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Abstract
This paper presents a framework of a comprehensive analytical solution for the trajectory of a space object in an

atmosphere. Analyzing this dynamical system needs numerical simulations or approximated solutions due to lack of
a comprehensive analytical solution. This paper demonstrates that this trajectory is characterized by an exponential
plus oscillational functions. Consequently, this paper establishes describing the trajectoy in an atmosphere through
analytical solutions. Departing from traditional inertia-resistance models, this paper proposes the framework with an
empirical law governing trajectory in an atmosphere. The geometry and equation of the resulting solution represent a
superposition of spiral and elliptical trajectory, corresponding to the observed exponential plus oscillational behavior.
This solution contains the conic section equation, enabling adaptation to various scales of atmospheric drag and
eccentricity. Demonstration against numerical simulations using the traditional model reveals approximately 1% error
in ellipsoidal heights during reentry when employing nonlinear curve fitting with the proposed solution.
Keywords: Atmospheric drag, Reentry, Analytical solution, Kepler’s law, Spiral, Ellipse

Nomenclature

𝐴 area, m2

𝑎 semi-major axis, km
𝑎𝑟 radial acceleration, km/s2

𝑎𝜃 transverse acceleration, km/s2

𝐵 elliptic parameter, km−1

Bi secondary Airy function
𝑏 𝑎

√
1 − 𝑒2; semi-minor axis

𝐶𝐷 drag coefficient
𝑒 eccentricity
𝐹𝐷 drag force, km/s2

𝑓 true anomaly, rad
𝑔(𝜃) abbreviation of spiral element
ℎ angular momentum, km2/s
𝑚 mass, kg
𝑟 radius, km
𝑆 swept area, km2

𝑇 period, s
𝑡 time, s
𝑢 𝜔 + 𝑓 ; argument of true latitude, rad
𝑣 velocity, km/s
𝛼1 spiral parameter, km2/s
𝛼2 spiral parameter
𝜃 cumulative polar angle, rad
𝜃𝑒 polar angle at reentry, rad
𝜇C geocentric gravitational constant, km3/s2

𝜇@ heliocentric gravitational constant, km3/s2

𝜌 atmospheric density, kg/m3

𝜎 1/𝑟; reciprocal radius, km−1

𝜔 argument of perigee, rad
( 9 ) time differential

Subscript
0 initial value

1. Introduction
Analytical solutions provide conceptual insights to

kinematics, shortest computational costs, flexible appli-
cability, and standards for perturbation theories. There
are various dynamical systems that have not had analytical
solutions yet, and the trajectory of a space object under
an atmospheric drag is one of them. This trajectory obvi-
ously contains the elements of ellipse and spiral; however,
no framework for analytically describing this dynamical
system without any approximation exists.

Numerical simulation is a common method for the an-
alyzing trajectory in an atmosphere due to the complexity
of integrating the traditional drag model, which is the iner-
tia resistance. For that, various analytical solutions during
atmospheric decay and reentry are proposed in the litera-
ture. In low Earth orbits, atmospheric drag is regarded as
a perturbation effect. The change of the orbital elements
is described as the Bessel functions with simplifications
such as averaging, exponential density, and low or high
eccentricity [1]. For reentry, approximations such as near
circular orbits [2] and constant flight-path angle [3] are
used. These analytical solutions are useful for analyz-
ing kinematic features in each case. Nevertheless, these
formulations employ some kinds of approximation, then
equations and theories must be chosen according to the
orbital environments.

This paper establishes a comprehensive framework to
analytically describe the spiral-ellipse trajectory of a space
object in an atmosphere. Specifically, this paper proposes

IAC–25–C1, IPB, 19, x96854 Page 1 of 6



76th International Astronautical Congress (IAC), Sydney, Australia, 29 Sep-3 Oct 2025.
Copyright © 2025 by the International Astronautical Federation (IAF). All rights reserved.

an integrable drag model. Phenomenons and expectations
are often modeled with rough main frameworks and strict
fine-tunings. This structure is found in various theoretical
layers such as the Newtonian mechanics and the relativ-
ity in motion, the two-body problem and perturbations
in astrodynamics, the square of velocity and atmospheric
density model in the inertia resistance, etc. The main
frameworks are often easy to understand and intuitive for
humans. The astrodynamics in an atmosphere is mainly
described by the gravity and the inertia resistance. How-
ever, this is combination of the two frameworks, in other
words, a single framework can be rebuilded.

This paper is composed of the following sections. Sec-
tion 2 shows a trajectory in the atmosphere with a tradi-
tional numerical simulation to discover a potential for the
analytical solution. Then, a modeling method for the an-
alytical solution is introduced with the inspired example
of the Kepler’s laws and Newton’s universal gravity. The
dynamical systems of the two-body problem and one with
atmospheric drag are formulated to support the model-
ing. Section 3 models the trajectory in the atmosphere by
proposing empirical laws. Then, the analytical solution is
obtained and verified. Section 4 concludes the features of
the dynamical system in an atmosphere in the modeling.

2. Preliminaries
2.1 Preliminary analysis

This section presents numerical simulations of orbital
decay and reentry with the traditional force model and
explains the potential to analytically describe the trajec-
tory. Figures 1 and 2 show an example of trajectory in
the atmosphere simulated with the traditional inertia re-
sistance model and NRLMSISE-00 model, one of atmo-
spheric models. The simulation ends at the altitude of 70
km. The geocentric distance oscillates and finally plunges.
The angular momentum decreases in a stepwise pattern.

This study supposes that the appearance of the geocen-
tric distance at the plunge is an feature of importance. This
feature of oscillation and plunge is rare but can be observed
in a function. That is the secondary Airy function which
is defined as

Bi(𝑥) = 1
𝜋

∫ ∞

0

[
exp

(
− 𝑡3

3
+ 𝑥𝑡

)
+ sin

(
𝑡3

3
+ 𝑥𝑡

)]
𝑑𝑡 (1)

The appearance of oscillation and plunge corresponds the
equation of exponent plus sine above. Figure 3 shows the
appearance of −Bi that is similar to that of the geocentric
distance. This means a potential to analytically describe
the trajectory in an atmosphere. Thus, the analytical solu-
tion contains the sum of oscillational and exponential (or
this kind of monotonic) functions.

Fig. 1: History of altitude (geocentric distance)

Fig. 2: History of angular momentum

2.2 Kinematic interpretation of Kepler’s law
This section demonstrates how Kepler’s law determines

the force model of universal gravity, and this paper utilizes
the process for modeling in Sec. 3. The following in this
section mainly refers to [4].

Kepler’s laws consist of the following three:

1 First Law (Law of Ellipses): Planets orbit the Sun in
elliptical orbits with the Sun at one focus.

2 Second Law (Law of Equal Areas): A line segment
joining a planet and the Sun sweeps out equal areas
during equal intervals of time.

3 Third Law (Law of Periods): The square of a planet’s
orbital period is directly proportional to the cube of
the semi-major axis of its orbit.

These laws requests acceleration expressions as follows.
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Fig. 3: 𝐵𝑖 function (sign inversion)

From the second law,

Δ𝑆

Δ𝑡
=

𝜋𝑎𝑏

𝑇
(2)

=
𝑑𝑆

𝑑𝑡

=
1
2
𝑟2 9𝜃

= ℎ/2 (const.) (3)

Noting that ℎ here is not deliberately called angular mo-
mentum as the reserved quantity, but it is just a constant
requested from the Kepler’s second law. Since differentiat-
ing the constant, the acceleration in the transverse direction
becomes

𝑎𝜃 = 2𝑟 9𝑟 9𝜃 + 𝑟 :𝜃

=
1
𝑟

𝑑

𝑑𝑡
(𝑟2 9𝜃)

= 0 (4)

The acceleration in the radial direction can be converted
into

𝑎𝑟 = :𝑟 − 𝑟 9𝜃2

=
𝑑𝜃

𝑑𝑡

𝑑

𝑑𝜃
9𝑟 − 𝑟4 9𝜃2

𝑟3

= 9𝜃
𝑑

𝑑𝜃

[
−ℎ 𝑑

𝑑𝜃

(
1
𝑟

)]
− ℎ2

𝑟3

= −
(
ℎ

𝑟

)2 [
𝑑2

𝑑𝜃2

(
1
𝑟

)
+ 1
𝑟

]
(5)

The first law requests conic section and its reciprocal is

1
𝑟
=

1 + 𝑒 cos 𝜃
𝑎(1 − 𝑒2)

(6)

Differentiating the equation above yields

𝑑2

𝑑𝜃2

(
1
𝑟

)
= − 𝑒 cos 𝜃

𝑎(1 − 𝑒2)
(7)

Using ℎ/2 = 𝜋𝑎𝑏/𝑇 = 𝜋𝑎2
√

1 − 𝑒2/𝑇 and substituting
Eqs. (6) and (7) into Eq. (5) yields

𝑎𝑟 = −
(
ℎ

𝑟

)2 1
𝑎(1 − 𝑒2)

= −4𝜋2
(
𝑎3

𝑇2

)
1
𝑟2 (8)

From the third law, 𝑎3/𝑇2 is constant, resulting in

𝑎𝑟 = − 𝜇@

𝑟2 (9)

where 𝜇@ is a constant and does not depend on planets
orbiting the Sun.

The expression of Newton’s universal gravity can be
derived from Kepler’s laws with kinematic interpretation
and calculus. This process can be regarded as the approx-
imately same way of Newton at that time. He did not use
the word, calculus, but use the think of limit with geomet-
ric explanation. Whether the process equals to Newton’s
way is not a problem, rather, the important thing is that, if
calculus existed, one could create the force model of the
universal gravity from the Kepler’s laws. This force model
can be made from the empirical laws, but not from the dy-
namics. On the other hand, models such as the inertia
resistance is dynamics-based from Newton’s law of drag.
It is reasonable to allow for another types of models such
as atmospheric drag model made from empirical laws.

2.3 Two-body problem
This section describes the two-body problem to support

the formulation in the following section. The equations of
motion in the two-body problem are given as

:𝑟 − 𝑟 9𝜃2 = − 𝜇C

𝑟2 (10)

2 9𝑟 9𝜃 + 𝑟 :𝜃 = 0 (11)

Eq. (11) can be converted into

1
𝑟

𝑑

𝑑𝑡
(𝑟2 9𝜃) = 0 (12)

and this is known as the angular momentum of the reserved
quantities, integrated as

𝑟2 9𝜃 = ℎ (13)

Within the two-body problem, the angular momentum
holds constant. The variable transformation from 𝑟 to
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𝜎 is employed and Eq. (10) can be solved as a function of
𝜃. Differentiating 𝜎 by 𝜃 yields

𝑑𝜎

𝑑𝜃
=

𝑑𝑡

𝑑𝜃

𝑑𝜎

𝑑𝑡

= − 9𝑟

𝑟2 9𝜃
(14)

𝑑2𝜎

𝑑𝜃2 =
𝑑𝑡

𝑑𝜃

𝑑

𝑑𝑡

(
𝑑𝜎

𝑑𝜃

)
= −:𝑟𝑟2 9𝜃 − 2𝑟 9𝑟2 9𝜃 − 𝑟2 9𝑟 :𝜃

𝑟4 9𝜃3

= − 1
𝑟2 9𝜃2

[
:𝑟 − 9𝑟

𝑟 9𝜃

1
𝑟

𝑑

𝑑𝑡
(𝑟2 9𝜃)

]
(15)

= − :𝑟

𝑟2 9𝜃2
(16)

Substituting Eq. (16) into Eq. (10) yields

𝑑2𝜎

𝑑𝜃2 + 𝜎 =
𝜇C

𝑟4 9𝜃2

=
𝜇C

ℎ2 (17)

Equation (17) can be integrated to

𝜎 =
𝜇C

ℎ2 + 𝐵 cos (𝜃 + 𝜃0) (18)

Then, the solution, known as the conic section, is obtained
as

𝑟 =
1
𝜎

=
ℎ2/𝜇C

1 + (𝐵ℎ2/𝜇C) cos (𝜃 + 𝜃0)
(19)

According to variables when polar coordinate axes se-
lected at initial time, a pair of (𝜃 = 0, . . . , 2𝜋, 𝜃0) is de-
noted as ( 𝑓 , 𝑓0) or (𝑢, 𝑢0). The former is still a relative
expression between initial and perigee axes. For the latter,
by considering node vector that serve as standards to de-
fine absolute position of the ellipse in the inertia frame, 𝜔
is needed finally.

2.4 Aerodynamics force
This section formulates the equations of motion with

aerodynamic forces to support the modeling in Sec. 3. The
equations of motion in an atmosphere are given by

:𝑟 − 𝑟 9𝜃2 = − 𝜇C

𝑟2 + 𝐹𝐷

9𝑟

𝑣
(20)

2 9𝑟 9𝜃 + 𝑟 :𝜃 = 𝐹𝐷

𝑟 9𝜃

𝑣
(21)

In low Earth orbit, inertial resistance of atmospheric drag
is usually employed as

𝐹𝐷 = −1
2
𝜌
𝐴

𝑚
𝐶𝐷𝑣

2 (22)

Substituting Eq. (21) into Eq. (20) becomes

:𝑟 − 𝑟 9𝜃2 = − 𝜇C

𝑟2 + 9𝑟

𝑟 9𝜃
(2 9𝑟 9𝜃 + 𝑟 :𝜃) (23)

Similarly, Eq. (23) is converted using Eq. (15) to

𝑑2𝜎

𝑑𝜃2 + 𝜎 =
𝜇C

ℎ2 (24)

Interestingly, Eq. (24) completely equals to Eq. (17) even
with the drag force. It should be noted that ℎ = 𝑟2 9𝜃 de-
creases by the drag force and this is why the equation is
difficult to integrate. In other words, Eq. (17) implies that
ℎ must be modeled so that the square of its reciprocal is
integrable in 𝜃 to analytically describe the solution. This
formulation is valid as long as 𝐹𝐷 is in the direction of ve-
locity, thus other forces such as the rotation of atmosphere
should be treated separately as perturbations.

3. Modeling and Verification
3.1 Modeling

Reflecting the results of Sec. 2, this paper proposes a
new law of orbit decay, “angular momentum is composed
of logistic functions.” Basically, each logistic function
corresponds to a single revolution, excepting skip reen-
tries. For many cases, the solution of a single revolution is
enough to use. Moreover, reentry condition makes angular
momentum zero as ℎ → 0 for 𝜃 → ∞, so that integration
constant can be set to zero as

ℎ =
𝛼1

1 + 𝑒−𝛼2 (𝜃−𝜃𝑒 )
(25)

Substituting Eq. (25) into Eq. (24), the radial ODE be-
comes

𝑑2𝜎

𝑑𝜃2 + 𝜎 =
𝜇C

ℎ2

=
𝜇C

𝛼2
1
[1 + 2𝑒−𝛼2 (𝜃−𝜃𝑒 ) + 𝑒−2𝛼2 (𝜃−𝜃𝑒 ) ] (26)

The equations of motion with the proposed model can be
integrated in terms of a polar angle without any approxi-
mation. The solution is composed of the general solution
and the specific solution as

𝜎 =
𝜇C

𝛼2
1
[1 + 𝑔(𝜃)] + 𝐵 cos (𝜃 + 𝜃0) (27)

where

𝑔(𝜃) = 2
𝛼2

2 + 1
𝑒−𝛼2 (𝜃−𝜃𝑒 ) + 1

4𝛼2
2 + 1

𝑒−2𝛼2 (𝜃−𝜃𝑒 ) (28)
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From the definition of 𝜎,

𝑟 =
𝛼2

1/𝜇C

1 + 𝑔(𝜃) + 𝐵𝛼2
1/𝜇C cos (𝜃 + 𝜃0)

(29)

resulting in the geocentric distance as the function of the
cumulating angle. 𝜃𝑒 defines the absolute position at reen-
ter indirectly connecting to the inertia frame, which has the
same role of 𝜔. Strictly, 𝜃 is a cumulative angle because
spiral continues infinitely, but almost reentry trajectories
end within 2𝜋. When considering orbits that not reenter,
𝜃𝑒 → ∞, 𝑔(𝜃) → 0, and Eq. (29) completely corresponds
to the conic section. The geometry and equation of the
solution are the superposition of spiral and ellipse, respec-
tively corresponding to the exponential and oscillational
functions as expected. The equation of the solution is
a generalized form of the conic section and thus can be
adapted to various scales of atmospheric drag and eccen-
tricities.

There would be room for considering concrete expres-
sion of the logistic function if more accuracy is needed.
Generalizing the logistic function would be effective such
as

ℎ =
𝛼1

[1 + 𝑒−𝛼2 (𝜃−𝜃𝑒 ) ]1/2 (30)

which simplifies 𝑔(𝜃) into a single exponential term. As
long as the square of the reciprocal can be integrable,
generalized logistic function is suitable for this modeling.

3.2 Verification and systematizing
This section verifies the solution generated from the

modeling by the nonlinear curve fitting. Figure 4 demon-
strates the accuracy of Eq. (29). The error in ellipsoidal
heights during reentry holds approximately 1% between
numerical simulations using the traditional model and non-
linear curve fitting to them by the proposed solution.

This results can systematize the first and second laws
for the trajectory in an atmosphere as follows.

1 First Law (Law of Spiral Ellipse Sum): Space objects
in an atmosphere orbit in spiral-ellipse trajectories
whose reciprocal radiuses are exponential (mono-
tonic) plus oscillational functions.

2 Second Law (Law of Stepped Angular Momentum):
Angular momentum is composed of sum of logistic
functions.

These laws have extracted from numerical simulations,
instead of observed values that Kepler used, with the tra-
ditional drag model that has been verified for a long period
of time. Thus, the reliability of the laws equals to that of
the traditional model and the laws are not properties that
changes with slight errors of atmospheric models.

As well as Sec. 2.2, accelerations can be requested from
the first and second laws above. Thus, the expression of
forces are derived by setting Eqs. (29) (or Eq. (27)) and
(25) a start.

Fig. 4: Curve fitting of reentry trajectories
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Using Eq. (15),

𝑎𝑟 = :𝑟 − 𝑟 9𝜃2

= −𝑟2 9𝜃2 𝑑
2𝜎

𝑑𝜃2 + 9𝑟

𝑟 9𝜃

1
𝑟

𝑑

𝑑𝑡
(𝑟2 9𝜃) − 𝑟 9𝜃2

= −𝑟2 9𝜃2
(
𝑑2𝜎

𝑑𝜃2 + 𝜎

)
+ 9𝑟

𝑟 9𝜃

9𝜃

𝑟

𝑑ℎ

𝑑𝜃
(31)

From the first law, differentiating Eq. (27) yields

𝑑2𝜎

𝑑𝜃2 + 𝜎 =
𝜇C

𝛼2
1
[1 + 2𝑒−𝛼2 (𝜃−𝜃𝑒 ) + 𝑒−2𝛼2 (𝜃−𝜃𝑒 ) ]

From the second law,

𝑑2𝜎

𝑑𝜃2 + 𝜎 =
𝜇C

ℎ2 (32)

Then, substituting the equation above into Eq. (31) as

𝑎𝑟 = −𝑟2 9𝜃2 𝜇C

ℎ2 + 1
𝑟2

𝑑ℎ

𝑑𝜃
9𝑟

= − 𝜇C

𝑟2 + 𝑣

𝑟2
𝑑ℎ

𝑑𝜃

9𝑟

𝑣
(33)

Thus, 𝑎𝑟 is divided into the gravity and the other. On the
other hand, from the second law,

𝑎𝜃 = 2𝑟 9𝑟 9𝜃 + 𝑟 :𝜃

=
1
𝑟

𝑑

𝑑𝑡
(𝑟2 9𝜃)

=
9𝜃

𝑟

𝑑ℎ

𝑑𝜃

=
𝑣

𝑟2
𝑑ℎ

𝑑𝜃

𝑟 9𝜃

𝑣
(34)

Consequently, the other acceleration have components of
velocity vector, ( 9𝑟, 𝑟 9𝜃), in each direction. Thus, this accel-
eration is in the direction of velocity. The first and second
laws determined the direction of acceleration (defined as
force later) as well as the Kepler’s first and second laws.
From the second law, differentiating ℎ in 𝜃 as

𝑑ℎ

𝑑𝜃
=
𝛼2
𝛼1

(𝛼1 − ℎ)ℎ (35)

At this stage,

𝐹𝐷 =
𝑣

𝑟2
𝑑ℎ

𝑑𝜃
(36)

=
𝛼2
𝛼1

(𝛼1 − ℎ) 𝑣ℎ
𝑟2 (37)

Since there are force models made of 𝑟 or 𝑣, it is reasonable
that the model made of ℎ exists. Noting that Eq. (37) is
temporary like Eq. (8) and the strict expression of 𝐹𝑑 will
be determined after discovering the third law.

4. Conclusions
This paper has proposed a framework which recon-

structs the atmospheric drag force to analytically describe
trajectories in an atmosphere. This paper has featured
the system as reciprocal radius as the exponential plus
oscillational functions and the angular momentum of lo-
gistic function whose square of its reciprocal is integrable.
These features are reflected in modeling that is inspired
by Newton’s universal gravity model with the kinematic
interpretation of Kepler’s laws. This results in the solution
of the reentry trajectory as a conic section with the element
of spiral added, therefore it can be used for a variety of
eccentricities or drag scales. Future works will explore
third laws to constraint the independent parameters of the
solution.
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