℓ(π) = diag(amℓ(x

(1), π), . . . , amℓ(x
(N), π)). Con-

sequently, we obtain

Fk,j(v
h
k ) = sup

π∈K
H

tk, x(j),
(

d∑
m=1

Bm(π)A−1vhk

)
j

,

 d∑
m,ℓ=1

Bmℓ(π)A
−1vhk


j

 .

Numerical examples

Here we consider the following equation for our numerical experiments:
− ∂tv −

1

2
sup

0≤σ≤1/5
tr(σ2D2v) +G(v,Dv) = 0, (t, x) ∈ [0, 1)× Rd,

v(1, x) = sin

(
1 +

d∑
i=1

xi

)
, x = (x1, . . . , xd)

T ∈ Rd,

where G(z, p) = (1/d)
∑d

i=1 pi − (d/2) inf0≤σ≤1/5(σ
2z) for z ∈ R, p = (p1, . . . , pd)

T ∈ Rd. It is

straightforward to see that the unique solution is given by v(t, x) = sin(t+
∑d

i=1 xi).
We apply our method to this equation in the cases of d = 1 and d = 2. As mentioned in

Section 6.1, we use the interpolation method as a practical alternative to the regression one and
then show its usefulness through the numerical experiments below.

For each d = 1, 2, we choose the parameter τ = τd of the Wendland kernel as τ1 = 4
and τ2 = 15. We construct the set Γ = Γd of collocation points as the equi-spaced points on
[−Rd, Rd]

d, where
Rd = γdN

1/d−1/(d+2τd−3).

Here, γ1 = 1/4 and γ2 = 1/5. These choices come from the fact that ∆x ∼ RdN
−1/d and the

interpolation error up to the second derivatives is O((∆x)τd−3/2) (see Corollary 11.33 in [38]).
To implement the collocation method, we use the matrix representation, by noting inf0≤σ≤1/5(σ

2y) =
−(1/5)2max(−y, 0), with the uniform time grid. We examine the cases of n = 28 and n = 212.
Figures 6.3.1 and 6.3.2 show the resulting root mean square errors and the maximum errors,
defined by

Max error = max
ξ∈Γ0, i=0,...,n

∣∣∣vh(ti, ξ)− v(ti, ξ)∣∣∣ ,
RMS error =

√√√√ 1

10d(n+ 1)

∑
ξ∈Γ0

n∑
i=0

|vh(ti, ξ)− v(ti, ξ)|2,

respectively, where Γ0 is the set of 10d-evaluation points constructed by a Sobol’ sequence on
[−1, 1]d for each d = 1, 2.
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Figure 6.3.1: Max and RSM errors for d = 1 with n = 28, 212.

Figure 6.3.2: Max and RSM errors for d = 2 with n = 28, 212.
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APPENDIX A

Review on Probability Theory

This chapter reviews basic facts about measure theoretic probability. We refer to, e.g., [39], [48],
[44], and [46] for details.

Probability spaces

Definition A.1. Let Ω be an arbitrary set. A family F of subsets of Ω is said to be σ-algebra
or σ-field if the following are satisfied:

(i) ∅ ∈ F .

(ii) If A ∈ F then Ac ∈ F . Here, Ac = Ω \A．

(iii) If A1, A2, · · · ∈ F then
⋃∞

n=1An ∈ F．

• We say that a set A ∈ F is F-measurable or simply measurable. Further, we call A ∈ F
an event.

• The pair (Ω,F) is called a measurable space.

Example A.2. For any set Ω, the set F of all subsets of Ω, i.e., F = 2Ω := {A : A ⊂ Ω}, is a
σ-field.

Proposition A.3

Let (Ω,F) be a measurable space, and let Ai ∈ F , i = 1, 2, . . .. Then, the following sets
are all F-measurable:

n⋃
i=1

Ai,
n⋂

i=1

Ai,
∞⋂
i=1

Ai,
∞⋂
n=1

∞⋃
i=n

Ai,
∞⋃
n=1

∞⋂
i=n

Ai.

Remark A.4. Basically, in probability theory, a subset of Ω is interpreted as randomly occurred
phenomenon and is a mathematical object for measuring how probable is its occurrence. Then
the σ-algebra F is a class of “well-defined” random phenomenons. For example, suppose that
for well-defined phenomenons A and B we are in a position to study the phenomenon that
both occurs and the one that A occurs but B does not. Then it is natural to require these
phenomenons are also well-defined. Namely, it is convenient for us to have A ∩ B,A ∩ Bc ∈ F
whenever A,B ∈ F . For this purpose, we require a collection of random phenomenons to
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be a σ-algebra. In other words, since σ-algebras are closed under various set manipulations,
complicated events can be well-defined objects to be studied. On the other hand, recall from
Example A.2 that the totality of all subsets of Ω is always a σ-algebra. Thus one may naturally
ask: is it sufficient to always adopt 2Ω as the underlying σ-algebra? Are there needs to consider
possibly different σ-algebras? We refer to, e.g.,[39] for a complete answer to this question. Here
we only mention that there exists a subset of [0, 1] such that the Lebesgue measure (see below)
of the set cannot be defined. In general, we need to choose appropriate σ-algebras depending on
problems. However, the choices of actually used σ-algebras are limited, so application-oriented
reader may not be discouraged with such technicality in measure theory.

For a family G of subsets of Ω, we set

σ(G) :=
⋂
{H : σ-algebra on Ω s.t. G ⊂ H}.

This is the minimum σ-filed containing G.
Example A.5. Let A ∈ F . In the case of G = {A}, we have σ(G) = {∅, A,Ac,Ω}. We usually
write σ(A) for σ({A}).

Let Ω be a topological space, and let G be the set of all open sets in Ω. Then, we call σ(G)
a Borel σ-algebras on Ω, and write B(Ω) = σ(G). We may take Ω = Rn, [a, b] for examples. The
notation B([a, b]) is often abbreviated as B[a, b].

Definition A.6. A set function P : F → [0, 1] is said to be a probability measure on (Ω,F) if
the following conditions are satisfied:

(i) P(∅) = 0, P(Ω) = 1．

(ii) For A1, A2, · · · ∈ F with Ai ∩Aj = ∅ (i 6= j), we have

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

• We call the triple (Ω,F ,P) a probability space.

• P(A) = “the probability that the event A occurs”.

• When P(A) = 1, we say that “the event A occurs with probability one” or “the event A
occurs with almost surely (a.s.)”.

• We say that a probability space (Ω,F ,P) is complete if all subsets of an arbitrary set in
F with probability zero belong to F , i.e., if

B ∈ F , A ⊂ B, P(B) = 0 =⇒ A ∈ F .

Theorem A.7

Let (Ω,F ,P) be a probability space. Put

F =

{
A ⊂ Ω :

A∗ ⊂ A ⊂ A∗, P(A∗ \A∗) = 0

for some A∗, A
∗ ∈ F

}

and set P(A) = P(A∗), A ∈ F , where A∗ is as above. Then (Ω,F ,P) is a complete
probability space.

• The probability space (Ω,F ,P) is said to be a completion of (Ω,F ,P).
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Example A.8. Let (Ω,F) be a measurable space. For a fixed ω0 ∈ F , we define P : F → [0, 1] by

P(A) =

{
1, if ω0 ∈ A,
0, if ω0 /∈ A.

Then P is a probability measure on (Ω,F). This P is called the Dirac measure at ω0.

Example A.9. Let Ω be a finite set (i.e., #Ω < ∞), and let F be the set of all subsets of Ω.
Then we define P : F → [0, 1] by P(A) =

∑
ω∈A pω, A ∈ F , where {pω}ω∈Ω satisfies pω ∈ [0, 1]

for each ω ∈ Ω and
∑

ω∈Ω pω = 1. By this procedure, we can construct any probability measure
on (Ω,F).
Example A.10 (Lebesgue measure). There exists a probability measure µ on ((0, 1],B((0, 1]))
such that

µ((a, b]) = b− a, 0 ≤ a ≤ b ≤ 1.

See, e.g., [44], [43], and [39]. That is, µ measures the length of intervals in [0, 1]. This is called
the Lebesgue measure on ((0, 1],B(0, 1]). By Definition A.6, we can show that µ({0}) = 0. So it
can be seen as a probability measure on ([0, 1],B[0, 1]).

Further, there exists a nonnegative measure ν on (R,B(R)) (i.e., a nonnegative set function
ν satisfying Definition A.6 (ii)) such that

ν((a, b]) = b− a, −∞ ≤ a ≤ b ≤ +∞.

This is called the Lebesgue measure on (R,B(R)).
Moreover, since ν defines a measure on [α, β] ⊂ R, the restricted measure is called the

Lebesgue measure on ([α, β],B[α, β]).

Proposition A.11

Let (Ω,F ,P) be a probability space. Then we have the following:

(i) A ∈ F =⇒ P(Ac) = 1− P(A).

(ii) A,B ∈ F , A ⊂ B =⇒ P(A) ≤ P(B).

(iii) An ∈ F , n = 1, 2, . . . =⇒ P(
⋃

nAn) ≤
∑

n P(An).

(iv) An ∈ F , n = 1, 2, . . ., A1 ⊂ A2 ⊂ · · · =⇒ limn→∞ P(An) = P(
⋃

nAn).

(v) An ∈ F , n = 1, 2, . . ., A1 ⊃ A2 ⊃ · · · =⇒ limn→∞ P(An) = P(
⋂

nAn).

The following fact is frequently used:

Lemma A.12: Borel-Cantelli lemma

Suppose that a sequence {An} ⊂ F satisfies
∑∞

n=1 P(An) <∞. Then

P

⋂
n≥1

⋃
k≥n

Ak

 = 0.

Proof. It follows from Proposition A.11 that

P

⋂
n≥1

⋃
k≥n

Ak

 = lim
n→∞

P

⋃
k≥n

Ak

 ≤ lim
n→∞

∑
k≥n

P(Ak) = 0.
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Random variables

Let (Ω,F ,P) be a probability space. A random variable describes realized values for all source
ω ∈ Ω of randomness.

Definition A.13. We say that X : Ω→ R ∪ {±∞} is an F-measurable random variable if

{ω ∈ Ω : X(ω) > a} ∈ F , a ∈ R.

For Rd-valued random function, we usually adopt the following definition:

Definition A.14. We say that X : Ω→ Rn is an F-measurable random variable if

X−1(B) := {ω ∈ Ω : X(ω) ∈ B} ∈ F , B ∈ B(Rn).

• Definition A.14 requires that for an arbitrary B ∈ B(Rn), the event that X(ω) ∈ B belongs
to the “well-defined” class F of random phenomenons.

• When F is referred to as an underlying σ-algebra, i.e., the σ-algebra F is the largest among
those appeared in a specified problem, we simply say that X is a random variable.

• The event {ω ∈ Ω : X(ω) ∈ B} is often written as {X ∈ B}.

Sometimes it is convenient to consider a stochastic process as a random variable taking values
in a function space. To this end, we describe a generalized version of Definition A.14.

Definition A.15. Let (S,S) and (U,U) be measurable spaces. A mapping f : S → U is said
to be a measurable mapping from (S,S) into (U,U) if

f−1(B) = {f ∈ B} ∈ S, ∀B ∈ U .

In particular, when we work in a probability space (S,S,Q), the mapping f is said to be a
U -valued random variable on (S,S,Q).

• In the case that U is a topological space, we say that a B(U)-measurable mapping is Borel
measurable.

Functions and limits of random variables are again random variables.

Proposition A.16

Let (S,S) and (U,U) be measurable spaces. Then we have the following:

(i) If X : Ω→ S and f : S → U are measurable, so is f(X).

(ii) Let {Xn} be a sequence of random variables Xn : Ω → S, then infnXn, supnXn,
lim infnXn, and lim supnXn are all random variables.

(iii) Suppose that Ω is a topological space and F = B(Ω). Then any continuous map
h : Ω→ Rn is measurable.

• Let (S,S) be a measurable space. For X : Ω→ S, the family

σ(X) := {X−1(B) : B ∈ S}

of subsets of Ω is the minimum σ-field such that X is measurable.
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• One may adopt σ(Xλ, λ ∈ Λ) as an underlying σ-filed when mappings Xλ on Ω, λ ∈ Λ,
are the only random objects to be studied. That is, in that case, it is sufficient for us to
set F = σ(Xλ, λ ∈ Λ).

That a random variable Y is measurable w.r.t. a σ-field G means that Y can be constructed
by the information of G. Precisely speaking, we have the following:

Theorem A.17

Let (E, E) be a measurable space, and X : Ω→ R, and Y : Ω→ E. Then a necessary and
sufficient condition for which X is σ(Y )-measurable is that there exists an E-measurable
function f : E → R such that X = f(Y ).

The well-known concept of the distributions is rigorously formulated in the measure theoretic
probability.

Definition A.18. Let (S,S) be a measurable space. Then for S-valued random variable X,

µX(B) := P (X−1(B)), B ∈ S

is a probability measure on (S,S). We call this µX as the distribution of X.

• When X is real-valued, the nondecreasing and right-continuous function

FX(x) := P(X ∈ (−∞, x]) = P(X ≤ x), x ∈ R,

is said to be the distribution function of X.

• We say that a nonnegative Borel function f on Rd is a probability density function if∫
Rd

f(x)dx = 1.

For an Rd-valued random variable X, when there exists a probability density function f
such that

P(X ∈ B) =

∫
B
f(x)dx, B ∈ B(Rd),

we say that the distribution of X has a density f .

Example A.19. Let p ∈ [0, 1]. Assume that the distribution µ of a {0, 1, . . . , n}- valued random
variable Sn is given by

µ({k}) =
(
n
k

)
pk(1− p)n−k.

Then we say that Sn follows the binomial distribution with parameter (n, p), and write Sn ∼
B(n, p).

Example A.20. Let X be an Rd-valued random variable, m ∈ Rd, and V ∈ Rd×d positive definite.
We say that X follows a d-dimensional Gaussian distribution if the distribution µ of X satisfies

µ(B) =
1√

(2π)ddetV

∫
B
exp(−x∗(V −1)x/2)dx, B ∈ B(Rd),

where det(V ) is the determinant of V . Then we write X ∼ N(m,V ).
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Expectation

Let (Ω,F ,P) be a probability space. In this section, we assume that all random variables are
R ∪ {±∞}-valued unless otherwise stated.

We define the indicator function 1A of a set A ⊂ Ω by

1A(ω) =

{
1, ω ∈ A
0, ω /∈ A

• 1A is measurable ⇐⇒ A ∈ F .

X : Ω → R is said to be a simple function if there exist A1, . . . , An ∈ F and x1, . . . , xn ∈ R
with

Ai ∩Aj = ∅ (i 6= j), i, j = 1, . . . , n, Ω =

n⋃
i=1

Ai

such that

X(ω) =
n∑

i=1

xi1Ai(ω), ω ∈ Ω. (A.1)

• IfX is a simple function of the form (A.1), thenX(Ω) = {x1, . . . , xn} and {X = xi}∩{X =
xj} = ∅ (i 6= j)．

Suppose that X : Ω → R is a simple function having representation (A.1). Then we define
the expectation E[X] of X by

E[X] =
n∑

i=1

xiP(Ai).

• It should be emphasized that this definition is well-defined, i.e., E[X] is determined inde-
pendently of the representations of X as a simple function.

• Notice that for simple functions X,Y with X(ω) ≤ Y (ω), ω ∈ Ω (in many cases, this is
simply written as X ≤ Y ), we have E[X] ≤ E[Y ].

We define the expectations of general random variables by some approximations with those of
simple functions. To this end, we need the following lemma:

Lemma A.21

Let X : Ω→ R∪ {±∞}. Then X is a random variable (i.e., F-measurable) if and only if
there exists a sequence {Xn}∞n=1 of nonnegative simple functions such that for all ω ∈ Ω

0 ≤ X1(ω) ≤ X2(ω) ≤ · · · ≤ X(ω),

lim
n→∞

Xn(ω) = X(ω).
(A.2)

For any random variable X we define

X+(ω) := max{X(ω), 0}, X−(ω) := −min{X(ω), 0}, ω ∈ Ω.

The random variables X+ and X− are both nonnegative. It follows from Lemma A.21 that
there exists a sequence {X+

n } (resp. {X−
n }) of simple functions satisfying (A.2) for X+ (resp.

X−). As remarked above, it follows that E[X+
n ] ≤ E[X+

n+1], whence {E[X+
n ]} is nonnega-

tive and nondecreasing. Hence the limit limn→∞ E[X+
n ] ∈ [0,∞] exists. Similarly, the limit

limn→∞ E[X−
n ] ∈ [0,∞] exists. We define the expectation E[X] of X by

E[X] = lim
n→∞

E[X+
n ]− lim

n→∞
E[X−

n ]

provided that at least one or both of the two limits are finite.
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• This definition is also well-defined.

• Since |X| = X+ +X−, that E[X] is finite is equivalent to E[|X|] <∞.

• The expectation is nothing but the Lebesgue integral with respect to the measure P and
so it can be written as

E[X] =

∫
X(ω)P(dω) =

∫
XdP.

Also, we often write EP[X] for the expectation of X to emphasize that it is defined under
the probability measure P.

Let X,Y be (real-valued) random variables and denote by i =
√
−1 the imaginary unit.

Then Z := X + iY is a complex-valued random variable, and we define its expectation by

E[Z] = E[X] + iE[Y ].

In particular, for a real-valued random variable X and t ∈ R,

E[eitX ] = E[cos(tX)] + iE[sin(tX)].

We list several basic properties of E[·].
Proposition A.22

Let X and Y be random variables. Assume that the both E[X] and E[Y ] are defined.
Then for a, b ∈ R we have the following:

(i) X = Y a.s. =⇒ E[X] = E[Y ]．

(ii) X ≤ Y a.s. =⇒ E[X] ≤ E[Y ]．

(iii) E[aX + bY ] = aE[X] + bE[Y ] (unless the right-hand side is ∞−∞).

(iv) |E[X]| ≤ E[|X|].

(v) E[|X|] <∞ =⇒ |X| <∞ a.s.

(vi) X ≥ 0 a.s., E[X] = 0 =⇒ X = 0 a.s.

(vii) X ≥ Y a.s., E[X] = E[Y ] =⇒ X = Y a.s.

The expectation of a random variable can be given by the Lebesgue integral on the set which
the variable takes values in.

Proposition A.23

Let (S,S) be a measurable space, X an S-valued random variable, µX its distribution,
and f a Borel measurable function on S. Then,

E[f(X)] =

∫
S
f(x)dµX(x).

Here, the equality means that if the right-hand side is finite then the other one is also
finite and has the same value, and vice versa.

In general, for Rd-valued random variable X = (X1, . . . , Xd), we say that

φX(t) = E
[
ei

∑d
k=1 tkXk

]
, t = (t1, . . . , td) ∈ Rd
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is the characteristic function of X. The distribution of any random variable is completely
determined by its characteristic function.

Proposition A.24

Let X and Y be Rd-valued random variables. If φX(t) = φY (t) holds for any t ∈ Rd, then
µX = µY .

Let p ∈ [1,∞]. For real-valued random variable X, we set

‖X‖p :=

{
(E[|X|p])

1
p (p ∈ [1,∞)),

inf{a ≥ 0 : |X| ≤ a a.s.} (p =∞).

Denote by Lp(Ω,F ,P) by the totality of random variables such that ‖X‖p <∞.

• Since X = 0 a.s. ⇐⇒ ‖X‖p = 0, if we identify X with Y in the case of X = Y a.s., then
‖ · ‖p defines a norm. By this identification, Lp = Lp(Ω,F ,P) becomes a Banach space
(i.e., a complete normed space).

• Notice that for 1 ≤ p ≤ q and X ∈ Lq we have ‖X‖p ≤ ‖X‖q. Thus X ∈ Lp.

• L2 is a real Hilbert space with the inner product

〈X,Y 〉 = E[XY ].

• A random variable X is said to be integrable if X ∈ L1, i.e., E[|X|] <∞.

The following several inequalities are frequently used.

Proposition A.25: Chebyshev’s inequality

Let X be a nonnegative random variable. Then, for any nondecreasing function f :
[0,∞)→ [0,∞) and x > 0,

P(X ≥ x) ≤ E[f(X)]

f(x)
.

Applying Proposition A.25 for |X| and f(x) = x, we obtain the following:

Corollary A.26: Markov’s inequality

For any R-valued random variable X and any x > 0,

P(|X| ≥ x) ≤ E[|X|]
x

.

Markov’s inequality implies that if X is integrable then the tail probability P(|X| > x)
decreases to zero faster than O(1/x). If X has higher moments, then Chebyshev’s inequality
means that the tail more rapidly decreases to zero.

Proposition A.27: Jensen’s inequality

Let X be an integrable random variable, and let g : R→ R be convex. Then,

g(E[X]) ≤ E[g(X)].
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Proposition A.28

Let p, q ∈ (1,∞) be such that (1/p) + (1/q) = 1. For X,Z ∈ Lp and Y ∈ Lq we have

(i) (Hölder’s inequality)
|E[XY ]| ≤ ‖X‖p‖Y ‖q;

(ii) (Minkowski’s inequality)

‖X + Z‖p ≤ ‖X‖p + ‖Z‖p.

• Hölder’s inequality with p = 2 is generally called the Cauchy-Schwartz inequality.

Convergence of random variables

Definition A.29. Let X,X1, X2, . . . be random variables.

(i) {Xn}∞n=1 converges to X almost surely (we write Xn → X a.s.)
def⇐⇒ P({ω : Xn(ω) →

X(ω)}) = 1.

(ii) {Xn}∞n=1 converges to X in probability
def⇐⇒ P(|Xn −X| > ε)→ 0 (n→∞) for any ε > 0.

(iii) {Xn}∞n=1 converges to X in Lp def⇐⇒ limn→∞ ‖Xn −X‖p = 0.

(iv) Assume that X,X1, X2, . . . are all Rd-valued. Then {Xn}∞n=1 converges to X in law (or in

distribution)
def⇐⇒ limn→∞ E[f(Xn)] = E[f(X)] for any bounded continuous function f .

For R-valued random variables, we have the following relations for the definitions of the
convergences:

• Xn → X a.s. =⇒ Xn → X in probability.

• Xn → X in Lp =⇒ Xn → X in probability.

• Xn → X in probability =⇒ Xn → X in law.

• Xn → X in probability =⇒ limk→∞Xnk
= X a.s. for some subsequence {nk}∞k=1 with

limk→∞ nk =∞.

The following three claims state the interchangeablity between the expectation and the limit
of random variables.

Theorem A.30: Monotone convergence theorem

Let {Xn} be a sequence of random variables such that 0 ≤ X1 ≤ X2 ≤ · · · a.s. Then

E[Xn]↗ E[X] (n→∞).

Lemma A.31: Fatou lemma

Let {Xn} be a sequence of almost surely nonnegative random variables. Then,

E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn].

131



Theorem A.32: Dominated convergence theorem

Suppose that random variables X, Xn, n ∈ N, satisfy the following:

(i) Xn → X a.s.

(ii) There exists a random variable Y ∈ L1 such that |Xn| ≤ Y a.s. for all n ∈ N.

Then,
lim
n→∞

E[Xn] = E[X].

Independence and product spaces

Definition A.33. Let (Ω,F ,P) be a probability space.

(i) A,B ∈ F are said to be independent of each other if

P(A ∩B) = P(A)P(B).

(ii) A family {Bi}, i ∈ I, of subsets of F is said to be independent if for distinct i1, . . . , ik ⊂ I
we have

P(Bi1 ∩ · · · ∩Bik) = P(Bi1) · · ·P(Bik), Bij ∈ Bij , j = 1, . . . , k.

(iii) Let {Xi}i∈I be a family of random variables. We say that Xi, i ∈ I, is independent if
σ(Xi), i ∈ I, is independent.

For given measurable spaces (Ωk,Fk), k = 1, . . . , n, we call the σ-field

n∏
k=1

Fk = σ

({
n∏

k=1

Ak : Ak ∈ Fk, k = 1, . . . , n

})

as the product σ-field on
∏n

k=1Ωk, and (
∏n

k=1Ωk,
∏n

k=1Fk) as the product measurable space.

Proposition A.34

We have B(Rd) =
∏d

k=1 B(R).

It is known that for probability spaces (Ωk,Fk,Pk), k = 1, . . . , n, there exists a unique
probability measure

∏n
k=1 Pk on the product measurable space (

∏n
k=1Ωk,

∏n
k=1Fk) such that

(
∏n

k=1 Pk)(
∏n

k=1Ak) =
∏n

k=1 Pk(Ak), Ak ∈ Fk, k = 1, . . . , n.

We call
∏n

k=1 Pk as the product probability measure, and (
∏n

k=1Ωk,
∏n

k=1Fk,
∏n

k=1 Pk) as the
product probability space.

Now, let (Ω1,F1,P1) and (Ω2,F2,P2) be given probability spaces. Here we will justfy the
interchange of the order of integrations for functions on Ω1×Ω2. To this end, we need to confirm
the measurability of the functions appeared in the iterated integrals. As for this point, it is
straightforward to see that for any nonnegative and F1×F2-measurable functionX : Ω1×Ω2 → R
the following four claims hold true:

• For ω1 ∈ Ω1 the function X(ω1, ·) : Ω2 → R is F1-measurable.

• For ω2 ∈ Ω2 the function X(·, ω2) : Ω1 → R is F2-measurable.

• The function
∫
Ω2
X(·, ω2)P2(dω2) on Ω1 is a random variable on the probability space

(Ω1,F1,P1).
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• The function
∫
Ω1
X(ω1, ·)P1(dω1) on Ω2 is a random variable on the probability space

(Ω2,F2,P2).

Moreover, if X is not necessarily nonnegative but integrable on Ω1 × Ω2 then we have the
following two propositions:

• For P1-almost every (a.e.) ω1 ∈ Ω1, the function X(ω1, ·) : Ω2 → R is F1-measurable, and
the function

∫
Ω2
X(·, ω2)P2(dω2) is a random variable on (Ω1,F1,P1).

• For P2-a.e. ω2 ∈ Ω2, the function X(·, ω2) : Ω1 → R is F2-measurable, and the function∫
Ω1
X(ω1, ·)P1(dω1) is a random variable on (Ω2,F2,P2).

Basically, the expectation of a random variable on a product probability space is given by
the iterated expectation.

Theorem A.35

Let X(ω1, ω2) be a random variable on (Ω1 × Ω2,F1 ×F2,P1 × P2).

(i) (Tonelli’s theorem) If X is nonnegative, then

EP1×P2 [X] =

∫
Ω2

[∫
Ω1

X(ω1, ω2)P1(dω1)

]
P(dω2)

=

∫
Ω1

[∫
Ω2

X(ω1, ω2)P2(dω2)

]
P(dω1).

(ii) (Fubini’s theorem) If X is integrable on Ω1×Ω2, then the equalities above also hold.

• To check the integrability of X, one may apply Tonelli’s theorem for |X| to try one of
three integrals above that is easy to compute.

It is also known that Fubini-Tonelli theorem holds for product spaces involving the Lebesgue
measure on ([0,∞),B[0,∞)). For example, ifX· : [0,∞)×Ω→ R is nonnegative and B[0,∞)×F-
measurable, then

∫∞
0 Xt(ω)dt is an F-measurable random variable and we have

E
[∫ ∞

0
Xtdt

]
=

∫ ∞

0
E[Xt]dt.

Next we summarize the relation between the independence and the product probability space.

Theorem A.36

Let X1, . . . , Xn be random variables, µi the distribution of Xi for i = 1, . . . , n, and µ the
distribution of n-dimensional random variable (X1, . . . , Xn). Then {Xi}ni=1 is independent
if and only if µ = µ1 × · · · × µn.

This theorem leads to the following properties:

• Suppose that X1, . . . , Xn are independent and f1, . . . , fn are Borel functions on R. Then
f1(X1), . . . , fn(Xn) are also independent.

• Suppose that X1, . . . , Xn are independent and integrable. Then

E[X1 · · ·Xn] = E[X1] · · ·E[Xn].

• A necessary and sufficient condition for which random variables X1, . . . , Xn are indepen-
dent is

E
[
ei

∑n
k=1 tkXk

]
=

n∏
k=1

E[eitkXk ], tk ∈ R, k = 1, . . . , n,

where i =
√
−1.
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Change of probability measures

Let (Ω,F) be a measurable space.

Definition A.37. Let Q,P be probability measures on (Ω,F). We say that Q is absolutely
continuous with respect to P and write Q� P if we have

P(A) = 0, A ∈ F =⇒ Q(A) = 0.

• Suppose that Q� P. Then we have

P(A) = 1 =⇒ Q(A) = 1.

This means that an event almost surely occurs w.r.t. P also does w.r.t. Q.

• If Q� P and P� Q, then we say that Q and P are equivalent and write Q ∼ P.

Theorem A.38: Radon-Nikodym theorem

Let Q,P be probability measures on (Ω,F) such that Q� P. Then there exists an almost
surely unique nonnegative random variable Y such that E[Y ] = 1 and

Q(A) = E[Y 1A], A ∈ F .

• We say that the random variable Y as in Theorem A.38 is Radon-Nikodym derivative of
Q with respect to P, and write dQ

dP for Y .

Limit theorems

Let (Ω,F ,P) be a probability space.

Theorem A.39: Strong law of large number

Let {Xn} be a sequence of independent random variables such that E[|X1|] <∞. Then

lim
n→∞

X1 + · · ·+Xn

n
= E[X1] a.s.

Theorem A.40: Central limit theorem

Let {Xn} be an IID sequence with X1 ∈ L2 and N ∼ N(0, 1). Then∑n
i=1(Xi − E[X1])√

nV(X)
→ N in law, n→∞.

Since any interval is a continuous set w.r.t. Gaussian measure, we have

lim
n→∞

P(a <
∑n

i=1(Xi − µ)/σ
√
n ≤ b) =

∫ b

a

e−x2/2

√
2π

dx, −∞ ≤ a ≤ b <∞,

provided that the central limit theorem holds.
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Convergence of probability measures

Let (S, d) be a metric space. A sequence {µn}∞n=1 of probability measures on (S,B(S)) is said
to weakly converge to a probability measure µ on (S,B(S)) if

lim
n→∞

∫
S
f(x)µn(dx) =

∫
S
f(x)µ(dx)

for any bounded continuous function f on S.
Denote by A and Å the closure and interior of A ∈ B(S) respectively. We say that ∂A := A\Å

is the boundary set of A. Moreover, we say that A ∈ B(S) is a µ-continuous set if µ(∂A) = 0.

Theorem A.41

Let {µn} be a sequence of probability measures on (S,B(S)), µ a probability measure on
(S,B(S)). Then the following two claims are equivalent:

(i) {µn} weakly converges to µ.

(ii) For any µ-continuous set A ∈ B(S),

lim
n→∞

µn(A) = µ(A).

We often encounter the case of S = C[0,∞), the space of continuous functions on [0,∞).
With the metric

d(ω1, ω2) :=
∞∑
n=1

1

2n
max
0≤t≤n

(|ω1(t)− ω2(t)| ∧ 1),

the space C[0,∞) is complete and separable, and the set B(C[0,∞)) of all Borel subsets of
C[0,∞) is defined. To discuss the weak convergence in this space, we introduce the modulus of
continuity of

mT (ω, δ) := max{|ω(t)− ω(s)| : |s− t| ≤ δ, 0 ≤ s, t ≤ T}

of ω ∈ C[0,∞) on [0, T ] for each δ > 0 and T > 0.

Theorem A.42

Suppose that a sequence {µn}∞n=1 of probability measures on (C[0,∞),B(C[0,∞))) sat-
isfies the following two conditions:

(i) For each η > 0 there exist a ≥ 0 and n0 ∈ N such that

µn(ω : |ω(0)| ≥ a) ≤ η, n ≥ n0.

(ii) For each ε > 0, T > 0, and η > 0 there exist δ ∈ (0, 1) and n0 ∈ N such that

µn(ω : mT (ω, δ) > ε) ≤ η, n ≥ n0.

There exists a subsequence {µnk
}∞k=1 that weakly converges to some probability measure

on (C[0,∞),B(C[0,∞))).

Lemma on π-systems

Lemma A.44 is a tool for proving some propositions related to σ-algebras. For example, it will
be useful when we aim to show that for two probability measures P and Q coincides with each
other if P = Q on a sub σ-algebras.
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Definition A.43. Let Ω be a set. A family C of subsets of Ω is said to be π-system if A∩B ∈ C
for A,B ∈ C.

Lemma A.44

Let (Ω,F) be a measurable space, C a π-system with σ(C) = F . If two probability
measures P and Q on (Ω,F) coincide with each other on C, i.e., P(A) = Q(A) for any
A ∈ C, then P = Q on F .
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