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Abstract
The growing congestion in low Earth orbit (LEO) demands robust frameworks to evaluate satellite relative motion
under uncertainty. The relative reachable domain (RRD) provides a powerful tool to characterize the set of possible
relative trajectories; however, conventional formulations neglect atmospheric drag, limiting their applicability in LEO.
This study extends the RRD framework by explicitly incorporating atmospheric density uncertainty and the nonlinear
effect of differential drag. A quasi-numerical approach is developed that combines nonlinear propagation with envelope
extraction, which enables a continuous and interpretable description of the RRD boundary. The proposed method
bridges the gap between linearized analytical models and full-scale simulations, enhancing the ability to visualize and
quantify uncertainty in relative motion. The resulting framework contributes to more realistic collision risk assessment
and supports safer orbit design in the increasingly crowded LEO environment.
Keywords: Relative Reachable Domain, Differential Drag, Atmospheric Density Uncertainty, Collision Risk Assess-
ment,

1. Introduction
The number of space objects in near-Earth orbit has

increased rapidly due to advances in space development,
leading to growing concerns regarding orbital safety, col-
lision avoidance, and long-term sustainability. In this
context, space situational awareness (SSA) has become
increasingly important [1, 2]. Scenarios involving prox-
imity operations or cluster flights with a large number
of satellites require advanced monitoring and control to
accurately determine their positions and to prevent col-
lisions [3–8]. However, such operations are inevitably
subject to measurement and operational errors, which are
difficult to completely eliminate. These errors, especially
in the context of satellite relative motion, can cause de-
viations from the nominal orbit and increase the risk of
collision. Addressing these issues requires precise pre-
diction of satellite positions and relative behaviors, which
remains a key challenge in SSA [9].

One promising framework to address these challenges
is the relative reachable domain (RRD) [10–13], which
characterizes the set of possible relative positions achiev-
able under uncertain dynamics. RRD analysis provides
valuable insights for collision risk assessment, forma-
tion maintenance, and debris avoidance strategies. In
low Earth orbit (LEO), atmospheric drag plays a domi-
nant role in predicting satellite trajectories [3–5]. Since
drag strongly depends on satellite geometry and attitude,
differential drag significantly affects relative motion and
has even been exploited as a control mechanism in dis-
tributed satellite systems. However, conventional RRD

studies focus on initial state uncertainties and neglect drag
effects [10], limiting their applicability to relative motion
in LEO [5].

This study extends the RRD framework by explicitly
incorporating differential drag and its uncertainty. Based
on a transition-matrix formulation, the proposed method
integrates nonlinear propagation and boundary extraction
through numerical optimization. This enables a continu-
ous and interpretable description of RRD boundaries that
more accurately reflects relative motion under atmospheric
drag.

2. Preliminaries
2.1 Relative Reachable Domain

The concept of the reachable set (RS) originates from
control theory and provides a fundamental tool for analyz-
ing spacecraft dynamics under uncertainty [12, 13]. The
RS is defined as the set of all states that a spacecraft can
attain within a specified time interval from a given initial
condition. In the context of relative motion, RS analysis is
particularly important for two reasons: 1) to evaluate the
operational capability of the spacecraft and plan missions
accordingly, and 2) to predict the operational boundaries
of neighboring spacecraft from which collision probabil-
ities can be effectively monitored to improve the level of
situational awareness.

The reachable domain (RD) generalizes this concept by
considering the union of all reachable sets over arbitrary
time. In other words, while the RS characterizes the states
reachable at a particular time horizon, the RD represents
the overall maneuverability of a spacecraft wiihtout time
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horizon limitation. Extending this concept to satellite rela-
tive motion leads to the definition of the relative reachable
domain (RRD). The RRD geometrically represents the set
of possible relative positions that arise due to uncertainties
in the initial state and environmental conditions, such as
measurement errors or atmospheric drag variations. Thus,
the RD describes the maneuverability of a single space-
craft in an absolute sense, whereas the RRD describes
the uncertainty-driven dispersion of relative trajectories.
The relationship between the RS and the RD is illustrated
schematically in Fig. 1. The ellipses denote RSs at dif-
ferent time intervals, while the shaded region corresponds
to the RD. Essentially, the RD can be interpreted as the
envelope of RSs evolving over time, providing a contin-
uous and comprehensive representation of uncertainty in
relative motion.

RD

Nominal Trajectory

RS

Fig. 1: Relation between the RD and the RS.

2.2 Relative Motion Dynamics
For a deputy satellite with respect to a chief in a circular

reference orbit of radius 𝑅, the relative dynamics in the Hill
frame can be expressed by the Clohessy–Wiltshire (CW)
equations as follows:

¥𝑥 − 2𝑛 ¤𝑦 − 3𝑛2𝑥 = 𝑢𝑥 (1)
¥𝑦 + 2𝑛 ¤𝑥 = 𝑢𝑦 (2)

¥𝑧 + 𝑛2𝑧 = 𝑢𝑧 (3)

where 𝒓 = [𝑥, 𝑦, 𝑧]𝑇 and 𝒗 = [𝑥, 𝑦, 𝑧]𝑇 are the relative po-
sition and velocity, 𝑛 is the mean motion of chief satellite,
and 𝒖 = [𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧]𝑇 represents perturbation accelera-
tions. The general solution can be written using the state
transition matrix (STM) Φ(𝑡) and the convolution kernel
Ψ(𝑡) as [8] [

𝒓 (𝑡)
𝒗(𝑡)

]
= Φ(𝑡)

[
𝒓 (0)
𝒗(0)

]
+ Ψ(𝑡)𝒖. (4)

The drag acceleration on a satellite is given by

𝑭drag = −1
2
𝐶𝐷𝐴

𝑚
𝜌 ∥𝒗rel∥𝒗rel (5)

where 𝐶𝐷 is the drag coefficient, 𝐴 the cross-sectional
area, 𝑚 the mass, and 𝒗rel the velocity relative to the atmo-
sphere. The difference in drag accelerations between the
chief and deputy yields the differential drag as [2]

Δ𝑭drag =
1
2
𝐶𝐷,𝑑𝐴𝑑

𝑀𝑑

𝜌𝑑 ∥𝒗rel,𝑑 ∥𝒗rel,𝑑

−1
2
𝐶𝐷,𝑐𝐴𝑐

𝑀𝑐

𝜌𝑐 ∥𝒗rel,𝑐 ∥𝒗rel,𝑐 (6)

where the subscript 𝑑 and 𝑐 denote the deputy and chief
satellite, respectively. The differential drag serves as the
primary perturbation driving the evolution of the RRD in
LEO [4, 5, 14, 15].

2.3 Problem Setup and Assumptions
Let the nominal relative position and velocity of deputy

with respect to chief in the reference LVLH frame be 𝒓𝑛 (𝑡)
and 𝒗𝑛 (𝑡), with initial states 𝒓𝑛0 and 𝒗𝑛0. In practice, initial
state uncertainties 𝛿𝒓0 and 𝛿𝒗0 arise due to measurement
and control errors. In the two-dimensional coplanar mo-
tion, the RRD appears as an area surrounding the nominal
trajectory. Let S denote the envelope (boundary) of the
RRD in the LVLH frame. Once S is obtained, the RRD
corresponds to the region enclosed by S, as illustrated in
Fig. 2. The envelope depends on the bounds assigned to
the initial uncertainties.

The following assumptions are considered in this study:

1. The nominal relative trajectory lies in a plane that is
coplanar with the reference orbital plane (2-D copla-
nar case).

2. Initial state uncertainties are confined to this plane.

3. Initial position and velocity uncertainties are mod-
eled as zero-mean, uncorrelated, and isotropic in the
plane. Practically, deterministic bounds based on 3-
𝜎 radii are adopted, so that the position and velocity
error boundaries form circles in the orbital plane.

4. The time span considered is limited to a few orbital
periods, so that deviations remain small relative to
the nominal motion.

5. Perturbations: only differential atmospheric drag is
modeled; other perturbations (e.g., 𝐽2, solar radiation
pressure, and third-body effects) are neglected.

3. Methods
3.1 Initial conditions

To obtain the envelope of the RRD, the initial state
and atmospheric density with the largest uncertainty are
assumed, i.e., the upper bound of the initial state and at-
mospheric density uncertainty. The boundary of the 3-𝜎
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Fig. 2: Geometry of the RRD, envelope of the RRD, and
the nominal trajectory.

error is a circle on the orbital plane with radii 𝛿𝒓0 and 𝛿𝒗0.
As a result, the initial position error and initial velocity
error on the boundary circle can be written as

𝛿𝒓0 (𝛼) = 𝛿𝑟0

[
cos𝛼
sin𝛼

]
(7)

𝛿𝒗0 (𝛽) = 𝛿𝑣0

[
cos 𝛽
sin 𝛽

]
(8)

where 𝛼 and 𝛽 are two angles characterizing the directions
of the initial error vectors on the boundary circles.

Atmospheric density is modeled as a nominal value
plus an uncertain perturbation as

𝜌 = 𝜌0 + 𝛿𝜌(𝜆) (9)

where

𝛿𝜌(𝜆) = 𝛿𝜌0 tanh(𝜆) (10)

The uncertain perturbation is given by 𝛿𝜌(𝜆) and 𝛿𝜌0
denotes the maximum deviation. The parameter 𝜆 controls
the variation of the uncertain perturbation.

In this manner, the error boundary defined in Eq. (7)
and (8) is a rectangle determined by 𝛿𝒓0 and 𝛿𝒗0 in
Fig. 2. Another commonly used way is to describe the
error boundary in the full state space, so that the error
boundary is an ellipse in Fig. 3, with semiprincipal axes in
the position and velocity subspaces of length 𝛿𝒓0 and 𝛿𝒗0,
respectively. Obviously, the area of the ellipse is enclosed
by the rectangle. Compared to the ellipsoidal error bound-
ary, the rectangular error boundary reduces the number
of parameters from three to two, simplifying subsequent
RRD calculations.

v

r
𝛿𝑟!

𝛿𝑣!

−𝛿𝑟!

−𝛿𝑣!

Fig. 3: Two different definitions of the error boundary.

The initial state of the actual motion is written as fol-
lows.

𝒓0 (𝛼) = 𝒓𝑛0 + 𝛿𝒓0 (𝛼) (11)
𝒗0 (𝛽) = 𝒗𝑛0 + 𝛿𝒗0 (𝛽) (12)

Propagated from 𝒓0 (𝛼) and 𝒗0 (𝛽), the actual motion is de-
scribed by 𝒓 (𝑡, 𝛼, 𝛽) and 𝒗(𝑡, 𝛼, 𝛽). The deviations of the
actual motion with respect to the nominal one 𝛿𝒓 (𝑡, 𝛼, 𝛽)
and 𝛿𝒗(𝑡, 𝛼, 𝛽) are expressed as

𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆) = 𝒓 (𝑡, 𝛼, 𝛽, 𝜆) − 𝒓𝑛 (𝑡) (13)
𝛿𝒗(𝑡, 𝛼, 𝛽, 𝜆) = 𝒗(𝑡, 𝛼, 𝛽, 𝜆) + 𝒗𝑛 (𝑡) (14)

3.2 Nominal Trajectory Propagation
In this study, the nominal relative trajectory is prop-

agated using the full nonlinear equations of motion, in-
cluding the two-body gravitational dynamics and the at-
mospheric drag force. While nonlinear propagation has
also been employed in previous RRD studies, atmospheric
drag effects have not been considered, limiting their ap-
plicability in LEO. The differential drag between the chief
and deputy, which arises from differences in their area-to-
mass ratios, is explicitly incorporated. The equations of
motion are given by

¥𝑥 − 2 ¤𝑓 ¤𝑦 − ¥𝑓 𝑦 − ¤𝑓 2𝑥 = − 𝜇(𝑅 + 𝑥)
[(𝑅 + 𝑥)2 + 𝑦2]3/2 + 𝜇

𝑅2 + 𝒖(𝑥)

(15)

¥𝑦 − 2 ¤𝑓 ¤𝑥 − ¥𝑓 𝑥 − ¤𝑓 2𝑦 = − 𝜇𝑦

[(𝑅 + 𝑥)2 + 𝑦2]3/2 + 𝒖(𝑦) (16)

where 𝜇 is the Earth’s gravitational parameter, 𝑓 is the
true anomaly, and 𝒖 is the transformation of Δ𝑭𝑑𝑟𝑎𝑔 in
Eq. (6) from the ECI frame to the LVLH frame. The
nominal trajectories of the chief and deputy are propagated
numerically using MATLAB ode45 solver. This nonlinear
nominal trajectory serves as the baseline for constructing
the RRD.
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Fig. 4: Geometric definitions for finding the envelope of
the RRD.

3.3 RRD Envelope Calculation
The following notations and vectors are defined to find

S (see Fig. 4). Let 𝑂 be the origin of the reference LVLH
coordinate system,𝐶 denote a point chosen on the nominal
trajectory, 𝑡𝑠 be the time in which the nominal trajectory
passes through𝐶.The relative position and velocity vectors
of the nominal trajectory at point 𝐶 are 𝒓𝑐 = 𝒓𝑛 (𝑡𝑠) and
𝒗𝑐 = 𝒗𝑛 (𝑡𝑠), respectively. A given point 𝑃 is chosen as a
reference point to solve the RRD and 𝒓ref is the position
vector of 𝑃 in the reference system. The vector 𝒓 𝑝𝑐 =

𝒓𝑐 − 𝒓ref denotes the position vector of 𝐶 relative to 𝑃, 𝒑
is the unit vector of 𝒓 𝑝𝑐 , expressed as 𝒑 = 𝒓 𝑝𝑐 /∥𝒓 𝑝𝑐 ∥, and 𝒏
is a unit vector perpendicular to 𝒑.

If the reachable boundaries are determined in a given
direction 𝒑, which is specified by the chosen point 𝐶 and
the reference point 𝑃, the entire envelope of the RRD
is specified by varying the location of 𝐶 on the nominal
trajectory (by varying 𝑡𝑠) and tracing all the boundaries.
This is the basic method for finding the envelope of the
RRD.

This paper describes the positive vector 𝒓 (𝑡, 𝛼, 𝛽, 𝜆),
which can be written as

𝒓 (𝑡, 𝛼, 𝛽, 𝜆) = 𝒓ref + 𝒓 𝑝 = 𝒓ref + 𝑟 𝑝 𝒑

= 𝒓𝑛 (𝑡) + 𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)
(17)

The construction of the RRD requires specifying ref-
erence points along the nominal trajectory. However, if
reference points are fixed or placed sparsely, certain re-
gions of the reachable domain may remain uncharacter-
ized, which is referred to as the blind area illustrated in
Fig. 5. The presence of blind areas leads to an incomplete
representation of the RRD and may underestimate colli-
sion risks. Thus, careful selection of reference points is
essential to ensure full coverage of the relative reachable
set [10].

Note that Eq. (17) imposes a constraint on the time 𝑡

P!

P!

C

Blind area

Fig. 5: Blind area.

and the initial uncertainties to ensure that 𝑟 𝑝 and 𝑝 are in
the same direction. This constraint can be expressed as

𝑔(𝑡, 𝛼, 𝛽, 𝜆) = 𝒏𝑇 𝒓 𝑝

= 𝒏𝑇 [𝒓𝑛 (𝑡) − 𝒓ref + 𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)] = 0 (18)

This shows that the four variables 𝑡, 𝛼, 𝛽, 𝜆 are not inde-
pendent. Actually, only three variables among them are
free parameters. If the free parameters are chosen as 𝑡, 𝛼,
and 𝜆, then 𝛽 is a function of the others, i.e., expressed as
𝛽(𝑡, 𝛼, 𝜆). Taking the variation of the constraint function
yields

𝛿𝑔 = 𝛿{𝒏𝑇 [𝒓𝑛 (𝑡) − 𝒓ref + 𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]}

= 𝒏𝑇
[
𝑑𝒓𝑛 (𝑡)
𝑑𝑡

𝛿𝑡 + 𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝑡

𝛿𝑡

]
+ 𝒏𝑇

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝛼

𝛿𝛼

(19)

+ 𝒏𝑇
𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]

𝜕𝛽
𝛿𝛽 + 𝒏𝑇

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝜆

𝛿𝜆 = 0

(20)

Thus, the partial derivatives of each variable are given by

𝜕𝛽(𝑡, 𝛼, 𝜆)
𝜕𝛼

= −
[
𝒏𝑇

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝛽

]−1
𝒏𝑇

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝛼

(21)

𝜕𝛽(𝑡, 𝛼, 𝜆)
𝜕𝑡

= −
[
𝒏𝑇

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝛽

]−1

· 𝒏𝑇
[
𝑑𝒓𝑛 (𝑡)
𝑑𝑡

𝛿𝑡 + 𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝑡

]
(22)

𝜕𝛽(𝑡, 𝛼, 𝜆)
𝜕𝜆

= −
[
𝒏𝑇

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝛽

]−1
𝒏𝑇

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝜆

(23)

Figure 4 indicates that the inner and outer boundaries of
the RRD in the direction of 𝒑 correspond to the minimum
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and maximum value of 𝑟 𝑝 . Thus, if the extrema of the
function 𝑟 𝑝 are specified, then the boundaries are solved.
From Eq. (17),

𝒓 𝑝 = 𝑟 𝑝 𝒑 = 𝒓𝑛 (𝑡) + 𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆) − 𝒓ref (24)

Taking the partial derivative yields the following equations

𝜕𝑟 𝑝

𝜕𝑡
=

(𝒓 𝑝)𝑇
𝑟 𝑝

𝜕𝒓 𝑝

𝜕𝑡
= 𝒑𝑇

𝜕𝒓 𝑝

𝜕𝑡
(25)

𝜕𝑟 𝑝

𝜕𝛼
=

(𝒓 𝑝)𝑇
𝑟 𝑝

𝜕𝒓 𝑝

𝜕𝛼
= 𝒑𝑇

𝜕𝒓 𝑝

𝜕𝛼
(26)

𝜕𝑟 𝑝

𝜕𝜆
=

(𝒓 𝑝)𝑇
𝑟 𝑝

𝜕𝒓 𝑝

𝜕𝜆
= 𝒑𝑇

𝜕𝒓 𝑝

𝜕𝜆
(27)

Substituting 𝒓 𝑝 into Eq.(27) yields

𝜕𝑟 𝑝

𝜕𝑡
= 𝒑𝑇

𝜕𝒓 𝑝

𝜕𝑡

= 𝒑𝑇𝑽𝑟

− 𝒑𝑇
𝜕𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)

𝜕𝛽

[
𝒏𝑇

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝛽

]−1
𝒏𝑇𝑽𝑟

(28)

𝜕𝑟 𝑝

𝜕𝛼
= 𝒑𝑇

𝜕𝒓 𝑝

𝜕𝛼

= 𝒑𝑇
𝜕𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)

𝜕𝛼
− 𝒑𝑇

𝜕𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)
𝜕𝛽

·
[
𝒏𝑇

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝛽

]−1
𝒏𝑇

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝛼

(29)

𝜕𝑟 𝑝

𝜕𝜆
= 𝒑𝑇

𝜕𝒓 𝑝

𝜕𝜆

= 𝒑𝑇
𝜕𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)

𝜕𝜆
− 𝒑𝑇

𝜕𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)
𝜕𝛽

×
[
𝒏𝑇

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝛽

]−1
𝒏𝑇

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝜆

(30)
where

𝑽𝑟 =
𝑑𝒓𝑛 (𝑡)
𝑑𝑡

𝛿𝑡 + 𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝑡

(31)

The boundary points can be obtained by finding the crit-
ical values of the function 𝑟 𝑝 . The critical points of the
function 𝑟 𝑝 can be found at the place where the gradient
equals zero, that is,

𝜕𝑟 𝑝

𝜕𝑡
= 0,

𝜕𝑟 𝑝

𝜕𝛼
= 0,

𝜕𝑟 𝑝

𝜕𝜆
= 0 (32)

Define a parameter vector as 𝑿 = [𝑡, 𝛼, 𝛽, 𝜆]𝑇 . With the
combination of the constraint in Eq. (18) and the zero
gradient condition in Eq. (32), the following equation is
obtained:

𝑯(𝑿) =
[
𝑔(𝑿) 𝜕𝑟 𝑝

𝜕𝑡
𝜕𝑟 𝑝

𝜕𝛼
𝜕𝑟 𝑝

𝜕𝜆

]𝑇
= 0 (33)

3.4 RRD for Circular Reference Orbits
For circular reference orbits, the state transition matrix

for the linearized motion is expressed as

Φ(𝑡) =
[
Φ11 Φ12
Φ21 Φ22

]
(34)

Ψ(𝑡) =
[
Ψ1
Ψ2

]
(35)

where

Φ11 =

[
4 − 3 cos 𝑛𝑡 0

−6(𝑛𝑡 − sin 𝑛𝑡) 1

]
,

Φ12 =
1
𝑛

[
sin 𝑛𝑡 2(1 − cos 𝑛𝑡)

2(cos 𝑛𝑡 − 1) 4 sin 𝑛𝑡 − 3𝑛𝑡

]
Φ21 =

[
3𝑛 sin 𝑛𝑡 0

−6𝑛(1 − cos 𝑛𝑡) 0

]
Φ22 =

[
cos 𝑛𝑡 2 sin 𝑛𝑡

−2 sin 𝑛𝑡 4 cos 𝑛𝑡 − 3

]
(36)

Ψ1 =
1
𝑛2

[
2 sin2 𝑛𝑡

2 −2 sin 𝑛𝑡 + 2𝑛𝑡
2 sin 𝑛𝑡 − 2𝑛𝑡 8 sin2 𝑛𝑡

2 − 3
2𝑛

2𝑡2

]
Ψ2 =

1
𝑛

[
sin 𝑛𝑡 4 sin2 𝑛𝑡

2
−4 sin2 𝑛𝑡

2 −3𝑛𝑡 + 4 sin 𝑛𝑡

] (37)

The deviation 𝛿𝒓 and 𝛿𝒗 can be modeled by the linearized
equations,

𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆) = 𝚽11 (𝑡)𝛿𝒓0 (𝛼) +𝚽12 (𝑡)𝛿𝒗0 (𝛽) + 𝚿1 (𝑡)𝛿𝒖(𝜆)
(38)

𝛿𝒗(𝑡, 𝛼, 𝛽, 𝜆) = 𝚽21 (𝑡)𝛿𝒓0 (𝛼) +𝚽22 (𝑡)𝛿𝒗0 (𝛽) + 𝚿2 (𝑡)𝛿𝒖(𝜆)
(39)

where the initial state uncertainties are given by Eq. (12).
The nominal motion at the neighborhood of 𝒓𝒄 is ap-

proximated as{
𝒓𝑛 (𝑡) = 𝚽11 (𝑡 − 𝑡𝑠)𝒓𝑐 +𝚽12 (𝑡 − 𝑡𝑠)𝒗𝑐 + 𝚿1 (𝑡 − 𝑡𝑠)𝒖(𝜆)
𝒗𝑛 (𝑡) = 𝚽21 (𝑡 − 𝑡𝑠)𝒓𝑐 +𝚽22 (𝑡 − 𝑡𝑠)𝒗𝑐 + 𝚿2 (𝑡 − 𝑡𝑠)𝒖(𝜆)

(40)
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where 𝒓𝑐 and 𝒗𝑐 are solved by propagating the nominal
relative motion from 𝒓𝑛0 and 𝒗𝑛0 to time 𝑡𝑠 using the
nonlinear dynamic model in Eq. (16).

The direction vector 𝒑 is obtained from both 𝒓𝑐 and the
given 𝒓ref as

𝒑 =
𝒓𝑐 − 𝒓ref

∥𝒓𝑐 − 𝒓ref ∥
(41)

Projecting the unit vectors onto the LVLH frame yields the
following equations

𝒑 =

[
cos 𝜈
sin 𝜈

]
(42)

𝒏 =

[
− sin 𝜈
cos 𝜈

]
(43)

where 𝜈 is an angle specifying the unit vectors. Substitut-
ing Eqs. (39)–(43) into constraint in Eq. (18) yields

𝑔(𝑡, 𝛼, 𝛽, 𝜆) = 𝒏𝑇 [Φ11 (𝑡 − 𝑡𝑠)𝒓𝑐 +Φ12 (𝑡 − 𝑡𝑠)𝒗𝑐
+ Ψ1 (𝑡 − 𝑡𝑠)𝒖(𝜆) − 𝒓ref +Φ11 (𝑡)𝛿𝒓0 (𝛼)
+Φ12 (𝑡)𝛿𝒗0 (𝛽) + Ψ1 (𝑡)𝛿𝒖(𝜆)] = 0

(44)
From expressions Eq. (39) and (40), the following partial
derivatives are obtained:

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝛼

= Φ11 (𝑡)
𝑑 [𝛿𝒓0 (𝛼)]

𝑑𝛼
(45)

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝛽

= Φ12 (𝑡)
𝑑 [𝛿𝒗0 (𝛽)]

𝑑𝛽
(46)

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝑡

= 𝛿𝒗(𝑡, 𝛼, 𝛽, 𝜆) = Φ21 (𝑡)𝛿𝒓0 (𝛼)

+Φ22 (𝑡)𝛿𝒗0 (𝛽) + Ψ2 (𝑡)𝛿𝒖(𝜆)
(47)

𝜕 [𝛿𝒓 (𝑡, 𝛼, 𝛽, 𝜆)]
𝜕𝜆

= Ψ1 (𝑡)
𝑑 [𝛿𝒖(𝜆)]

𝑑𝜆
(48)

𝑑𝒓𝑛 (𝑡)
𝑑𝑡

= 𝒗𝑛 (𝑡) = Φ21 (𝑡 − 𝑡𝑠)𝒓𝑐

+Φ22 (𝑡 − 𝑡𝑠)𝒗𝑐 + Ψ2 (𝑡 − 𝑡𝑠)𝒖
(49)

Substitute these partial derivatives into Eqs. (21)–(23) to
obtain

𝜕𝛽(𝑡, 𝛼, 𝜆)
𝜕𝛼

= −
[
𝒏𝑇Φ12 (𝑡)

𝑑 [𝛿𝒗0 (𝛽)]
𝑑𝛽

]−1
𝒏𝑇

· Φ11 (𝑡)
𝑑 [𝛿𝒓0 (𝛼)]

𝑑𝛼

(50)

𝜕𝛽(𝑡, 𝛼, 𝜆)
𝜕𝑡

= −
[
𝒏𝑇Φ12 (𝑡)

𝑑 [𝛿𝒗0 (𝛽)]
𝑑𝛽

]−1
𝒏𝑇𝑽𝑟 (51)

𝜕𝛽(𝑡, 𝛼, 𝜆)
𝜕𝜆

= −
[
𝒏𝑇𝚽12 (𝑡)

𝑑 [𝛿𝒗0 (𝛽)]
𝑑𝛽

]−1
𝒏𝑇𝚿1 (𝑡)

𝑑 [𝛿𝒖(𝜆)]
𝑑𝜆

(52)

where

𝑽𝑟 = Φ21 (𝑡 − 𝑡𝑠)𝒓𝑐 +Φ22 (𝑡 − 𝑡𝑠)𝒗𝑐 + Ψ2 (𝑡 − 𝑡𝑠)𝒖
+Φ21 (𝑡)𝛿𝒓0 (𝛼) +Φ22 (𝑡)𝛿𝒗0 (𝛽) + Ψ2 (𝑡)𝛿𝒖(𝜆)

(53)

These results are then substituted into Eqs. (28)–(30) to
solve

𝜕𝑟 𝑝

𝜕𝑡
= 𝒑𝑇𝑽𝑟 − 𝒑𝑇Φ12 (𝑡)

𝑑 [𝛿𝒗0 (𝛽)]
𝑑𝛽

·
[
𝒏𝑇Φ12 (𝑡)

𝑑 [𝛿𝒗0 (𝛽)]
𝑑𝛽

]−1
𝒏𝑇𝑽𝑟

(54)

𝜕𝑟 𝑝

𝜕𝛼
= 𝒑𝑇Φ11 (𝑡)

𝑑 [𝛿𝒓0 (𝛼)]
𝑑𝛼

− 𝒑𝑇Φ12 (𝑡)
𝑑 [𝛿𝒗0 (𝛽)]

𝑑𝛽

·
[
𝒏𝑇Φ12 (𝑡)

𝑑 [𝛿𝒗0 (𝛽)]
𝑑𝛽

]−1
𝒏𝑇Φ11 (𝑡)

𝑑 [𝛿𝒓0 (𝛼)]
𝑑𝛼

(55)

𝜕𝑟 𝑝

𝜕𝜆
= 𝒑𝑇𝚿1 (𝑡)

𝑑 [𝛿𝒖(𝜆)]
𝑑𝜆

− 𝒑𝑇𝚽12 (𝑡)
𝑑 [𝛿𝒗0 (𝛽)]

𝑑𝛽

·
[
𝒏𝑇𝚽12 (𝑡)

𝑑 [𝛿𝒗0 (𝛽)]
𝑑𝛽

]−1
𝒏𝑇𝚿1 (𝑡)

𝑑 [𝛿𝒖(𝜆)]
𝑑𝜆

(56)
Thus, the analytical forms of the partial derivatives are ob-
tained. By substituting Eqs. (44), (54)–(56) into Eq. (33),
a system of three nonlinear algebraic equations is obtained
in the variables 𝛼, 𝛽, 𝜆, and 𝑡, which can be solved nu-
merically at each instant of time by the Newton–Raphson
iteration. Then, the boundary of the RRD in the direc-
tion of 𝒑 can be determined by substituting the solved
𝑿∗ = [𝑡∗, 𝛼∗, 𝛽∗, 𝜆∗]𝑇 into Eq. (24).

4. Result
4.1 Simulation Condition

The numerical experiments are conducted for a circular
LEO with an altitude of 400 km and inclination of 45 deg.
The orbital elements of the chief spacecraft are summa-
rized in Table 1. The deputy shares the same orbit initially,
but differs in area-to-mass ratio, leading to a distinct drag
response.
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Table 1: Orbital parameters of the chief spacecraft.

Semi-major axis 𝑎 6778 km
Eccentricity 𝑒 0.0
Inclination 𝑖 45◦

RAAN Ω 90◦

Argument of perigee 𝜔 0◦

True anomaly 𝑓 0◦

Table 2: Spacecraft parameters.

Chief Deputy
Mass 𝑚 [kg] 100 150
Area 𝐴 [m2] 4.5 0.6
Area-to-mass ratio 𝐴/𝑚 [m2/kg] 0.045 0.004
Drag coefficient 𝐶𝐷 2.2 2.2

Atmospheric density is modeled as a constant 𝜌 =

3.0 × 10−12 kg/m3, corresponding to typical conditions
at 400 km altitude [3, 6, 7]. Both spacecraft are assumed
to have identical drag coefficients 𝐶𝐷 = 2.2. The detailed
spacecraft parameters are listed in Table 2.

4.2 Reachable Domain Visualization
Figures 6 and 7 illustrate the RRDs for the case of ini-

tial position error 𝛿𝑟0 = 10 m and initial velocity error
𝛿𝑣0 = 0.05 m/s. Two atmospheric density cases are con-
sidered: a nominal value (𝛿𝜌 = 0%) and a perturbed case
(𝛿𝜌 = 30%). In the nominal atomospheric density case in
Fig. 6, the RRD exhibits a nearly symmetric shape around
the nominal trajectory. When density uncertainty is intro-
duced in Fig. 7, the domain is elongated in the along-track
direction due to the variation in drag acceleration. This
effect highlights that density uncertainty, even at the 30%
level, has a dominant influence on the growth of the RRD
compared to the initial state uncertainty. As a result, ne-
glecting density uncertainty can lead to underestimation
of the relative motion envelope.

In addition to the RRD visualization, Figs. 8–11 show
the time histories of the projection distance along the
reference-point direction (𝑟𝑝) and the relative distance
between the chief and deputy, respectively. The initial
condition is 𝛿𝑟0 = 10 m, 𝛿𝑣0 = 0.05 m/s, and two den-
sity cases are compared (𝛿𝜌 = 0%, 30%). In the nominal
case (𝛿𝜌 = 0%), both 𝑟𝑝 and the relative distance remain
bounded within a small range. With density uncertainty
(𝛿𝜌 = 10%), however, 𝑟𝑝 diverges in the along-track direc-
tion, and the overall separation grows monotonically with
time. This confirms that the cumulative effect of drag un-

certainty is the dominant factor in the long-term relative
dynamics.
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Fig. 6: Comparison of RRD with initial errors 𝛿𝑟0 = 10
m, 𝛿𝑣0 = 0.05 m/s, 𝛿𝜌 = 0%.

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000

x[m]

0

0.5

1

1.5

2

2.5

3

3.5
y[

m
]

Nominal trajectory
Envelope of RRD
Reference position

Fig. 7: Comparison of RRD with initial errors 𝛿𝑟0 = 10
m, 𝛿𝑣0 = 0.05 m/s, 𝛿𝜌 = 30%.

4.3 Monte Carlo Validation
To validate the analytical RRD construction, Monte

Carlo simulations were performed with 500 random sam-
ples. The initial errors were set to 𝛿𝑟0 = 10 m and
𝛿𝑣0 = 0.05 m/s, and the atmospheric density was per-
turbed as

𝜌 = 𝜌0 + 𝛿𝜌, 𝛿𝜌 ∼ tanh(𝜆), 𝜆 ∈ [−6, 6],

Each sample was propagated using the nonlinear equations
of motion with scaled drag accelerations, and the result-
ing trajectories were compared against the analytical RRD
envelope.

Figures 12 and 13 show the Monte Carlo results. The
Monte Carlo cloud (light blue dots) and endpoints (black
dots) are fully contained within the RRD boundary (red
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Fig. 8: Time history of the projection distance 𝑟𝑝 for 𝛿𝑟0 =

10 m, 𝛿𝑣0 = 0.05 m/s, 𝛿𝜌 = 0%.
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Fig. 9: Time history of the projection distance 𝑟𝑝 for 𝛿𝑟0 =

10 m, 𝛿𝑣0 = 0.05 m/s, 𝛿𝜌 = 30%.

line), confirming that the proposed RRD provides a con-
servative outer bound. The sample distribution exhibits
elongation in the along-track direction, consistent with the
cumulative effect of differential drag under density uncer-
tainty [12].

5. Conclusion
This paper has presented a framework for construct-

ing the relative reachable domain (RRD) of spacecraft
in low Earth orbit (LEO) while explicitly considering at-
mospheric drag. The proposed formulation incorporates
differential drag through ECI–LVLH transformations, en-
abling accurate characterization of relative motion under
realistic conditions. Numerical simulations demonstrated
that the uncertainty in atmospheric density, even at the 10%
level, significantly skews the RRD in the along-track di-
rection. Neglecting this effect leads to underestimation of
the reachable set and, consequently, collision risk. Monte
Carlo simulations further validated the conservativeness
of the RRD, showing that all sample trajectories were
contained within the analytical envelope. These results
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Fig. 10: Time history of the relative distance between chief
and deputy for 𝛿𝑟0 = 10 m, 𝛿𝑣0 = 0.05 m/s, 𝛿𝜌 = 0%.
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Fig. 11: Time history of the relative distance between chief
and deputy for 𝛿𝑟0 = 10 m, 𝛿𝑣0 = 0.05 m/s, 𝛿𝜌 = 30%.

highlight the critical role of drag and density uncertainty
in assessing collision risks and formation safety in LEO.
The proposed RRD framework provides a practical tool
to capture these effects and extend conventional methods
beyond drag-free assumptions. Future work will focus on
extending the analysis to full three-dimensional relative
motion, incorporating empirical density models such as
JB2008, and exploring on-board or real-time applications
of the RRD for autonomous collision avoidance.
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